
Citation: Toledo, A.; Venezian, E.;

Slonim, N. Revisiting Sequential

Information Bottleneck: New

Implementation and Evaluation.

Entropy 2022, 24, 1132. https://

doi.org/10.3390/e24081132

Academic Editors: Gerhard Bauch

and Jan Lewandowsky

Received: 11 July 2022

Accepted: 4 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Revisiting Sequential Information Bottleneck: New
Implementation and Evaluation
Assaf Toledo * , Elad Venezian and Noam Slonim *

IBM Research AI, Haifa University Campus, Mount Carmel Haifa, Haifa 3498825, Israel
* Correspondence: assaf.toledo@ibm.com (A.T.); noams@il.ibm.com (N.S.)

Abstract: We introduce a modern, optimized, and publicly available implementation of the sequential
Information Bottleneck clustering algorithm, which strikes a highly competitive balance between
clustering quality and speed. We describe a set of optimizations that make the algorithm computation
more efficient, particularly for the common case of sparse data representation. The results are
substantiated by an extensive evaluation that compares the algorithm to commonly used alternatives,
focusing on the practically important use case of text clustering. The evaluation covers a range of
publicly available benchmark datasets and a set of clustering setups employing modern word and
sentence embeddings obtained by state-of-the-art neural models. The results show that in spite of
using the more basic Term-Frequency representation, the proposed implementation provides a highly
attractive trade-off between quality and speed that outperforms the alternatives considered. This
new release facilitates the use of the algorithm in real-world applications of text clustering.

Keywords: clustering; information bottleneck; sequential algorithm

1. Introduction

Unsupervised clustering of texts is a central problem in the domain of Natural Lan-
guage Processing (NLP) [1–3], which has various applications in contemporary data anal-
ysis. For example, in the field of customer aid, clustering support tickets is helpful for
identifying classes of user complaints and estimating their volume [4,5]. In research on
public opinion, clustering data from social media such as Twitter or Reddit is useful for
discovering active topics and learning about user engagement [6–8].

The Lloyd K-Means algorithm [9] is perhaps the most common choice for text clustering. It
is also readily available in a modern, fast, and free implementation as part of the popular Scikit-
Learn package [10]. The algorithm can be executed on top of a range of vector representations
for the texts at hand, offering different trade-offs between clustering quality and speed.

The Term Frequency–Inverse Document Frequency (TF/IDF) [11] is a traditional
method for textual data representation that was developed in the field of Information
Retrieval. In this method, a text is first represented by a vector of term frequency (count)
over a fixed vocabulary, and then, the value of each term is weighted by the inverse of its
frequency in the overall corpus. In this weighting scheme, words that are common in the
full corpus will be given a lesser weight compared to rare words when representing the
text instance. This method is very fast to compute and process but suffers from the curse of
dimensionality [12]. In addition, as a Bag-of-Words (BoW) method, it ignores word order.

More modern approaches that tackle the high dimensionality issue rely on Word
Embeddings, such as Word2Vec [13,14] and GloVe [15]. In these cases, every word is
assigned a fixed-size dense representation (embedding) trained by a neural network based
on contextual information such as word–word co-occurrence statistics. With these methods,
a common practice for obtaining the representation of a text instance is by averaging the
embeddings of its words. These representations, however, still ignore word order, and
while being relatively fast to generate and to work with, they disregard the sentential
context in which words are meant to be interpreted.

Entropy 2022, 24, 1132. https://doi.org/10.3390/e24081132 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24081132
https://doi.org/10.3390/e24081132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5309-267X
https://orcid.org/0000-0001-9785-3605
https://orcid.org/0000-0001-5171-8264
https://doi.org/10.3390/e24081132
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24081132?type=check_update&version=2

Entropy 2022, 24, 1132 2 of 15

With the surge of Deep Neural Networks [16] and advanced network architectures [17]
and Language Models such as BERT [18], new records have been set in benchmarks of
Natural Language Understanding [19,20]. Sentence-BERT (S-BERT) [21] is one of the latest
advancements in creating models for general-purpose text vector representation that serve
tasks such as semantic similarity, semantic search, and clustering. A common technique for
creating these models is by adding a pooling layer to a BERT neural network. The pooling
layer averages the contextualized word embeddings that BERT outputs and returns a single
fixed-size vector for the whole text.

However, using an advanced language model typically comes at the expense of
requiring more processing power and in many cases necessitates a GPU. The main concern
in relying on vector representations from this kind of neural models is that in the age of
Big Data, when the volume of texts is high and grows ever so quickly, it is critical for a
clustering setup to be not only of high quality but also very efficient.

The sequential Information Bottleneck (sIB) [22] algorithm has shown strong results that
outperform K-Means by a large margin on benchmark datasets such as [23]. However, sIB has
never been available in a fast implementation that makes it comparable to K-Means for practical
applications. Thus, despite being superior in lab testing, sIB was not commonly used in practice.

This paper introduces an efficient implementation of sIB that leverages a set of op-
timizations for obtaining a substantial improvement in speed compared to the original
Matlab implementation. This is achieved while maintaining the same quality of clustering
analysis provided by the original implementation.

The optimizations are focused on the case of sparse data representation, as sIB is
usually running on top of sparse TF vectors, and it includes a mathematical derivation that
computes the Jensen–Shannon divergence (JS) more efficiently on this type of representation.
Our work builds on the analysis proposed in [24] and extends it to the case of a weighted
JS, as this is the divergence used in sIB. In addition, we show an optimization that reduces
the computational load by means of caching.

We present an evaluation scheme for assessing the quality and speed of the new sIB imple-
mentation and for comparing it against a set of competing clustering setups and over a range
of benchmark datasets. Empirical results indicate that sIB is as fast as the fastest setups on most
datasets, and in some cases, it is even the fastest. Quality-wise, sIB outperforms most competing
setups by a large margin, and it maintains a small edge even over the best-performing setup of
K-Means—when this algorithm leverages the advanced S-Bert representation.

