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Abstract: The travel time prediction of vehicles is an important part of intelligent expressways.
It can not only provide the vehicle distribution trend of each section for the expressway management
department to assist the fine management of the expressway, but it can also provide owners with
dynamic and accurate travel time prediction services to assist the owners to formulate more reasonable
travel plans. However, there are still some problems in the current travel time prediction research
(e.g., different types of vehicles are not processed separately, the proximity of the road network is
not considered, and the capture of important information in the spatial-temporal perspective is not
considered in depth). In this paper, we propose a Multi-View Travel Time Prediction (MVPPT) model.
First, the travel times of different types of vehicles of each section in the expressway are analyzed,
and the main differences in the travel times of different types of vehicles are obtained. Second,
multiple travel time features are constructed, which include a novel spatial proximity feature. On this
basis, we use CNN to capture the spatial correlation and the spatial attention mechanism to capture
key information, the BiLSTM to capture the time correlation of time series, and the time attention
mechanism capture key time information. Experiments on large-scale real traffic data demonstrate
the effectiveness of our proposal over state-of-the-art methods.

Keywords: expressway; electronic toll collection; travel time; vehicle type; spatial proximity

1. Introduction

As an important part of transportation infrastructure, expressways provide important
support for social economic development and people’s quality of life. However, in recent
years, the number of vehicles in China has gradually increased, and the management and
planning of expressways have faced many problems. In order to improve the efficiency
of vehicle management of expressways, China’s road management departments have de-
ployed more than 20,000 sets of gantry equipment on expressways across China [1], and the
intelligent charging and real-time location recording of vehicles have been realized, which
further promotes the fine management of expressways [2]. This is of great significance
to improve expressway traffic efficiency, reduce logistics costs, facilitate mass travel, and
promote the high-quality development of expressways. At the same time, due to the
construction of expressway infrastructure, the expressway gantry system also generates
massive Electronic Toll Collection (ETC) data, which provides data support for the “ETC
plus”. ETC data record most of the vehicles driving on the expressway, which basically
reflects the traffic status of the expressway section [3]. Therefore, through ETC data, we
can accurately obtain the road utilization rate, traffic rate, traffic speed, travel time, etc.,
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which can help us effectively predict the traffic flow [4], travel time [5], and speed [6] of all
vehicle types in each section of the expressway.

Travel time prediction is an important part of an intelligent expressway, which provides
travelers with travel time information of each path, helps travelers make more intelligent travel
decisions, and formulates more accurate and reasonable expressway driving schedules [7].
In addition, travel time prediction can also provide auxiliary decision-making information for
road management and rectification for traffic management departments. A large number of
researchers have studied travel time prediction [5,7,8], with the deepening of research, the
error value is gradually reduced, but there are still some problems. First, there is no separate
discussion of different types of vehicles, and different types of vehicles on expressways have
different travel characteristics [8]. Most researchers predict the future travel time based on the
overall travel time of all vehicles, which may seriously affect the accurate prediction of travel
time and cannot be applied to fine expressway management. Second, the road proximity is
not considered, which has great influence on traffic prediction [9]. However, the proximity of
the road network is not considered in the current travel time prediction research. Third, the
important information extraction does not consider both spatial and temporal features. In the
long-term sequence processing, different information of time dimension and space dimension
has different weights for the prediction model [10,11]. If more weight can be given to the
important information of the two dimensions of time and space, the accuracy of the prediction
model could be further improved.

To address the aforementioned challenges, we propose a Multi-View Travel Time
Prediction Model (MVTTP). First, the travel time characteristics of each vehicle type on
the expressway are analyzed, and the vehicles are classified according to the difference in
travel time of each vehicle type. On this basis, we consider multi-view spatial-temporal
features to construct feature vectors, where we propose a novel spatial proximity feature.
Finally, we propose a new deep learning framework in which the Convolutional Neural
Network (CNN) captures the spatial dependency of the network structure and then adds a
spatial attention mechanism to weight the important information, and the Bi-directional
Long Short-Term Memory (BiLSTM) captures the temporal dependency of the time series
and adds a temporal attention mechanism to capture the important temporal features. The
experimental results show that the predicted values after classification are closer to the real
travel time values and that the model has better prediction performance. The prediction
performance of the model is also improved after considering the spatial proximity, and the
proposal has better prediction performance compared with other deep learning methods.

Our contributions are summarized below:

• We analyze the travel time of expressway, find out there are great differences in the
travel time of different types of vehicles, and further verify the necessity of separate
predictions for different types of vehicles.

• We propose a road network proximity feature for travel time prediction, which can
perceive the correlation of adjacent sections in the space of the road network.

• We propose a novel travel time prediction model, which considers the road net-
work proximity, temporal and spatial correlation, and can capture the key spatial-
temporal information.

• We conducted extensive experiments on real- traffic datasets. The results show that
our method consistently outperforms the competing baselines.

The organization of this paper is as follows: The first section is the introduction; the
second section is the related work. The third section is the details in the Methodology. The
fourth section is the Experimental Results and Analysis, and finally, the fifth section is
the Conclusion.

2. Related Work

At present, travel time prediction models can be divided into two categories, one is
model driven, the other is data driven [12]. Model-driven methods were a common travel
time prediction model in the past [13], which are mainly divided into queuing models and
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cell transmission models. With the development of business and industry, a large amount
of data is collected, and data-driven prediction has become a hot research topic [14], which
can be divided into machine learning algorithms and deep learning models.

Model-driven methods predict future travel time by modeling parameters in traffic
models [12]. In the development of model-driven travel time prediction, Takaba et al. [15]
use leakage a model and delay model based on queuing theory to predict travel time;
their results show that the leakage model has a better performance than the delay model.
Skabardonis et al. [16] take the free travel time and traffic signal delay time as the total travel
time of the vehicle and used the queuing theory model based on motion wave theory to
predict total travel time. Juri et al. [17] combined statistical prediction technology with cell
transmission model, using a sliding window framework for online travel time prediction,
which is a point-to-point, online, short-term prediction method. Seybold et al. [18] proposed
an improved cell transmission model to predict travel time, which uses the least square
method and global least square method to optimize model parameters. Model-driven
prediction has a relatively complete traffic model and theoretical system, which can clearly
explain the relationship between various traffic volumes. However, its prediction time is
short, and its prediction performance is not good.

