Evaluation of Various Ejector Profiles on CO2 Transcritical Refrigeration System Performance
Abstract
:1. Introduction
2. System Configuration
3. System Performance Calculations
- the processes for all the analyses are steady-state;
- the pressure drop at the gas cooler, evaporator, and piping is not considered;
- the kinetic and the potential energies are neglected;
- the system is well isolated.
4. Results and Discussion
4.1. Ejector Characteristic Functions
4.2. Ejector System Performance Improvement
5. Conclusions
- A total of 31% of available work was recovered by activating VEJ1, while the total efficiency acquired by both ejector combinations of VEJ1 + 2 registered an optimum value of 25.4%. However, the multi-ejector allows entraining a 50% higher suction mass flow rate with the ejector combinations, which greatly influences the system performance by improving the work rate recovered.
- CO2 transcritical refrigeration cycles possess significant throttling loss, especially at lower pressure lift values. In contrast, the combination of both ejector cartridges represented 85% of the potential work that the ejector implementation can achieve compared with the conventional layout.
- The multi-ejector concept was found to improve the overall system COP, which increased the refrigerating effect because a higher amount of liquid-phase refrigerant could be supplied to the evaporators. Moreover, the multi-ejector allowed pre-compression of the evaporator exit refrigerant prior to the intermediate pressure region and reduced the compressor input power needed to achieve this.
- In ejector technology, especially for those ejectors operating as supersonic ejectors in transcritical mode, the speed of sound and shock waves play a fundamental role and stand out as two crucial physical phenomena. They are responsible for choking flow and the increase in pressure inside the ejector. To consider the effects and dynamics of these parameters, an optimization CFD study should be performed to analyze these critical parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.H.; Pettersen, J.; Bullard, C.W. Fundamental process and system design issues in CO2 vapor compression systems. Prog. Energy Combust. Sci. 2004, 30, 119–174. [Google Scholar] [CrossRef]
- Chasserot, M.; Masson, N.; Jia, H.; Burkel, S.; Maratou, A.; Skačanová, K. Guide 2014: Natural Refrigerants—Continued Growth and Innovation in Europe; Shecco Publications, Guide, 2014; pp. 1–195. Available online: https://www.ecacool.com/en/publications/guide_2014_natural/ (accessed on 18 August 2022).
- Nekså, P.; Walnum, H.T.; Hafner, A. Keynote: CO2—A refrigerant from the past with prospects of being one of the main refrigerants in the future\r9th IIR-Gustav Lorentzen Conference on Natural Working Fluids. In Proceedings of the 9th IIR Gustav Lorentzen Conference, Trondheim, Norway, 11–14 April 2010. [Google Scholar]
- Cavallini, A.; Zilio, C. Carbon dioxide as a natural refrigerant. Int. J. Low Carbon Technol. 2007, 2, 225–249. [Google Scholar] [CrossRef]
- Elbel, S.; Hrnjak, P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. Int. J. Refrig. 2008, 31, 411–422. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, M.S.; Kim, M.S. Experimental study on the improvement of CO2 air conditioning system performance using an ejector. Int. J. Refrig. 2011, 34, 1614–1625. [Google Scholar] [CrossRef]
- Nakagawa, M.; Marasigan, A.R.; Matsukawa, T. Experimental analysis on the effect of internal heat exchanger in transcritical CO2 refrigeration cycle with two-phase ejector. Int. J. Refrig. 2011, 34, 1577–1586. [Google Scholar] [CrossRef]
- Lawrence, N.; Elbel, S. Analysis of two-phase ejector performance metrics and comparison of R134a and CO2 ejector performance. Sci. Technol. Built Environ. 2015, 21, 515–525. [Google Scholar] [CrossRef]
- Hafner, A.; Försterling, S.; Banasiak, K. Multi-ejector concept for R-744 supermarket refrigeration. Int. J. Refrig. 2014, 43, 1–13. [Google Scholar] [CrossRef]
- Banasiak, K.; Hafner, A.; Kriezi, E.E.; Madsen, K.B.; Birkelund, M.; Fredslund, K.; Olsson, R. Développement et cartographie de performance du pack de récupération du travail de détente à multi éjecteur pour des unités de compression de vapeur de R744. Int. J. Refrig. 2015, 57, 265–276. [Google Scholar] [CrossRef]
- Smolka, J.; Bulinski, Z.; Fic, A.; Nowak, A.J.; Banasiak, K.; Hafner, A. A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach. Appl. Math. Model. 2013, 37, 1208–1224. [Google Scholar] [CrossRef]
- Palacz, M.; Smolka, J.; Fic, A.; Bulinski, Z.; Nowak, A.J.; Banasiak, K.; Hafner, A. Application range of the HEM approach for CO2 expansion inside two-phase ejectors for supermarket refrigeration systems. Int. J. Refrig. 2015, 59, 251–258. [Google Scholar] [CrossRef]
- Palacz, M.; Smolka, J.; Kus, W.; Fic, A.; Bulinski, Z.; Nowak, A.J.; Banasiak, K.; Hafner, A. CFD-based shape optimisation of a CO2 two-phase ejector mixing section. Appl. Therm. Eng. 2016, 95, 62–69. [Google Scholar] [CrossRef]