In this manner, the new implementation strikes an attractive trade-off between quality
and speed of text clustering, and it facilitates the use of sIB in real-world applications.
The implementation is released as an open-source Python package under a permissive
license (https://github.com/IBM/sib, available since 14 July 2020).

2. Algorithm Overview

In this section, we review the main properties of sIB, highlight key-differences between
sIB and Lloyd K-Means, and put the focus on the main part of the algorithm that the new
implementation optimizes.

2.1. Theoretical Foundation

sIB builds on the work of Tishby, Pereira, and Bialek [25] and views the clustering
task as an Information Bottleneck (IB) problem. The algorithm first appeared in [22]
and was explained in detail in [26]. Before formulating it, we present some assumptions
and definitions.

sIB adopts the Bag-of-Words (BoW) approach with TF (count) vector representation for
the texts to cluster. We use the following notation:

• X—the list of vectors to cluster;
• Y—the vocabulary used for representing the texts;
• p(X, Y)—the estimated joint distribution between X and Y;
• K—the number of clusters to produce;

https://github.com/IBM/sib

Entropy 2022, 24, 1132 3 of 15

• T—a partition of X into K clusters.

According to the IB method, given the joint distribution p(X, Y), we look for the
partition T—in our case, a compressed representation of X into K clusters—that preserves
as much information about Y as possible. Quoting from the original paper of sIB [22]:

“Intuitively, in this procedure the information contained in X about Y is ‘squeezed’
through a compact ‘bottleneck’ of clusters T, that is forced to represent the
‘relevant’ part in X with respect to Y” (p. 2)

Formally, the IB method is stated as:

min
p(t|x)

I(X; T)− βI(T; Y) ,

where I(X; T) and I(T; Y) are the mutual information (MI) between X and T and between
T and Y, respectively. MI is defined as:

I(A; B) = ∑
a∈A,b∈B

p(a) · p(b|a) · log
p(b|a)
p(b)

.

The optimization is over the conditional probability p(t|x), and the non-negative parameter
β is a Lagrange multiplier. The IB method [25] provides an exact optimal formal solution
to this problem without any assumption about the origin of the joint distribution p(X, Y).
In this analysis, the compactness of the representation T is determined by I(X; T), while
the quality of T is measured by the fraction of the information that T and X capture about
Y: I(T; Y)/I(X; Y). For a more detailed and technical discussion, see [22,25,26].

2.2. Divergence Function

As shown in [25], minimizing the IB functional defined above is obtained by using the
Kullback–Leibler (KL) divergence [27] as the clustering divergence function between the
conditional distributions p(y|x) and p(y|t):

KL(p(y|x)‖p(y|t)) = ∑
y

p(y|x) logp(y|x)
p(y|t) .

However, as shown in [26,28], in the hard-clustering setup—which is the focus of
this work—to optimize the IB functional while merging x to t; one should use a weighted
Jensen–Shannon divergence (JS) between p(y|x) and p(y|t). This divergence is defined
based on the KL divergence with the additional features of being symmetric and always
returning a finite value:

JS(p(y|x)‖p(y|t)) = π1 · KL(p(y|x)‖M) + π2 · KL(p(y|t)‖M) ,

where M = π1 · p(y|x) + π2 · p(y|t), and π1, π2 ∈ [0, 1] are two weights such that
π1 + π2 = 1. For conciseness, we skip the definitions of π1 and π2 at this point and provide
it in Section 3 where they are relevant for the formal analysis. The experimental setup
in [22] confirms that the quality of the clustering analysis obtained when using JS as the
clustering divergence function is superior to the clustering obtained when using KL. On
the other hand, in terms of computational workload, JS is more demanding than KL as
every computation of JS involves two computations of KL.

Let us compare this to K-Means. The traditional Lloyd K-Means algorithm is used with a
geometrical distance function such as the Euclidean or cosine distance. This results in spatial
clustering of the representations in a vector space. From a computational standpoint, the ge-
ometrical distances are lightweight and in some cases reduce to the computation of the dot
product, which is fairly fast in comparison to the intensive log calculations as part of JS in sIB.
Theoretically, this gives the traditional K-Means setup a substantial speed advantage over sIB.

The KL-Means algorithm [29–31] is a variant of the traditional algorithm with the
distance function set to be the KL divergence. This effectively creates a version of K-

Entropy 2022, 24, 1132 4 of 15

Means that performs distributional clustering. It has been shown by [32] that in this setup,
K-Means is algorithmically equivalent to the IB method where β → ∞. In this sense,
KL-Means is more similar to sIB than the traditional K-Means algorithm. sIB is still unique,
however, in using JS divergence rather than KL divergence.

In the next section we provide the pseudo code for the algorithm and then move to
another distinctive feature of sIB—namely, its sequential nature.

2.3. Pseudo-Code

The pseudo-code of the algorithm’s main loop is given in Algorithm 1, which is quoted
from [22] with slight adjustments. The only modifications from the original pseudo-code are
in the inner for-loop, where we explicitly mention the shu f f le function and use x instead of
xj. The pseudo-code outlines the sequential workflow in which sIB works. In this code, recall
that K is the number of clusters to generate, n is the number of (random) initializations, maxL
is the maximal number of iterations per initialization, and ε is a lower bound threshold on
the cluster updates for continuing to another iteration. In addition, shu f f le is a function that
randomizes the order of elements, t is used as a cluster identifier, x as a sample identifier,
c is a counter of cluster changes during an iteration over X and C is a counter of iterations
per initialization. Using several random initializations is a common practice with many
clustering algorithms, as each initialization converges to a local maximum/minimum.