The data-driven method mainly uses a large number of historical data to conduct the
model learning and parameter optimization. Then, the model can achieve the effect of
an approximately real situation [19]. It is mainly divided into the traditional time series
prediction method, the machine learning method, and the deep learning model [20]. The
traditional time series prediction algorithms mainly include Autoregressive Integrated
Moving Average (ARIMA) and Historical Average (HA), which were once widely used
in the field of traffic forecasting [21]. However, since these methods are based on histor-
ical records for forecasting, they cannot capture the context features of the data and are
gradually replaced by machine learning algorithms.

With the development of machine learning and deep learning, a large number of
travel time prediction methods based on machine learning or deep learning have been
proposed. Before 2016, Machine learning is a hot research topic [22,23], most of the research
on travel time prediction was based on machine learning methods and feature vectors for
travel time prediction. However, in 2016, the deep learning system AlphaGo developed by
Google defeated the championship of human chess, the deep learning once again became a
research hotspot in various fields [24–26]. Since then, deep learning-based travel time has
also become a research hotspot in the field of transportation.

The mainstream algorithms of machine learning for travel time prediction include
Support Vector Regression (SVR), K-Nearest Neighbor (KNN), Linear Regression (LR),
Adaptive Boosting (AdaBoost), etc. Kwon et al. [7], based on LR, used stepwise variable
selection and decision trees to predict the travel time of expressways. Rice et al. [27] also
proposed an improved LR with time-varying coefficient, which uses historical time and
the traffic condition of the day to predict travel time. Vanajakshi et al. [28] used SVR to
predict short-term travel time. Based on this, Qiu et al. [29] predicted travel time by using
floating car trajectory data and radar velocity data based on SVR. Castro-Neto et al. [30]
proposed an online support vector machine (OL-SVR) for travel time prediction in atypical
traffic conditions such as traffic accidents, bad weather, and holidays. Yao et al. [31] used
the travel time, traffic flow, and road occupancy of historical time as the input of SVR,
and selected Gaussian radial basis function as the kernel function to predict the travel
time. Wang et al. [32] predicted the travel time based on the improved KNN, using cross
validation to determine the selection of the k value. Yao et al. [33] selected the training
feature and the most similar neighbor days through the classification models of random
forest (RF) and KNN and then used the regression model of RF and KNN to predict the
time of traffic congestion. Traditional machine learning is the simple linear regression
model, which fails to capture the complex nonlinear spatial-temporal correlations.

Deep learning overcomes the limitations of the shallow learning of machine learning
and can capture nonlinear spatial-temporal correlations well. Hopfield et al. [34] first
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proposed a time RNN model. With the in-depth study of the RNN, the model has been
gradually applied to various fields. Yun et al. [35], used the Recurrent Neural Network
(RNN) model for travel time prediction at expressway and urban intersections, and the
experimental results showed that the model has good prediction performance. Since
RNN has difficulty preserving long-term memory and has the problems of vanishing
gradients and explosion gradients, researchers thus proposed to use Long Short-Term
Memory (LSTM) [36], Gated Recurrent Unit (GRU) [37], and Bi-directional Long Short-
Term Memory (BiLSTM) [38] for travel time prediction. However, it is difficult for a single
neural network to capture both temporal and spatial correlations in a long time sequence.

With the development of deep learning [39], combining the advantages of multiple
single deep learning models into complex deep learning models has become a hot research
topic in time series prediction [40]. Yao et al. [21] proposed a combined model for traffic
flow prediction in which CNN and LSTM capture the spatial-temporal correlation of traffic
flow and then use the periodically shifted attention mechanism to capture the periodicity
and the flow gating mechanism to explicitly model dynamic spatial similarity. Liu et al. [41]
also used a combined model for traffic flow prediction, which used Convolution LSTM
to extract spatial-temporal correlations of traffic flow, and then used Bi-LSTM to capture
periodicity. Guo et al. [42] combined CNN with LSTM to capture both temporal and spatial
correlations in population flow prediction, and used temporal attention mechanisms to
capture more important temporal information. Xu et al. [43] utilized feature embedding
blocks to capture semantic information from multiple features. Then, based on the spatial
attention mechanism and the temporal attention mechanism, captured the spatial and
temporal dependencies in the multimodal traffic demand. In the above deep learning com-
bined prediction model, they use the convolution idea to capture the spatial correlation, use
the recurrent neural network to capture time correlation, and use the attention mechanism
to capture important spatial-temporal information.

At the same time, the combined model is also widely used in travel time prediction [44].
Li et al. [45] used CNN and LSTM to obtain spatial-temporal correlation, and then used
the time attention mechanism to correct the drift error in travel time. Fang et al. [46] used
a graph neural network (GCN) and a graph attention mechanism to obtain the spatial-
temporal correlation of travel time and used CNN to obtain the spatial context information.
Wang et al. [47] proposed a geo-based convolution, which converted the GPS series into a
feature map, and then used LSTM to obtain the temporal correlation and a channel attention
mechanism to capture the important information between different sub-paths. The above
combined travel time models can capture both temporal correlations and spatial correlations,
but they do not have an attention mechanism that considers both time and space.

In summary, the difference of our proposed method compared with the literature is
that we consider both spatial and temporal attention mechanism, and we also consider the
travel time difference in vehicle types and the proximity of road network.

3. Methodology
3.1. Overview

In this section, we give an overview of the proposed model as shown in Figure 1. First,
we preprocess the data to remove abnormal data and ensure the integrity of the data. On
this basis, we converted the ETC data into vehicle trajectories based on the gantry topology
data, so that we could obtain the travel time of vehicles in all sections. However, there
is no traffic flow in a certain period of time in some sections, so there is no travel time
in a certain time interval. Therefore, we supplemented the missing data by repairing the
algorithm. After preparing the data, we analyzed and modeled multiple features, and
process the vehicle separately according to the vehicle type. Finally, we used CNN to
capture spatial correlation and BiLSTM to capture temporal correlation and then used the
attention mechanism of spatial and temporal information to capture important information
for model prediction. Therefore, we could obtain the predicted travel time of each vehicle.
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Figure 1. Overall framework.