- Palacz, M.; Haida, M.; Smolka, J.; Nowak, A.J.; Banasiak, K.; Hafner, A. HEM and HRM accuracy comparison for the simulation of CO2 expansion in two-phase ejectors for supermarket refrigeration systems. Appl. Therm. Eng. 2017, 115, 160–169. [Google Scholar] [CrossRef]
- Palacz, M.; Smolka, J.; Nowak, A.J.; Banasiak, K.; Hafner, A. Shape optimisation of a two-phase ejector for CO2 refrigeration systems. Int. J. Refrig. 2017, 74, 210–221. [Google Scholar] [CrossRef]
- Haida, M.; Smolka, J.; Hafner, A.; Ostrowski, Z.; Palacz, M.; Madsen, K.B.; Försterling, S.; Nowak, A.J.; Banasiak, K. Performance mapping of the R744 ejectors for refrigeration and air conditioning supermarket application: A hybrid reduced-order model. Energy 2018, 153, 933–948. [Google Scholar] [CrossRef]
- Bodys, J.; Palacz, M.; Haida, M.; Smolka, J.; Nowak, A.J.; Banasiak, K.; Hafner, A. Full-scale multi-ejector module for a carbon dioxide supermarket refrigeration system: Numerical study of performance evaluation. Energy Convers. Manag. 2017, 138, 312–326. [Google Scholar] [CrossRef]
- Bodys, J.; Smolka, J.; Palacz, M.; Haida, M.; Banasiak, K.; Nowak, A.J.; Hafner, A. Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system. Energy 2016, 117, 620–631. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, N.; Qiu, R.C. Demonstration of real-time spectrum sensing for cognitive radio. IEEE Commun. Lett. 2010, 14, 323–328. [Google Scholar] [CrossRef]
- Xu, X.X.; Chen, G.M.; Tang, L.M.; Zhu, Z.J. Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure. Energy 2012, 44, 870–877. [Google Scholar] [CrossRef]
- Smolka, J.; Palacz, M.; Bodys, J.; Banasiak, K.; Fic, A.; Bulinski, Z.; Nowak, A.J.; Hafner, A. Performance comparison of fixed- and controllable-geometry ejectors in a CO2 refrigeration system. Int. J. Refrig. 2016, 65, 172–182. [Google Scholar] [CrossRef]
- Elbarghthi, A.F.A.; Hafner, A.; Banasiak, K.; Dvorak, V. An experimental study of an ejector-boosted transcritical R744 refrigeration system including an exergy analysis. Energy Convers. Manag. 2021, 238, 114102. [Google Scholar] [CrossRef]
- Gullo, P.; Tsamos, K.M.; Hafner, A.; Banasiak, K.; Ge, Y.T.; Tassou, S.A. Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study. Energy 2018, 164, 236–263. [Google Scholar] [CrossRef]
- Sarkar, J.; Agrawal, N. International Journal of Thermal Sciences Performance optimization of transcritical CO2 cycle with parallel compression economization. Int. J. Therm. Sci. 2010, 49, 838–843. [Google Scholar] [CrossRef]
- Bajja, S.H. Experimental analysis of R744 multi-ejector modules. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2019. no. 154. [Google Scholar]
- Elbel, S.; Hrnjak, P. Flash gas bypass for improving the performance of transcritical R744 systems that use microchannel evaporators. Int. J. Refrig. 2004, 27, 724–735. [Google Scholar] [CrossRef]
- Gullo, P.; Elmegaard, B.; Cortella, G. Energy and environmental performance assessment of R744 booster supermarket refrigeration systems operating in warm Évaluation de la performance énergétique et environnementale de systèmes frigorifiques de supermarché au R744 de type «booster» fonctionn. Int. J. Refrig. 2016, 64, 61–79. [Google Scholar] [CrossRef]
- Elbarghthi, A.F.A.; Dvorak, V.; Hafner, A.; Banasiak, K. The potential impact of the small-scale ejector on the R744 transcritical refrigeration system. Energy Convers. Manag. 2021, 249, 114860. [Google Scholar] [CrossRef]
- Lucas, C.; Koehler, J. Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector. Int. J. Refrig. 2012, 35, 1595–1603. [Google Scholar] [CrossRef]
- Elbarghthi, A.F.A.; Mohamed, S.; Nguyen, V.V.; Dvorak, V. CFD based design for ejector cooling system using HFOS (1234ze(E) and 1234yf). Energies 2020, 13, 1408. [Google Scholar] [CrossRef]
- Zheng, L.; Deng, J. Research on CO2 ejector component efficiencies by experiment measurement and distributed-parameter modeling. Energy Convers. Manag. 2017, 142, 244–256. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbarghthi, A.F.A.; Dvořák, V. Evaluation of Various Ejector Profiles on CO2 Transcritical Refrigeration System Performance. Entropy 2022, 24, 1173. https://doi.org/10.3390/e24091173
Elbarghthi AFA, Dvořák V. Evaluation of Various Ejector Profiles on CO2 Transcritical Refrigeration System Performance. Entropy. 2022; 24(9):1173. https://doi.org/10.3390/e24091173
Chicago/Turabian StyleElbarghthi, Anas F. A., and Václav Dvořák. 2022. "Evaluation of Various Ejector Profiles on CO2 Transcritical Refrigeration System Performance" Entropy 24, no. 9: 1173. https://doi.org/10.3390/e24091173
APA StyleElbarghthi, A. F. A., & Dvořák, V. (2022). Evaluation of Various Ejector Profiles on CO2 Transcritical Refrigeration System Performance. Entropy, 24(9), 1173. https://doi.org/10.3390/e24091173