Algorithm 1 Algorithm pseudo-code.
Input:
|X| objects to be clustered
Parameters: K, n, maxL, ε

Output:
A partition T of X into K clusters

Main Loop:
For i = 1, . . . , n

Ti ← random partition of X.
c← 0, C ← 0, done = FALSE
While not done

For x in shuffle(X)
draw x out of t(x)
tnew(x) = arg mint′ dF(x, t′)
If tnew(x) 6= t(x) then c← c + 1
Merge x into tnew(x)

C ← C + 1
if C ≥ maxL or c ≤ ε · |X| then

done← TRUE
T ← arg maxTi f (Ti)

2.4. Sequential Clustering Algorithm

As shown in the pseudo-code, sIB is a sequential algorithm. This means that: (a) before
selecting the new cluster for a sample, sIB withdraws that sample from its current cluster
to prevent it from biasing the distance calculation toward keeping the sample in the same
cluster, and (b) sIB updates the centroids while iterating over the samples and not only at
the end of a full iteration over all samples.

Overall, while iterating over X, every sample is withdrawn from its cluster, the centroid of
that cluster is updated, a new cluster is selected for that sample using the weighted JS divergence
distance function, and then, the sample is added to the new cluster and the centroid of the new
cluster is updated. In total, sIB performs 2 · |X| centroid updates during a full iteration.

Entropy 2022, 24, 1132 5 of 15

As discussed in detail in [33], this is a more powerful partition optimization method
than the one employed by Lloyd K-Means, where there are no centroid updates while
iterating over the samples during the assignment step. Lloyd K-Means performs only K
centroid updates, which are all happening at the end of an iteration. Since K << 2|X|
under normal circumstances, this gives Lloyd K-Means another substantial advantage in
terms of computational workload.

2.5. Vector Representation

We distinguish between two vector representations: (a) for the texts to cluster and
(b) for the centroids of clusters. Typically, the number of unique terms found in a specific
text is much smaller than the vocabulary size. Therefore, it is more efficient to represent
texts using sparse vector representations, both in terms of memory usage and processing
time. In the sparse representation, it is sufficient to hold the list of IDs of vocabulary items
found in the text and their frequency rather than an array of the size of the full vocabulary
in which most of the values are zero. With regard to centroid vectors, as a centroid-based
clustering algorithm, sIB constructs a centroid vector from the vectors of the samples that
are associated with that cluster. Therefore, centroid vectors refer to a large part of the
vocabulary and are encoded as regular non-sparse vectors.

2.6. Focus of This Work

This work focuses on the inner for-loop of the pseudo-code, which is the partition
optimization part, and more specifically the computation of tnew(x). We investigate it in
the next section.

3. Methods

In this section, we present mathematical derivations and code optimizations that are
at the center of the new implementation of sIB.

3.1. Computation of tnew(x) and Associated Intuition

Recall that finding the new cluster assignment for x relies on computing

tnew(x) = arg min
t

dF(x, t) , (1)

where dF is given by

dF(x, t) = (p(x) + p(t)) · JS(p(y|x), p(y|t)) , (2)

and JS is a weighted Jensen–Shannon divergence defined with weights π1 and π2:

π1 =
p(x)

p(x) + p(t)
, π2 =

p(t)
p(x) + p(t)

. (3)

Intuitively, when selecting the new cluster assignment for x, we examine the distri-
bution over the vocabulary induced by x (p(y|x)) and compare it to the distribution over
the vocabulary induced by each cluster’s centroid (p(y|t)) using the weighted JS diver-
gence multiplied by p(x) + p(t). The cluster tnew is selected as the cluster for which this
multiplication is minimized.

In what follows, we use the following notation:

• x̂ = p(y|x)—the TF vector representing the sample x normalized by the L1-norm. Let
u ∈ Rn, the L1-norm |u|1 of u is defined by: |u|1 = ∑n

i=1 |ui|;
• t̂ = p(y|t)—the vector representing the centroid of cluster t, normalized by L1;
• m = π1 · x̂ + π2 · t̂—the average of x̂ and t̂ weighted by π1 and π2, respectively.

Using these notations:

JS(x̂, t̂) = π1 · KL(x̂‖m) + π2 · KL(t̂‖m) , (4)

Entropy 2022, 24, 1132 6 of 15

where KL is the Kullback–Leibler divergence [27] defined as:

KL(u‖v) = ∑
i

u[i] · log(
u[i]
v[i]

) . (5)

Following the analysis in [24], simple algebra gives the form in (6):

JS(x̂, t̂) = H(m)− π1 · H(x̂)− π2 · H(t̂) , (6)

where H is Shannon’s entropy function: H(u) = −∑i u[i] · log(u[i]).
Since (p(x) + p(t)) · π1 = p(x) and (p(x) + p(t)) · π2 = p(t):

dF(x, t) = (p(x) + p(t)) · H(m)− p(x) · H(x̂)− p(t) · H(t̂) . (7)

Because p(x) · H(x̂) is a constant with respect to t, we get:

arg min
t

(dF(x, t)) = arg min
t

(
(p(x) + p(t)) · H(m)− p(t) · H(t̂)

)
. (8)

To obtain some insight into how sIB selects the cluster t for a sample x, we examine
two pairs of components in Equation (8)—(a) H(m) and H(t̂); and (b) (p(x) + p(t)) and
p(t). Starting with (a), since m is a weighted average of x̂ and t̂, a better fit of x to t implies
lower discrepancy between m and t̂, which in turn results in a smaller difference between
H(m) and H(t̂). Thus, the preference is for selecting a cluster t that represents a good fit for
x. Moving to (b), as the cluster t increases, the relative difference between p(x) + p(t) and
p(t) decreases. Therefore, the components in (b) can be seen as balancing factors for the
selection of t by taking into account the size of the cluster and giving preference to larger
clusters. Typically, these two parts compete, since as t becomes larger, it often also becomes
less distinctive; hence, it is harder for it to provide a good fit for x.

3.2. Optimization for Sparse Vector Representation

In this section, we show a computation of tnew(x) that is optimized for sparse vector
representation. Let xind be the indices of non-zero values in x. As explained in Section 2.5,
a sparse representation is the natural choice for TF vectors since typically |xind| << |Y|.