3.2. Notations and Problem Formulation

In this section, we first fix some notations and define the travel time prediction problem.
We follow previous studies [48] and define the set of time intervals as I = 〈I1, I2, . . . , It, IT〉.
We further define the following:

ETC data. When the vehicle passes through the ETC gantry, the Road Side Unit (RSU)
on the gantry will conduct an information transaction with the On Board Unit (OBU) of
the vehicle. The RSU will record the vehicle ID, the gantry ID, the time of information
transaction, the expressway entrance of the vehicle, and other information and then upload
it to the ETC system. This uploaded information constitutes the ETC data Edata.

Section: The ETC gantry of the expressway is called Node, the area between two adja-
cent gantries forms a section which is referred to as QD = 〈Dat, dis〉, Dat = {Node1, Node2},
where dis is the distance between two nodes. Node and QD are shown in Figure 2. The set
of all sections (i.e., expressway network) can be express as LW = {QD1, QD2, . . . , QDn}.

Figure 2. Schematic of the sections.
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Vehicle trajectory: A set of ETC gantry Edata through which a vehicle passed while driving
on the expressway, Edata = {RNode1, RNode2, RNoden}, RNode = 〈ID, Time, EnterID, . . . 〉.
Edata are composed of multiple gantry transaction records, RNode. RNodes contain more than
100 data attributes; ID is the gantry Identity Document (ID); Time is the transaction time of the
gantry; EnterID is the enter station ID. ETC data, Edata, can be converted into vehicle trajectory
data, Edata→ Traj = {D0, D1, Di . . . Dj, DE} , Di = (Ni, Ti), 0 ≤ i ≤ E, ∀i ≤ j, Ti ≤ Tj. Di is
the trajectory point, including node Ni and time property Ti. Ni is the label of the i-th node
passed by the vehicle, and Ti is the information interaction time when the vehicle passes through
node Ni. D0 is the start-point of the trajectory, and DE is the end-point of the trajectory.

Vehicle type: China’s license plates mainly include blue license plates, yellow license
plates, green license plates, white license plates, and black license plates. In order to clarify
the meaning of the vehicle type, the vehicle is divided into five categories according to
the color of the license plate. They are Class A vehicle (blue license plate), Class B vehicle
(yellow license plate), Class C vehicle (green license plate), Class D vehicle (white license
plate), and Class E vehicle (black license plate). In addition, all vehicles together are called
Class F vehicles.

Travel time: The time consumed by a vehicle passing a certain section 〈Node1, Node2〉
is called travel time ∆t:

∆t = tnode2 − tnode1 (1)

If m vehicles pass section QDj at time window i, the travel time ∆tj,all
i of all vehicles at

section QDj at time window i can be expressed as:

∆tj,all
i =

{
∆tj,1

i , ∆tj,2
i , . . . , ∆tj,m

i

}
(2)

The average travel time Y j
i of the section QDj of m vehicles at time window i can be

expressed as:
Y j

i = ∑m
c=1∆tj,c

ij /n (3)

Travel time prediction problem: The travel time prediction problem aims to predict the
travel time of t+ 1 time interval, given the data until time interval t. In addition to historical
travel time data, we also include relevant context features, including spatial proximity fea-
tures, spatial correlation features, time correlation features, and traffic situation correlation
features. We define the context feature of section j at time point i as a vector ej

i ∈ Rr, and
r as the number of features. Therefore, travel time prediction can be expressed as:

Y j
i+1 = F

(
YQD

j−h,...j, . . . , EQD
j−h,...j

)
(4)

For j ∈ QD, YQD
j−h,...j is historical travel time, where j− h denotes the starting time. F (.)

is the prediction function. EQD
j−h,...j are context features for all sections QD for time intervals

from j− h to j. E can be expressed as:

E =


E1

c , E2
c , . . . , En

c
E1

s , E2
s , . . . , En

s
E1

t , E2
t , . . . , En

t
E1

z , E2
z , . . . , En

z

 (5)

where Ec is the spatial proximity features, Es is the spatial correlation features, Et is the
time correlation features, Ez is the traffic situation correlation features, and En denotes the
context features from n-th time intervals.
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3.3. Data Preprocessing
3.3.1. Raw Data Cleaning

ETC gantries record transaction time, vehicle license plate, toll station, and other
information when the vehicle passes through the ETC gantry. However, there are some
special conditions (e.g., terrible weather, vehicle OBU anomaly, gantry RSU anomaly)
that make the ETC system record abnormal data. Through research and analysis, the
main abnormal data can be divided into data redundancy and data error, as shown in
Tables 1 and 2, where *, ** represents other characters that are not displayed.

Table 1. Examples of data redundancy.

Tradeid Obuid Tradetime Flagid Carplate . . .

G001639 ** 6A59 ** 27 May 2021 6:21:38 3402 * Blue MinA12 . . .
G001639 ** 6A59 ** 27 May 2021 6:21:38 3402 * Blue Min A12 . . .
G001639 ** 6A59 ** 27 May 2021 6:21:38 3402 * Blue Min A12 . . .
G001639 ** 6A59 ** 27 May 2021 6:21:38 3402 * Blue Min A12 . . .

Table 2. Examples of data error.

Class Obuid Entime Flagid Ttradetime . . .

Error 1 62F3 ** 000000 3502 * 20 May 2021 11:21:38 . . .
Error 2 6873 ** 22 May 2021 7:31:54 a6p823 22 May 2021 13:11:50 . . .
Error 3 628A ** 25 May 2021 8:21:38 350A * 25 May 2021 0:56:32 . . .
Error 4 236d45 29 May 2021 9:29:11 3502 * 29 May 2021 15:23:11 . . .