We evaluate Equation (6) as:

JS(x̂, t̂) = ∑
i∈xind

Ri,x̂,t̂ + ∑
i 6∈xind

Ri,x̂,t̂ , (9)

where Ri,x̂,t̂ is defined as:

Ri,x̂,t̂ := π1 · x̂i · log(x̂i) + π2 · t̂i · log(t̂i)− (π1 · x̂i + π2 · t̂i) · log(π1 · x̂i + π2 · t̂i) . (10)

Since the computation of Ri,x̂,t̂ involves a constant number of operations, the first
component in (9) has a computational complexity of O(|xind|). Let us now evaluate the
second component and show that it has the same complexity.

By definition, ∀i 6∈ xind x̂i = 0. Consequently,

∑
i 6∈xind

Ri,x̂,t̂ = ∑
i 6∈xind

[
π2 · t̂i · log(t̂i)− π2 · t̂i · log(π2 · t̂i)

]
. (11)

Since log(π2 · t̂i) = log(π2) + log(t̂i),

∑
i 6∈xind

Ri,x̂,t̂ = ∑
i 6∈xind

[
π2 · t̂i · log(t̂i)− π2 · t̂i · (log(π2) + log(t̂i))

]
. (12)

With simple algebra, we obtain:

Entropy 2022, 24, 1132 7 of 15

∑
i 6∈xind

Ri,x̂,t̂ = −π2 · log(π2) · ∑
i 6∈xind

t̂i . (13)

Since t̂ is normalized by L1-norm, ∑i t̂i = 1. Therefore:

∑
i 6∈xind

Ri,x̂,t̂ = −π2 · log(π2) · (1− ∑
i∈xind

t̂i) . (14)

This means that the second component of (9) also has a computational complexity of
O(|xind|), which shows that (6) and consequently (2) have the same computational com-
plexity of O(|xind|). In the non-sparse case, the computational complexity is O(|Y|), which
is significantly higher.

With respect to (1), since there are K centroids to select from, the overall complexity of
computing tnew(x) is O(K · |xind|) in the sparse case and O(K · |Y|) in the non-sparse case.

3.3. Caching Log Computations

The most time-consuming operation in the computation of a new cluster for a sample
is the log function. In this section, we show a way to reduce the number of log computations
via caching. Let us recall Equation (8), which is repeated below:

arg min
t

(dF(x, t)) = arg min
t

(
(p(x) + p(t)) · H(m)− p(t) · H(t̂)

)
.

We observe that H(t̂) is independent of the sample x for which we calculate the new
cluster. Thus, we can cache this computation and reuse it when we iterate over the samples.
When a sample is drawn out of a cluster or merged into a cluster, we update only the entries
in the cache that refer to the clusters that have been updated. The gain can be summarized
as follows. Given a sample x for which we compute a new cluster, instead of computing
the entropy over all centroids, we compute it only for two centroids—the centroid of the
cluster from where x is drawn out and the one to which x is merged into.

3.4. Implementation

The new implementation of sIB is based on the optimizations presented above. See
Appendix A for information about the source-code availability and its Python packaging.

4. Experimental Setup

We evaluate the quality and speed of the new implementation of sIB against the
robust open source implementation of Lloyd K-Means [9] from Scikit-Learn [10]. We use a
set of five datasets that are common in text classification and text clustering benchmarks
and measure the clustering quality by standard clustering metrics. We use multiple setups
for K-Meams, each on top of a different vector representation type.

4.1. Materials

In order to cover various use cases, we employ datasets of different source, size, text
length and number of classes. The datasets are described below, and statistical information
is summarized in Table 1. All datasets are publicly available online at the locations specified
in the Data Availability Statement.

• BBC News [34] consists of 2225 articles from the BBC news website. The articles are
from 2004–2005 and cover stories in five topical areas: business, entertainment, politics,
sport, and tech.

• 20 News Groups [23] consists of 18,846 emails sent through 20 news groups. The topics
are diverse and cover tech, religion, and politics, among others.

• AG News [35] consists of 127,600 pairs of titles and snippets of news articles from the
AG corpus, covering four topical areas: World, Sports, Business, and Sci/Tech. The title
and snippet of each article are concatenated when the data is clustered.

Entropy 2022, 24, 1132 8 of 15

• DBPedia [35] consists of 630,000 pairs of titles and abstracts of documents from 14 non-
overlapping ontology classes such as Artist, Film, and Company. The title and abstract
are concatenated when the data are clustered.

• Yahoo! Answers [35] consists of 1,460,000 triplets of question title, question content,
and best answer from the Yahoo! Answers Comprehensive Questions and Answers
version 1.0 dataset. The data covers the 10 largest topical categories, such as Society &
Culture, Computers & Internet, and Health. The question title, content, and best answer
are concatenated when the data are clustered.

Table 1. Benchmark datasets for evaluation. The column #Texts indicates the number of texts in the
dataset. The column #Words shows the average text length in terms of word count in the dataset, and
#Classes shows the number of classes in the dataset.

Dataset #Texts #Words #Classes

BBC News 2225 390 5

20 News Groups 18,846 284 20

AG NEWS 127,600 38 4

DBPedia 630,000 46 14

Yahoo! Answers 1,460,000 92 10

4.2. Clustering Metrics

We use five metrics to evaluate the clustering quality: (a) Adjusted Mutual-Information
(AMI): the mutual-information corrected for chance [36,37], (b) Adjusted Rand-Index (ARI):
the rand index corrected for chance [36], (c) V-Measure: the harmonic mean between
homogeneity and completeness [38], (d) Micro-F1: the micro average of F1 scores over all
classes in the dataset, and (e) Macro-F1: the macro average of F1 scores over all classes in
the dataset. All metrics are calculated against the ground-truth labels of each dataset.

4.3. Clustering Setups

sIB runs on top of sparse TF representations. The encoding is done using a vocabulary
of the 10,000 most common words in each dataset after stop-words filtering. We use the
Scikit-Learn [10] TF encoder. The algorithm runs with 10 random partitions of equally
sized clusters in parallel. Each initialization is optimized by up to 15 iterations or until the
number of samples changing cluster is less than 2% (all are default values). This generates 10
partitions of the data, and the algorithm returns the partition that maximizes I(T;Y)/I(X;Y)
as explained in Section 2.1. The sIB version is 0.1.8, and the Scikit-Learn version is 1.1.1.

K-Means runs on top of several representations: TF, TF/IDF [11], GloVe [15] mean
vectors and Sentence-Bert (S-Bert) [21]. The TF is the same as used for sIB (described
above). The TF/IDF representation is generated using Scikit-Learn [10] TF/IDF encoder
with the same settings as TF and is also sparse. For GloVe, each text is represented by
averaging the embeddings of its words after punctuation and stop-words filtering. We use
the glove-840b-300d pre-trained model, which was trained on 840 billion tokens and produces
300-dimensional dense vectors. For S-Bert, we employ the pre-trained model all-MiniLM-L6-
v2 which aims to provide a fine balance between quality and processing time. This model
was trained on 1 billion sentence pairs and produces 384-dimensional dense vectors.

We use the Scikit-Learn [10] Lloyd K-Means implementation in its default settings.
The algorithm runs with 10 random centroid initializations obtained by K-Means++ [39]
in parallel, yielding 10 partitions of the data. Each initialization is optimized by up to
300 iterations or until the centroids movement between iterations, as measured by Frobenius
norm, is less than 10−4. The algorithm returns the partition that minimizes the sum of
distances between each sample and the centroid of its cluster. All are default values. The
distance function used in this version of K-Means is the squared Euclidean distance [40].
Minimizing the squared distance is equivalent to minimizing the Euclidean distance since

Entropy 2022, 24, 1132 9 of 15

squaring is a monotonic function of non-negative values. Oftentimes, the squared distance
is preferred because it is faster to compute.

4.4. Robustness Considerations

Since both sIB and K-Means rely on random initialization, every run of these algo-
rithms converges to a different local minimum and yields a different clustering result.
For robustness, we run every setup described above 10 times and apply the metrics de-
scribed in Section 4.2 to every such run. We obtain 10 scores for each metric for a given
setup and report only the average score per metric. We also use the distribution of the
metric scores for calculating confidence intervals.

4.5. Hardware

The hardware used is a MacBook Pro 2019 with an 8-Core Intel Core i9 running at
2.3 Ghz. Hyper-threads: 16. Memory is 64 GB 2667 MHz DDR4. This simulates a local run
by a data scientist.

4.6. Code

The evaluation code is available on the sIB open source repository and can be extended
and tweaked to cover more algorithms, representations, and settings.

5. Results

The results are detailed in Table 2. In terms of clustering quality, the metrics indicate
that sIB has the edge over the setup of K-Mean on top of S-Bert on the 20 News Groups and
AG News datasets. On the BBC News dataset they are even, and then the trend reverses and
K-Means on top of S-Bert takes the lead by a relatively small margin on the DBPedia and
Yahoo! Answers datasets. Overall, these two setups are roughly on par with a slight edge to
sIB. The other K-Means setups are trailing behind by a large margin, with the GloVe setup
being better than the TF/IDF setup, and the TF setup being the weakest. Figure 1 illustrates the
results on the AMI and ARI metrics. We include charts also for the Micro-F1, Macro-F1 and
V-Measure in Appendix B. As explained in Section 4.4, the reported result of every metric is the
average of 10 runs of each setup. Error bars in the figures indicate the 95% confidence interval
obtained by bias-corrected and accelerated (BCa) bootstrapping of the 10 results per metric.

As for run-time measurements, we can see in Table 2 that sIB is as fast as the quickest
K-Means setups (TF and TF/IDF) on the datasets of 20 News Groups, AG News, BBC News
and DBPedia, and it is the fastest setup on the Yahoo! Answers dataset. sIB is also faster
than the setup of K-Means on top of GloVe by a noticeable margin.

The setup of K-Means on top of S-Bert, which is the only setup that is competitive with sIB
quality-wise, is substantially slower due to the neural vectorization on CPU. On average, this
setup is 200 times slower than sIB. More generally, the S-Bert model is more power demanding
than any other representation type evaluated here, and for practical use cases, especially on
large datasets such as DBPedia and Yahoo! Answers, it is likely to necessitate a GPU or even
more than one. A chart of the total run-time measurements is included in Appendix B.

Discussion

The results emphasize the premise of the sIB implementation proposed in this work:
delivering a clustering analysis that is as good as can be obtained by a state-of-the-art neural
model while being far less demanding in terms of run-time. In this way, sIB offers a more
attractive trade-off between quality and speed than the rest of the setups evaluated here.

Looking at the run-time measures in absolute terms, sIB is able to cluster the 630,000 texts
of DBPedia in about 1 minute and the 1,460,000 texts of Yahoo! Answers in about 3.5 min
using standard CPU hardware. Both are very practical and workable run-times for real-
world applications.

Entropy 2022, 24, 1132 10 of 15

Table 2. Assessment of clustering quality using the metrics: AMI, ARI, V-Measure (VM), Micro-F1
(Mic-F1) and Macro-F1 (Mac-F1), and of clustering speed based on measurements of the vectorization
time (Vector), clustering time (Cluster), and their sum (Total).