Data redundancy: The transaction information of each vehicle passing through the
ETC gantry should be unique. However, data collection, transmission, storage procedures
may not work properly, resulting in multiple uploads of data. Therefore, these data need to
be cleaned.

Data error: Data attributes differ from normal traffic data. There are three main cases:
The first is that the data are not normally collected, which is replaced by special characters
(e.g., Error 1). The second is that data are lost due to abnormalities in the system during
transmission, and the system uses random characters to replace lost data (e.g., Error 2,
Error 4). The third is that the data do not conform to normal traffic rules (e.g., Error 3), the
time of the trade station being later than the time of the enter station. Therefore, these data
need to be cleaned

3.3.2. Vehicle Travel Time Construction

After preprocessing the ETC data, we construct the trajectory of each vehicle through
the gantry sequence, and then calculate the section travel time of the vehicle combined
with the gantry topology data, the details of the processing are shown in Algorithm 1.
First, the trajectory of each vehicle is counted, and the vehicle trajectory is divided into
multiple sections trajectory. Then, each section trajectory is matched with the gantry
topology data to check whether the section belongs to the expressway gantry topol-
ogy. If there is, the travel time of the vehicle passing through the section is directly
calculated; if not, we need to search for the shortest path of the section, through the
shortest path of the section sequence, to add the missing gantry record. After the data
are added, we can calculate the travel time of all sections. The algorithm is as follows.
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Algorithm 1 Travel time window construction algorithm.

Input: ETC data Edata; Expressway road network topology data LW;
Output: Vehicle travel time data Dt;
1: Edata = {RNode1, RNode2, . . . , RNoden}, LW = {QD1, QD2, . . . , QDn}, QD = 〈Dat, Dis〉;
2: for i = 0 to i = n− 1 do
3: ∆ti = Timei+1 − Timei//Calculating the time difference of adjacent nodes;
4: Dat = 〈RNodei, Timei, RNodei+1, Timei+1〉//save the information of adjacent nodes;
5: Dt = (Dat, ∆ti),//save the vehicle passage information;
6: end for
7: if RNodei and RNodei+1 in LW//if adjacent nodes are in topological data;
8: Dt = (Dat, ∆ti)//the vehicle passage time remains unchanged;
9: else
10: Dis = {}
11: {N1, N2, . . . , Nm} ← shortest path(LW, N)//search for the shortest path, which
N = {RNodei, RNodei+1};
12: Dis← {N1, N2, . . . , Nm}//the shortest distance is converted into distance;
13: vi = Dis/Ni.Time//calculate the speed of the front and back gantry;
14: ∆ti = Ni+1.Time − Ni.Time
15: Dat = 〈Ni, Ni.Time, Ni+1, Ni+1.Time, ∆t〉
16: Dt = (Dat, ∆ti),//save the vehicle passage information;
17: Return Dt

3.3.3. Repair of Missing Data of Time Interval

In real traffic conditions, some sections with small traffic flow will have no traffic flow
at a certain time interval, so there is no travel time feature in these time intervals. To solve
this problem, some researchers will add an ideal value to replace missed data. Since the
ideal value cannot truly reflect the traffic situation, it may cause some problems when
predicting the travel time. Therefore, we filled the missing value according to the historical
travel time correlation of the road network, the details of the processing are shown in
Algorithm 2.

The algorithm mainly repairs the missing values of the first part, the middle part, and
the end part of the data and then supplements them according to the correlation of the
travel time before and after the section. The repair effect is shown in Figure 3. Figure 3
shows that the repair value will be dynamically supplemented according to the correlation
before and after, and the added value can almost reflect the real traffic situation.

Figure 3. Repair effect of algorithm.
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Algorithm 2 The addition algorithm of missing data in time window.

Input: data = {x1, x2, x3 . . . , xn}//The sequences with missing values;
Output: data∗ = {x1, x2, x3, x4 . . . , xn}//The complete sequence;
1: for i← 0 to n do
2: if i == 0
3: if data[i] is nan and data[i + 1], data data[i + 2] is not nan
4: data[i]← (data[i + 1]+data[i + 2])/2 ;
5: end if
6: end if
7: if i == 1
8: if data[i] is nan and data[i− 1], data[i + 1] is not nan
9: data[i]← (data[i− 1]+data[i + 1])/2 ;
10: end if
11: end if
12: if i >= 2 and i <= (n− 3)
13: if data[i] is nan and data[i− 1], data[i + 1] is not nan
14: data[i]← (data[i− 1]+data[i + 1])/2 ;
15: end if
16: if data[i], data[i + 1] is nan and data[i− 1], data[i− 2] is not nan:
17: data[i]← (data[i− 1]+data[i− 2])/2 ;
18: end if
19: if data[i], data[i− 1] is nan and data[i + 1], data[i + 2] is not nan
20: data[i]← (data[i + 1]+data[i + 2])/2 ;
21: end if
22: end if
23: if i == n− 2
24: if data[i] is nan and data[i− 1], data[i + 1] is not nan
25: data[i]← (data[i− 1]+data[i + 1])/2 ;
26: end if
27: if data[i], data[i + 1] is nan and data[i− 1], data[i− 2] is not nan
28: data[i]← (data[i− 1]+data[i− 2])/2 ;
29: end if
30: end if
31: if i == n− 1
32: if data[i] is nan and data[i− 1], data[i− 2] is not nan
33: data[i]← (data[i− 1]+data[i− 2])/2 ;
34: end if
35: end if
36: end for
37: data∗ ← data
38: return data∗

3.4. Travel Time Analysis and Modeling
3.4.1. Differentiation Analysis of Vehicles

There are many different types of vehicles on expressways in China, and the travel
time of different types of vehicles may be different. Therefore, we analyze the travel time
of two sections with long mileage and short mileage, and the distribution of travel time
is shown in Figure 4. It can be drawn from the figure that the travel time of different
types of vehicles is different, and the travel time of Class B vehicles is the largest difference
with other types of vehicles, and its travel time value is much higher than the average
travel time of all vehicles (Class F vehicle). The overall average travel time is almost in the
middle between the Class B vehicles and other types of vehicle, which is smaller than that
of the Class B vehicles and larger than that of other types of vehicles. Therefore, it can be
concluded that there are differences in travel time among different types of vehicles. It is
irrational to predict travel time with the overall travel time, and it is necessary to analyze
the travel time of each vehicle separately.
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Figure 4. Travel times visualization of all types of vehicles: (a) is a visualization of section 1; (b) is a
visualization of section 2.