Dataset Algorithm Embed AMI ARI VM Mic-F1 Mac-F1 Vector Cluster Total

20 News Groups K-Means TF 0.01 0.00 0.01 0.06 0.01 00:03 00:07 00:10
K-Means TF/IDF 0.36 0.14 0.36 0.35 0.32 00:03 00:10 00:14
K-Means GloVe 0.36 0.17 0.36 0.34 0.31 00:19 00:09 00:28
K-Means S-Bert 0.59 0.44 0.59 0.61 0.58 22:27 00:08 22:35
sIB TF 0.65 0.53 0.65 0.66 0.61 00:03 00:11 00:14

AG NEWS K-Means TF 0.03 0.00 0.03 0.29 0.20 00:03 00:02 00:05
K-Means TF/IDF 0.04 0.01 0.04 0.31 0.24 00:03 00:03 00:06
K-Means GloVe 0.53 0.55 0.53 0.80 0.80 00:19 00:07 00:26
K-Means S-Bert 0.60 0.63 0.60 0.84 0.84 38:18 00:11 38:29
sIB TF 0.66 0.70 0.66 0.87 0.87 00:03 00:03 00:06

BBC News K-Means TF 0.24 0.11 0.24 0.41 0.32 00:01 00:00 00:01
K-Means TF/IDF 0.70 0.62 0.70 0.83 0.83 00:00 00:00 00:01
K-Means GloVe 0.75 0.76 0.75 0.90 0.90 00:05 00:00 00:06
K-Means S-Bert 0.87 0.90 0.87 0.96 0.96 02:55 00:00 02:56
sIB TF 0.88 0.90 0.88 0.96 0.96 00:01 00:01 00:01

DBPedia K-Means TF 0.56 0.21 0.56 0.50 0.47 00:20 00:43 01:04
K-Means TF/IDF 0.61 0.24 0.61 0.56 0.55 00:20 00:45 01:06
K-Means GloVe 0.73 0.63 0.73 0.76 0.72 01:28 02:08 03:37
K-Means S-Bert 0.79 0.71 0.79 0.82 0.79 03:38:31 02:00 03:40:31
sIB TF 0.79 0.68 0.79 0.78 0.74 00:20 00:44 01:05

Yahoo! Answers K-Means TF 0.03 0.01 0.03 0.15 0.08 01:15 04:22 05:37
K-Means TF/IDF 0.16 0.05 0.16 0.29 0.25 01:16 03:44 05:01
K-Means GloVe 0.32 0.23 0.32 0.49 0.44 06:21 06:42 13:03
K-Means S-Bert 0.41 0.33 0.41 0.59 0.56 16:20:10 06:18 16:26:28
sIB TF 0.39 0.32 0.39 0.57 0.54 01:15 02:20 03:35

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Adjusted Mutual Information

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Adjusted Rand-Index

K-Means on top of TF K-Means on top of TF/IDF K-Means on top of GloVe K-Means on top of S-Bert sIB on top of TF

Figure 1. Adjusted Mutual-Information (left) and Adjusted Rand-Index (right) scores for the cluster-
ing setups over all benchmark datasets. The scores are means of 10 samples per metric. Error bars
indicate the 95% confidence interval obtained by bias-corrected and accelerated bootstrapping.

Entropy 2022, 24, 1132 11 of 15

A question can be raised as to how sIB can match or even improve on the K-Means run-
time. Given that sIB is a more demanding algorithm in terms of computational workload, it
would have been expected to show inferior run-time measurements compared to the more
lightweight K-Means. We look into this in Appendix C and provide a hypothesis to this
phenomenon. Note that we ignore here the discrepancy between sIB and K-Means with
respect to the default maximal number of partition optimization iterations (15 for sIB, 300
for K-Means). This is because internal testing with fewer iterations for K-Means proved
ineffective for reducing the algorithm run-time. We assume that this is because the algorithm
declared convergence (to a local minimum) long before the iteration limit is reached.

6. Conclusions

The sIB algorithm was introduces more than 15 years before the rise of the language
models revolution in NLP. Although sIB uses simple TF representations, it utilizes a
powerful probabilistic framework and a robust optimization method. This work is the
first to offer a highly efficient implementation of the algorithm and also to evaluate it on
contemporary benchmark datasets against competing, more popular, clustering setups.

Empirical results indicate that sIB creates a high-quality clustering analysis, which is
comparable to the level of analysis obtained when using representations from a state-of-
the-art language model. Speed-wise, the results show that the new implementation enables
users to easily run sIB on a standard CPU hardware, and that it is far less demanding than
a neural solution. In this manner, sIB offers an attractive trade-off between quality and
speed, outperforming the rest of the setups considered in this work.

In the future, we plan to look into new ways to reduce sIB’s run-time further by creating
“lossy” modes of the algorithm. In such modes, rather then iterating over all samples per
iteration, the algorithm can allow certain samples to be skipped based on information
from previous iterations. For example, if a sample remains in the same cluster for several
consecutive iterations, or if it fits much better in one cluster compared to the others, it can
be considered as locked-in in its current cluster. In this manner, one can further reduce the
algorithm run-time and offer more control in tuning the desired trade-off between quality
and speed, allowing sIB to fit an even broader set of use-cases and reach a wider audience.

The new implementation of sIB is released as open-source under a permissive license,
and it can be integrated as part of a more complex pipeline of natural language processing
in research projects as well as in real-world applications. We hope that practitioners of
text clustering and researchers interested in the IB line of study will find this work and the
released code valuable.

Author Contributions: Conceptualization, A.T. and E.V.; methodology, A.T. and N.S.; software, A.T.;
validation, A.T.; formal analysis, A.T. and E.V.; investigation, A.T.; writing—original draft preparation,
A.T.; writing—review and editing, N.S. and E.V.; visualization, A.T.; supervision, N.S.; All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These datasets
were accessed on 30 June 2022 at: 20 News Groups: https://scikit-learn.org/stable/datasets/real_
world.html#the-20-newsgroups-text-dataset; AG News: https://huggingface.co/datasets/ag_news;
BBC News: https://huggingface.co/datasets/SetFit/bbc-news; DBPedia: https://huggingface.co/
datasets/dbpedia_14; Yahoo! Answers: https://huggingface.co/datasets/yahoo_answers_topics.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Package Distribution

The source code of the new implementation is publicly available under a permissive
license (https://github.com/ibm/sib, available since 14 July 2020). The core computational
part of partition optimization is written in C++ to obtain fast processing and direct memory
access. This code is wrapped by Python and released as a Python package. The algorithm

https://scikit-learn.org/stable/datasets/real_world.html#the-20-newsgroups-text-dataset
https://scikit-learn.org/stable/datasets/real_world.html#the-20-newsgroups-text-dataset
https://huggingface.co/datasets/ag_news
https://huggingface.co/datasets/SetFit/bbc-news
https://huggingface.co/datasets/dbpedia_14
https://huggingface.co/datasets/dbpedia_14
https://huggingface.co/datasets/yahoo_answers_topics
https://github.com/ibm/sib

Entropy 2022, 24, 1132 12 of 15

API entry point, parallelism, iteration loop with stopping condition, and selection of best
partition are all written in Python. We also include a Python implementation of the partition
optimization part, but the C++ code is the default as it is faster.