To effectively obtain the difference between each type of vehicle, we further analyze
the above Sections 1 and 2. Figure 5 shows the travel time comparison of vehicles in two
sections, and Figure 6 shows the average absolute error results of each type of vehicle.
It can be drawn from Figure 5 that in addition to the vehicles with Class B vehicle, the
travel time values of all types of vehicles have little difference, and the travel time of a
Class B vehicle is significantly higher than that of other vehicle types. Figure 6 shows that
the absolute error of travel time between Class B vehicle and other vehicles is relatively
large, and the average absolute error between other types of vehicles is relatively small.
Therefore, Class B vehicles and other types of vehicles need to be processed separately. The
travel time of vehicles is mainly between Class II vehicles (Class B vehicle, just that, big
vehicles with yellow license plates) and Class I vehicle (Class A vehicle, Class C vehicle,
Class D vehicle, Class E vehicle, just that, small vehicles with other color license plates).
we mainly construct two travel time prediction models of Class I and Class II vehicles to
realize the travel time prediction of expressways.

Figure 5. Travel time statistics of different types of vehicles: (a) is the statistics for section 1; (b) is the
statistics for section 2.
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Figure 6. Average absolute error of travel time between different types of vehicles: (a) is the statistics
for section 1; (b) is the statistics for section 2.

3.4.2. Context Features Modeling

In this section, we will introduce each context feature in detail.

(1) Spatial proximity features

Near things are more related than distant things [49]. There is a strong continuity between
the sections of the expressway, so the flow and speed between the sections are correlated in
the road network [9]. However, each section of the road network has different distances, and
the travel time of the upstream and downstream sections will also be different. It is difficult to
directly capture the correlation between adjacent sections. Therefore, we consider converting
the speed proximity of adjacent sections to the travel time proximity. We denote the section
speed as VQD(i), velocity has the correlation of adjacent sections, Vj−r ∝ . . . ∝ Vj ∝ . . . ∝ Vj+r,
and the section distance DisQD(i) is fixed. Therefore, we construct the travel time proximity
Ec based on DisQD(i) and VQD(i). Ec can be represented as:

Ec =
Disj

Vj±r
(6)

where j is the gantry number, and r is the number of adjacent gantries.
The r value is the key to spatial proximity. To obtain the optimal range of r, we use

Pearson’s correlation coefficient to analyze the influence factors of travel time data Tj±r on
Tj. The calculation formula is:

ρ =
∑n

j=1
(
Tj − Tj

)(
Tj±r − Tj±r

)√
∑n

i=1
(
Tj − Tj

)2
∑n

i=1
(
Tj±r − Tj±r

)2
(7)

where n represents the number of traffic samples, Tj is the travel time of section QDj, and
Tj±r is the travel time of r sections before and after section j.

We selected three sections for spatial proximity analysis. As shown in Table 3, it can be
concluded that with the increase in section distance, the correlation of proximity decreases
gradually. There is a strong correlation between the two sections.
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Table 3. Pearson’s correlation analysis of adjacent sections.

Adjacent sections Tj−1 Tj−2 Tj−3 Tj−4

ρ 0.63 0.59 0.36 0.32

Adjacent sections Tj+1 Tj+2 Tj+3 Tj+4

ρ 0.60 0.51 0.38 0.263

(2) Spatial correlation features

In the road network, different sections have similar traffic speeds and zone mileages;
that is, they have similar travel times, so the travel time is a spatial correlation. A large
amount of traffic situation prediction research (e.g., traffic flow, traffic speed, travel time) has
consider spatial correlation. Therefore, in this study, spatial correlation is also considered in
the travel time prediction. The spatial correlation Es can be expressed as the similar travel
time of section QDc and section QDj and section QDz in the road network, Tc ∝ Tj ∝ Tz.

(3) Temporal correlation features

There is temporal correlation in travel time. The temporal correlation can be expressed
as Et = {Ew, Ed, Etc}. Ed is the daily periodicity, Ed is the weekly periodicity, and Etc is the
time closeness. The travel time of a certain day in each week will have a weekly periodicity
(e.g., Friday is the day before the weekend holiday in China, a large number of people
will go back to their hometown, Sunday is the last day of the holiday, and a large number
of people will return to the city to work), a certain hour in each day also has periodicity
(e.g., 7–9 p.m. is the peak time of traveling to work, 5–7 p.m. is the peak time of getting
off work). At the same time, there is also a close correlation between the previous time
intervals and the latter time interval.

(4) Traffic situation features

Traffic situations consist mainly of traffic flow, travel time, and traffic speed, which
interact with each other (e.g., traffic flow increases to a certain level, traffic speed becomes
smaller, and travel time becomes larger). Therefore, traffic situation features are expressed
as Ez =

{
Ev, Eq

}
, where Ev is traffic speed, and Eq is traffic flow.

3.5. Deep Learning Prediction Model

This section provides details about the deep learning framework. which aims to predict
the expressway section travel time Y(t) at the next moment by using nearby historical
travel time data Rcloss, spatial proximity data Rc, traffic situation data Rz, and periodic data
Rd, Rw. Figure 7 shows the architecture of the deep learning model.

First, we input spatial proximity data Rc and traffic situation data Rz into the CNN
module to capture the correlation of feature space and road network proximity and then
use the level attention of CBAM attention mechanism to weight important features to
improve the prediction performance of the model.

Second, we also use CNN to obtain the spatial correlation of the road network, and then use
the spatial attention of the CBAM attention mechanism to obtain important spatial information.

Finally, we input the periodic data Rd and Rw into the BiLSM module to capture the
proximity of time and the periodicity of time. Then, the time attention mechanism is used
to dynamically adjust the weight of each time interval on the prediction results.
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Figure 7. Deep Learning Prediction Framework.