The Python package is available on the Python Index for easy access and integration in
research projects and applications (https://pypi.org/project/sib-clustering, available since
6 October 2020). Since the C++ code necessitates compilation to binary code, we release
pre-compiled versions for popular operating systems: Windows, MacOS and Linux.

Appendix B. Illustrations of Micro-F1, Macro-F1, V-Measure and Total Run-Time

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Micro Average F1

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Macro Average F1

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
V-Measure

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers

00
:10

00
:05

00
:01

01
:04

05
:37

00
:14

00
:06

00
:01

01
:06

05
:01

00
:28

00
:26

00
:06

03
:37

13
:03

22:35

38:29

02:56

03:40:31

16:26:28

00
:14

00
:06

00
:01

01
:05

03
:35

Total Run-Time

K-Means on top of TF K-Means on top of TF/IDF K-Means on top of GloVe K-Means on top of S-Bert sIB on top of TF

Figure A1. Micro-F1 (top-left), Macro-F1 (top-right) V-Measure (bottom-left) scores, and Total Run-
Time (bottom-right) measurements for the clustering setups over all benchmark datasets. The Total
Run-Time chart is presented on a log2 scale for the y-axis. The scores and measurements are means of
10 samples per metric. Error bars indicate the 95% confidence interval obtained by bias-corrected and
accelerated bootstrapping.

https://pypi.org/project/sib-clustering

Entropy 2022, 24, 1132 13 of 15

Appendix C. Comparing sIB and K-Means Parallelism Models

Given that sIB is inherently more demanding than K-Means in terms of computational
load, as explained in Sections 2.1 and 2.4, it could be somewhat puzzling how sIB can even
match K-Means run-time when working on top of the same representation type. In what
follows, we aim to provide a hypothesis that explains this phenomenon. We focus on the
distinctions between the models of parallelism that these algorithms employ.

As explained in Section 4.3, in every run, sIB starts off by generating 10 random
partitions of the data and then optimizes them in parallel by several iterations over the
samples. The number of random partitions is configurable. We demonstrate the logic
with 10 since this is the default value. Since every partition is optimized independently
of the rest, sIB allocates a single, dedicated, CPU core per partition and avoids any task
switching. This means that a CPU core which is allocated to optimize partition i will never
be interrupted and switched to partition j while i is still being processed. On the machine
used for the clustering evaluation (see Section 4.5), which can be considered as having
16 cores (8 physical × 2 virtual), each of the 10 partitions will be allocated a core and
perform the optimization work. The remaining six cores are left idle.

This approach has pros and cons. The pros are that the cores (hyper-threads) that
perform partition optimization work without any interruption and no time is wasted on
task switching. The cons are that idle cores cannot take some of the workload off the
working cores. This also limits the number of cores that can be used simultaneously to the
number of partitions to optimize.

The Scikit-Learn K-Means implementation that we use here works very differently.
While it also starts off with 10 random partitions of the data, in contrast to sIB, it iterates
over these 10 partitions sequentially and uses parallel computing to optimize each partition
using all available cores.

The advantage of this approach is that it utilizes all available machine power. There-
fore, even when running on a server with a high number of cores (e.g., 100), this K-Means
implementation will be able to utilize all of them.

The downside here is that during the optimization of a partition, the assignment
stage of K-Means is a stage consisting of a high number of relatively lightweight and
short computations of Euclidean distance between a sample and a list of centroids. Thus,
every core is utilized for a very short task and then immediately switched to another with
no continuity.

Our hypothesis is that the overhead of intensive task switching in such a fine-grained
parallelism model is what holds K-Means back. Had sIB and K-Means been implemented
with the same parallelism, it would be expected from K-Means to be much faster. However,
establishing this hypothesis is beyond the scope of this paper.

As a final remark, we note that even though a different, faster, K-Means implementa-
tion can be offered, the main reason for the slow performance of sIB’s main competitor—the
setup of K-Means on top of S-Bert—is its power-hungry neural vectorization stage and not
the clustering itself.

References
1. Aggarwal, C.C.; Zhai, C. A Survey of Text Clustering Algorithms. In Mining Text Data; Aggarwal, C.C., Zhai, C., Eds.; Springer

US: Boston, MA, USA, 2012; pp. 77–128. [CrossRef]
2. Huang, A. Similarity measures for text document clustering. In Proceedings of the Sixth New Zealand Computer Science

Research Student Conference (NZCSRSC2008), Christchurch, New Zealand, 6–9 April 2008; Volume 4, pp. 9–56.
3. Abualigah, L.M.Q. Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering, 1st ed.; Springer Publishing

Company, Incorporated: Berlin/Heidelberg, Germany, 2018.
4. Roy, S.; Muni, D.P.; Tack Yan, J.J.Y.; Budhiraja, N.; Ceiler, F. Clustering and Labeling IT Maintenance Tickets. In Proceedings

of the Service-Oriented Computing, Banff, AB, Canada, 10–13 October 2016; Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S., Eds.;
pp. 829–845.

5. Compton, J.E.; Adams, M.C. Clustering Support Tickets with Natural Language Processing: K-Means Applied to Transformer Embeddings;
Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2020.

http://doi.org/10.1007/978-1-4614-3223-4_4

Entropy 2022, 24, 1132 14 of 15

6. Poomagal, S.; Visalakshi, P.; Hamsapriya, T. A novel method for clustering tweets in Twitter. Int. J. Web Based Commun. 2015,
11, 170–187. [CrossRef]

7. Rosa, K.D.; Shah, R.; Lin, B.; Gershman, A.; Frederking, R.E. Topical Clustering of Tweets. In Proceedings of the ACM SIGIR:
SWSM, Beijing, China, 28 July 2011.

8. Curiskis, S.A.; Drake, B.; Osborn, T.R.; Kennedy, P.J. An evaluation of document clustering and topic modelling in two online
social networks: Twitter and Reddit. Inf. Process. Manag. 2020, 57, 102034. [CrossRef]

9. Lloyd, S.P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 1982, 28, 129–137. [CrossRef]
10. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
11. Salton, G.; McGill, M.J. Introduction to Modern Information Retrieval; McGraw-Hill, Inc.: New York, NY, USA, 1986.
12. Bellman, R. Dynamic programming. Science 1966, 153, 34–37. [CrossRef] [PubMed]
13. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781.
14. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and their Composi-

tionality. Adv. Neural Inf. Process. Syst. 2013, 26, 1421. [CrossRef]
15. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the Empirical

Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
16. Bengio, Y.; Ducharme, R.; Vincent, P.; Janvin, C. A Neural Probabilistic Language Model. J. Mach. Learn. Res. 2003, 3, 1137–1155.
17. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

CoRR 2017, 30, 3058.
18. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.
[CrossRef]

19. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. arXiv 2018, arXiv:1804.07461.

20. Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. SuperGLUE: A Stickier Benchmark
for General-Purpose Language Understanding Systems. Adv. Neural Inf. Process. Syst. 2019, 32, 1828.

21. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv 2019, arXiv:1908.10084.
22. Slonim, N.; Friedman, N.; Tishby, N. Unsupervised Document Classification Using Sequential Information Maximization. In

Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR’02, Tampere, Finland, 11–15 August 2002; pp. 129–136. [CrossRef]

23. Lang, K. NewsWeeder: Learning to Filter Netnews. In Proceedings of the 12th International Machine Learning Conference
(ML95), Tahoe City, CA, USA, 9–12 July 1995.

24. Connor, R.C.H.; Cardillo, F.A.; Moss, R.; Rabitti, F. Evaluation of Jensen-Shannon Distance over Sparse Data. In Proceedings of
the SISAP, A Coruna, Spain, 2–4 October 2013.

25. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
26. Slonim, N. The Information Bottleneck: Theory and Applications. Ph.D. Thesis, Hebrew University of Jerusalem, Jerusalem,

Israel, 2002.
27. Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing); Wiley-Interscience:

Hoboken, NJ, USA, 2006.
28. Slonim, N.; Tishby, N. Agglomerative Information Bottleneck. In Proceedings of the Advances in Neural Information Processing

Systems, Denver, CO, USA, 29 November–4 December 1999; Solla, S., Leen, T., Müller, K., Eds.; Volume 12.
29. Zhang, J.A.; Kurkoski, B.M. Low-complexity quantization of discrete memoryless channels. In Proceedings of the 2016

International Symposium on Information Theory and Its Applications (ISITA), Monterey, CA, USA, 3 October–2 November 2016;
pp. 448–452.

30. Chou, P. Optimal partitioning for classification and regression trees. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 340–354.
[CrossRef]

31. Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J. Clustering with Bregman Divergences. J. Mach. Learn. Res. 2005, 6, 1705–1749.
32. Kurkoski, B.M. On the relationship between the KL means algorithm and the information bottleneck method. In Proceedings of the

SCC 2017, 11th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany, 6–9 February 2017;
pp. 1–6.

33. Slonim, N.; Aharoni, E.; Crammer, K. Hartigan’s K-Means versus Lloyd’s K-Means: Is It Time for a Change? In Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI’13, Beijing, China, 3–9 August 2013; pp. 1677–1684.

34. Greene, D.; Cunningham, P. Practical Solutions to the Problem of Diagonal Dominance in Kernel Document Clustering. In
Proceedings of the 23rd International Conference on Machine Learning (ICML’06), New York, NY, USA, 25–29 June 2006;
pp. 377–384.

35. Zhang, X.; Zhao, J.; LeCun, Y. Character-level Convolutional Networks for Text Classification. Adv. Neural Inf. Process. Syst. 2015,
28, 456. [CrossRef]

http://dx.doi.org/10.1504/IJWBC.2015.068540
http://dx.doi.org/10.1016/j.ipm.2019.04.002
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1126/science.153.3731.34
http://www.ncbi.nlm.nih.gov/pubmed/17730601
http://dx.doi.org/10.48550/ARXIV.1310.4546
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1145/564376.564401
http://dx.doi.org/10.1109/34.88569
http://dx.doi.org/10.48550/ARXIV.1509.01626

Entropy 2022, 24, 1132 15 of 15

36. Vinh, N.X.; Epps, J.; Bailey, J. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization
and Correction for Chance. J. Mach. Learn. Res. 2010, 11, 2837–2854.

37. Meilă, M. Comparing clusterings—An information based distance. J. Multivar. Anal. 2007, 98, 873–895. [CrossRef]
38. Rosenberg, A.; Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. In Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), Prague, Czech Republic, 28–30 June 2007; pp. 410–420.

39. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, New Orleans, Louisiana, 7–9 January 2007; pp. 1027–1035.

40. Spencer, N. Essentials of Multivariate Data Analysis; Taylor & Francis: Abingdon, UK, 2013; p. 95.

http://dx.doi.org/10.1016/j.jmva.2006.11.013

	Introduction
	Algorithm Overview
	Theoretical Foundation
	Divergence Function
	Pseudo-Code
	Sequential Clustering Algorithm
	Vector Representation
	Focus of This Work

	Methods
	Computation of tnew(x) and Associated Intuition
	Optimization for Sparse Vector Representation
	Caching Log Computations
	Implementation

	Experimental Setup
	Materials
	Clustering Metrics
	Clustering Setups
	Robustness Considerations
	Hardware
	Code

	Results
	Conclusions
	Package Distribution
	Illustrations of Micro-F1, Macro-F1, V-Measure and Total Run-Time
	Comparing sIB and K-Means Parallelism Models
	References