3.5.1. CNN-ATTENTION

In the road network, some sections may have similar travel time distribution, and
adjacent regions also have some correlation. Therefore, we use the CNN module to capture
the correlation and proximity in the road network space. At the same time, the traffic flow
and traffic speed of the section are also potentially correlated with travel time. Therefore,
we use the CNN model to capture the correlation between traffic flow and traffic speed and
travel time. The convolution neural network inputs the extracted original input Yi,t as Yk

i,t
into the convolution layer k, and uses two-dimensional convolution to capture the spatial
feature of the travel time of the section. The convolution formula is shown in follows:

Yk
i,t = ReLU

(
Wk ∗Yk−1

i,t + bk
)

(8)

where K is the number of convolution layers, i is the section, t is the time window, ReLU is
the activation function, Wk is the weight coefficient, and bk is the constant.

To further capture important information in the spatial dimension, we use the CBAM
attention mechanism [50] to fully understand the detail changes in features and further
enhance local spatial feature representation. In level attention, CBAM can strengthen the
travel time distribution on the feature map, so that the model can obtain the most important
features and give greater weight to travel time prediction.

Precisely, as shown in Figure 8, in the level feature attention calculation, we first use
CBAM for global max-pooling and average-pooling of the inputs by level to obtain Maxpool
level attention vector and AvgPool level attention vector. Then, we input these two vectors
into a single-layer perceptron with shared weights to obtain two new hierarchical attention
vectors. We combine these two vectors by the sum of elements and multiply them with the
original feature map to obtain a new feature map, which can be expressed as:

Mc = σ
(

MLP
(

Maxpool
(

Yk
i,t

))
+ MLP

(
AvgPool

(
Yk

i,t

)))
(9)

Fc = Mc

(
Yk

i,t

)⊗
Yk

i,t (10)

where
⊗

is the multiply operation, and σ represents the sigmoid function
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Figure 8. The level attention.

At the same time, different sections have different levels of influence on the travel
time prediction of the predicted sections. CBAM can capture important sections in the
spatial dimension and give greater prediction weights, the spatial attention mechanism is
shown in Figure 9. In the spatial attention calculation of the road network, we first perform
average-pooling and max-pooling operations along the level axis to obtain two spatial
attention maps and connect them. Then, a standard convolution layer is used to connect
them, and convolution operations are used to generate a spatial attention weight matrix.
Finally, the weighted feature matrix is obtained by multiplying the matrix with the input
feature mapping, which is expressed as:

Ms = σ
(

Conv
([

Maxpool
(

Yk
i,t

)
; AvgPool

(
Yk

i,t

)]))
(11)

Fs = Ms

(
Yk

i,t

)⊗
Yk

i,t (12)

where
⊗

is the multiply operation, and σ represents the sigmoid function.

Figure 9. The spatial attention.

3.5.2. BiLSTM-ATTENTION

There are some rules in daily life: travel time usually shows obvious periodicity and
trends. Therefore, this section will focus on periodic and trends in travel time series. We
use BiLSTM to capture the proximity correlation and periodic correlation for historical
travel time. The input of long time series travel time data into BiLSTM will make it difficult
to learn a reasonable vector representation, thus affecting the prediction performance of the
model. Therefore, we use the time attention mechanism to capture important information
in time to improve the prediction performance of the model.

The LSTM network is a kind of time-recurrent neural network with memory charac-
teristics. It is a variant of RNN, which can effectively overcome the long-term dependence
and gradient vanishing of RNN. To effectively obtain the context correlation before and
after, BiLSTM is proposed. BiLSTM is composed of forward LSTM and backward LSTM,
and the two LTSM models work on the same principle and have the same internal structure.
The BiLSTM model is shown in Figure 10.
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Figure 10. The BiLSTM framework.

Each moment in the Bi-LSTM model is jointly determined by the state of LSTM in two
directions, and the Bi-LSTM calculation formula is:

→
h t = LSTM

(
xt,
→
h t−1

)
(13)

←
h t = LSTM

(
xt,
←
h t−1

)
(14)

ht = wt
→
h t + vt

←
h t + bt (15)

where wt is the weight coefficient of each output in the forward LSTM model, and then the
weight matrix is constructed; vt is the weight matrix constructed by the weight coefficient
of each output in the backward LSTM model; and bt is the bias at time t.

After capturing the correlation between the historical travel time and the last travel
time, we use BiLSTM to predict the results of the t time window using the time series of
the previous t− 1 time window. The prediction formula is expressed as:

hi,t = BiLSTM(Yi,t, hi,t−1) (16)

where hi,t denotes the prediction result of section i in time window t, and Yi,t is the input value.
For the daily periodicity and weekly periodicity of travel time, we use BiLSTM to

obtain the correlation of n days. The formula can be expressed as:

hn
i,d = BiLSTM

(
Yn

i,d, Yn
i,w−1, hn

i,d−1

)
(17)

where hn
i,d is the travel time prediction results of d hours in section i.

At the same time, the contribution of the previous n day historical travel time to the
prediction is not equal. For example, the effect of yesterday on prediction performance
is more significant than that of other days at the same time. In addition, there is travel
restrictions in some areas (e.g., in some areas or time, vehicle travel is restricted), people
travel more similar on alternate days. In the same way, there are similar travel patterns in
the daily periodicity. To effectively capture the important information of daily periodicity
and weekly periodicity, we use the time attention mechanism to assign different weights to
daily (weekly) travel time from potential daily periodicity and potential weekly periodicity.
the equation of attention contribution weight can be shown as:

an
i,d =

exp(s)
∑d∈D exp(s)

(18)
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where an
i,t is the importance of section i at time window t on day p, D is the number of time

intervals for input, and s is the contribution scoring function, which can be expressed as:

s = v ∗ tanh
(

hn
i,dwH + hi,twX + b

)
(19)

where wH , wX , b, v are learned parameters.
Finally, the output value of BiLSTM is used as the input of attention mechanism to

predict the travel time, and the calculation formula is shown:

hn
i,t = ∑d∈Dan

i,d ∗ hn
i,d (20)

4. Results
4.1. Experimental Settings and Data Description

The experimental conditions of this experiment are the Window 10 system, a Lenovo
computer equipped with an Intel kernel, 2.6 GHz processor, and 16 GB memory;
all experiments use Python 3.7 version, and the software architecture is developed based
on Keras deep learning library tool.

The ETC data used in this experiment are from Fujian Provincial Expressway Informa-
tion Technology Co., Ltd. (Fuzhou, China), which were collected by ETC gantry system
from 3 May 2021 to 3 June 2021. The transaction data contain 103 attributes, including
license plate number, enter time, enter station, gantry transaction time, and gantry latitude
and longitude, the details is shown in Table 4, where *,**, *** represents other characters that
are not displayed. In order to verify the effectiveness of the proposal, the Fuzhou-Xiamen
Expressway, with the largest traffic flow in Fujian Province, is selected as the source of
experimental data. It includes the four cities of Fuzhou, Putian, Quanzhou, and Xiamen.
We used 70% of the data as training data and 30% as test data. The position of the gantry is
shown in Figure 11.

Table 4. ETC data attribute.

Attribute Name Examples Attribute Name Examples

Trade ID 452 *** 56 OBU Plate Blue Fujian A1 ** 45
Trade time 6 September 2020 21:29:26 Vehicle Class 1

Flag ID 33 ** 21 Enter Time 6 September 2020 20:23:51
Flag Type 0 Enter Station 16 * 7
Flag Index 1 OBU ID 11C *** B6

LAT 118.39 ** LNG 24.66 ***

Figure 11. Distribution of gantries in Fuzhou-Xiamen Expressway.
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4.2. Evaluation Metric

We evaluate the predictive performance of our proposed method and existing methods
with two widely-applied metrics. They are Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE), respectively. The calculation formula is as follows:

MAE =
1

q ∗ p

√
m

∑
i=1

∣∣Y′i −Yi
∣∣ (21)

RMSE =

√
1

q ∗ p

m

∑
i=1

(Yi′ −Yi)
2 (22)

where q is the number of sections in the experiment, p is the number of all time windows,
Y′ is the predicted value, and Yi is the actual value.

4.3. Analysis of Sequence Length

The Sequence length has great influence on travel time prediction. To further analyze
the performance of the sequence length during prediction, the sequence lengths were tested
from 1 to 9, and Figure 12a shows the trend of MAE as the sequence length increases.
Figure 12b shows the trend of RMSE. From Figure 12, we can know that the sequence
length is relatively better when it is 4 and 5, where 4 is the best. Therefore, we use four time
intervals to predict the next time interval.

Figure 12. Analysis for between different sequence lengths: (a) is the MAE; (b) is the RMSE.

4.4. Analysis of Classification Based on Vehicle Type

In order to verify the essentiality of considering the type of vehicle, we use the MVTTP
model to predict the travel time of Class I vehicles (i.e., big vehicles) and Class II vehicles
(i.e., small vehicles). The number of convolution kernels is 64, the CNN and BiLSTM
activation function are both ReLU, the Optimizer is adam, the cell of BiLSTM is 50, the
batch size is 30, and the training epoch is 50. We set the time window to 20 min, taking the
previous four time windows as input windows to predicting the next 20 min.

We test the performance of Class I vehicle and Class II vehicle after classification, the
results are shown in Table 5. Table 5 shows that there is a big difference between the travel
time prediction performance without considering the vehicle type and considering the
vehicle type. The prediction performance of the MVTTP model in the two vehicle types is
much better than that of the vehicle type without considering the vehicle.
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Table 5. Performance of the considering vehicle type.

Model
Class II Vehicles Class I Vehicles

MAE RMSE MAE RMSE

Unconsidering vehicle type 36.3128 57.9982 59.3436 84.8430
MVPPT 8.50313 19.1132 11.5529 18.6298

Figure 13 is the travel time visualization of four sections, which shows that there is a
big difference between the predicted travel time without considering and the real travel
time of the vehicle in most of the time. For the section with a travel time of about 100 s,
the prediction error is about 10 s, while for the section with a longer travel time, the error
is about 100 s, and the error is about 10%. The predicted travel time without considering
the type of vehicle is much higher than the predicted travel time of Class II vehicles. This
is because Class II vehicles will be faster than other types of vehicles, and travel time will
be shorter. Only in the peak period of travel is the speed of the vehicle reduced, and the
travel time of all vehicles is similar. The difference between the predicted value without
considering the type of vehicle and the real travel time of the Class II vehicles will be
reduced. For the travel time prediction of Class I vehicles, the travel time is far less than the
predicted value without considering the type of vehicle. Compared with Class II vehicles,
the real travel times of Class I vehicles have a bigger difference from the predicted value
without considering the vehicle type. The error of all sections is greater than 10% most of
the time, and only in the peak period will the gap narrow.

Figure 13. Visualization of travel time prediction, (a) is a visualization of section 1; (b) is a visualiza-
tion of section 2; (c) is a visualization of section 3; (d) is a visualization of section 4.
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4.5. Analysis of Spatial Proximity

In this section, we test the predictive performance of spatial proximity features on the
model. The test results are shown in Table 6. Table 6 shows that the prediction performances
of both Class I vehicles and Class II vehicles are improved by the spatial proximity. The
prediction performance of the MVTTP model can be further improved by considering the
spatial proximity.

Table 6. Performance of the considering spatial proximity.

Model
Class II Vehicle Class I Vehicle

MAE RMSE MAE RMSE

MVPPT without spatial closeness 9.0033 21.7577 11.8418 19.6733
MVTTP 8.50313 19.1132 11.5529 18.6298

4.6. Analysis of Spatial-Temporal Attention Mechanism

We test the performance of temporal attention mechanisms and spatial attention mech-
anisms, and the test results are shown in the Table 7. Table 7 shows that the prediction
performance of the MVTTP is further improved after considering the spatial attention mech-
anism or temporal attention mechanism. When both attention mechanisms are considered,
the model has better prediction performance.

Table 7. Test results of spatial-temporal attention mechanisms.

Model
Class II Vehicles Class I Vehicles

MAE RMSE MAE RMSE

MVTTP without any Attention 8.9798 19.9776 11.8078 19.4728
MVTTP without spatial Attention 8.890931878 19.80547952 11.6711 19.4977

MVTTP without temporal Attention 8.852875979 19.86132629 11.6877 19.4169
MVTTP 8.50313 19.1132 11.5529 18.6298

4.7. Comparative Analysis of Prediction Models

To analyze the prediction performance of our proposed model (MVPPT), we use
the classified vehicle data to compare the following methods, it includes traditional time
series prediction methods, machine learning algorithms, and the current best deep learning
processing model.

HA: Historical Average, the traditional time-series prediction methods, which predicts
the travel time using average values of previous travel time values at the location given in
the same relative time interval.

KNN: K-Nearest Neighbor, which is one of the most classical classification and regres-
sion methods in data mining.

SVR: Support vector regression model applies the support vector machine (SVM)
similarity method for regression analysis.

AdaBoost: Adaptive Boosting. AdaBoost is a robust boosting tree-based method that
is widely used in data mining applications.

LSTM: Long Short-Term Memory, a kind of time-recurrent neural network, which is
good at processing time series data.

CNN: Convolutional Neural Network, which is widely used to capture the spatial
correlation of time series for time series prediction.

BiLSTM [51]: Bi-directional Long Short-Term Memory, which is composed of forward
LSTM and backward LSTM.

TGCN [52]: Time Domain Graph Convolutional Network, which is a well-known
traffic forecasting method.

STDN [21]: Spatial-Temporal Dynamic Network, a method to jointly model both
spatial and temporal dependencies by integrating CNN and LSTM.
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The results of the travel time prediction test of the model in Table 8 show that the
traditional travel time prediction algorithm (HA) has the worst prediction performance,
because it predicts values only according to historical records without considering the
context feature. Compared with the traditional time series prediction method, the machine
learning method considering multidimensional feature of the travel time and has better
prediction performance, among which SVR has the best performance. However, machine
learning cannot capture nonlinear spatial and temporal correlation. Therefore, the neural
network (e.g., LSTM, BiLSTM), which can capture spatial-temporal information, has better
prediction performance, and only CNN has slightly worse prediction performance than
SVR. In addition, we also use TGCN for performance testing. Due to the different distances
of each road, the travel time is also different. TGCN is difficult to captures sufficient
correlation between roads, and only time correlation can be captured. Therefore, TGCN
did not have a very good prediction performance. In contrast, STDN handles spatial
and temporal information via local CNN and LSTM, and using a periodically shifted
attention mechanism to learn the long-term periodic dependency, which have a better
prediction performance. Our proposed model (MVPPT) uses CNN and LSTM to capture the
spatial-temporal context information, using the attention mechanism to capture important
information. In addition, MVPPT also consider the context feature of spatial proximity, so
it has the best prediction performance.

Table 8. Performance of prediction models.

Model
Class II Vehicles Class I Vehicles

MAE RMSE MAE RMSE

HA 19.7064 37.3719 23.1210 33.7131
KNN 15.9966 31.5796 18.2482 28.7021
SVR 11.8366 23.1494 14.9408 20.9557

AdaBoost 12.464 28.9111 13.7415 21.3218
CNN 12.6426 26.7706 15.5382 24.5275
LSTM 9.7911 20.8325 12.0161 19.4116

BiLSTM 9.5706 22.7144 11.8629 19.2269
TGCN 14.7399 30.7650 16.4463 31.8081
STDN 9.3075 20.5715 11.9132 19.3659

MVPPT 8.50313 19.1132 11.5529 18.6298

5. Conclusions

For expressway travel time prediction, we analyze the travel times of different types
of vehicles and propose a novel model of expressway section travel time prediction. From
the analysis and experimental results, we can find:

(1) There are big differences in travel time among all types of vehicles. The travel time of
big vehicles with yellow license plates is much longer than others types of vehicles.
The main difference in travel time can be divided into two categories: big vehicles
with yellow license plates and small vehicles with the rest of the plate colors.

(2) The predicted travel time without considering vehicle type is higher than the real
travel time of small vehicles and smaller than the real travel time of big vehicles. The
error of travel time prediction without considering the type of vehicle is about 10%.
After considering the type of vehicle, the prediction performance of the model has
been significantly improved, and the predicted values of the model are close to the
real travel time values of the vehicle.

(3) The expressway network has close proximity, and the travel time prediction model can
further improve the prediction performance after using the road network proximity.
At the same time, the temporal attention mechanism and spatial attention mechanism
can capture more important information, which can further improve the prediction
performance of the model, and the model combining the two attention mechanisms
has the best prediction performance.
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(4) This proposal can accurately predict the travel time of each section, which is of great
significance for the fine management of the expressway and the development of
smart expressways.

This proposal can accurately predict the travel time of each section, which is of great
significance to the fine management of highways and the development of smart highways.

In fact, there are still many undiscovered rules about expressway travel times. In the
future, we can further improve the performance of the model by capturing the monthly
periodicity and holiday periodicity in larger datasets.

6. Discussion

The prediction of travel time of a section can promote the fine management of ex-
pressways and provide more accurate travel times to the people using them. Therefore,
we model the travel time prediction based on ETC data, considering the difference of
travel time of different types of vehicle and the proximity of expressway network. At
the same time, we also consider the spatial-temporal attention mechanism in the deep
learning framework, which constitutes a multi-view travel time prediction model. The
experimental results verify the effectiveness of the model. However, the proposal also
has some local specificities. First, the experimental data can only be a complete data set
that includes all the type of vehicles so that the types of vehicles can be classified, which
is difficult because only the relevant transportation departments can collect these data.
Second, the road network proximity proposed in this work may only be applicable to
the travel time prediction of expressways. The urban traffic network is complex, and the
correlation between adjacent road sections is small. Therefore, road network proximity
cannot provide a large contribution in travel time predictions in cities.
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