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Abstract: To scientifically and effectively evaluate the service capacity of expressway service areas
(ESAs) and improve the management level of ESAs, we propose a method for the recognition of
vehicles entering ESAs (VeESAs) and estimation of vehicle dwell times using electronic toll collection
(ETC) data. First, the ETC data and their advantages are described in detail, and then the cleaning
rules are designed according to the characteristics of the ETC data. Second, we established feature
engineering according to the characteristics of VeESA and proposed the XGBoost-based VeESA
recognition (VR-XGBoost) model. Studied the driving rules in depth, we constructed a kinematics-
based vehicle dwell time estimation (K-VDTE) model. The field validation in Part A/B of Yangli ESA
using real ETC transaction data demonstrates that the effectiveness of our proposal outperforms the
current state-of-the-art. Specifically, in Part A and Part B, the recognition accuracies of VR-XGBoost
are 95.9% and 97.4%, respectively, the mean absolute errors (MAEs) of dwell time are 52 and 14 s,
respectively, and the root mean square errors (RMSEs) are 69 and 22 s, respectively. In addition, the
confidence level of controlling the MAE of dwell time within 2 min is more than 97%. This work
can effectively recognize the VeESA and accurately estimate the dwell time, which can provide a
reference idea and theoretical basis for the service capacity evaluation and layout optimization of
the ESA.

Keywords: VR-XGBoost; K-VDTE; ETC data; ESAs; data mining

1. Introduction

By the end of 2021, the total mileage of expressways in China was approximately
169,100 km, ranking first in the world [1]. As an essential and critical core node of express-
ways, ESA is of great significance in regulating road traffic flow and relieve traffic pressure.
However, the infrastructure of most ESAs built in the early years has been unable to meet
the demand of the rising traffic volume, resulting in frequent queues and congestion [2,3].
Therefore, a scientific and reasonable evaluation of the service capacity of ESA and further
quantitative suggestions for the reconstruction and extension of ESA have become urgent
issues at present [4,5]. The pause rate and dwell time of vehicles are essential parameters
in the operation and management of ESA. It is not only an important metric for operation
evaluation but also a premise for layout optimization. Therefore, it is of great practical
significance and application value to accurately estimate the pause rate and dwell time for
the quantification of the reconstruction and extension of ESA.

Currently, the main methods for pause rate estimation are the elastic coefficient
method [6,7] and feature engineering method [8–18]. The elasticity coefficient method,
proposed by the Japanese expressway design standards, mainly uses ESA pause rate sur-
vey data and national economic data to establish the pause rate trend model to estimate
the future pause rate. Although this method is simple in principle and convenient in
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calculation, it has certain limitations and one-sidedness. On the other hand, the feature
engineering method mainly considers multidimensional features such as major road traffic
flow, average speed and human physiological demand and feeds the model for training and
learning to estimate the pause rate. However, few studies have investigated the estimation
of dwell time in ESA. The limited survey data obtained at a specific ESA are mainly used
in existing studies to statistically analyze the vehicle dwell time according to categories
such as vehicle type, diurnal differences, seasonal differences, etc. [19–24]. Therefore, the
following challenges remain for pause rate and dwell time estimation. (1) Fewer and
more difficult to obtain ESA data, resulting in model training effects that could be further
improved. (2) Existing studies tend to consider only the overall estimation of the pause
rate, ignoring the differences between individual vehicles. (3) The dwell time estimation
fails to fully consider the ESA regionality, timeliness and kinematic principle in the vehicle
travel law.

To address the aforementioned challenges, we propose a method for the recognition of
vehicles entering ESAs (VeESAs) and the estimation of dwell times using ETC data. First,
with the rapid development of Internet of Vehicles (IoV) technology in recent years [25,26],
China built the world’s largest IoV system—the ETC system—at the end of 2019, with a
penetration rate of more than 80% of its users. Therefore, this study will utilize ETC data as
experimental data to solve the problem of insufficient data. Then, ETC data preprocessing
rules are designed by deeply mining the characteristics of ETC data. Second, we proposed
an XGBoost-based VeESA recognition (VR-XGBoost) model based on a detailed analysis of
the main factors affecting VeESA. On this basis, taking into full consideration the driving
pattern of vehicles entering/exiting the ESA, we proposed a kinematics-based vehicle
dwell time estimation (K-VDTE) method, which is expected to provide reference ideas for
the scientific and reasonable evaluation of the service capacity of the ESA. This work can
provide decision support for the layout optimization of ESA reconstruction and extension
and improve the management level and high-quality development of ESA.

The main contributions of this study are as follows:

1. We proposed a VR-XGBoost model for recognizing vehicles entering expressway
service areas based on ETC data, which not only achieves an effective estimation of
the pause rate but also accurately recognizes individual vehicles driving into ESA.

2. Taking into full consideration the driving pattern of vehicles entering/exiting the
ESA, we proposed a K-VDTE model for vehicle dwell time estimation.

3. The validity of the proposed method is verified by using real ETC data, which
can provide a more scientific and reasonable reference basis for ESA reconstruction
and extension.

The remainder of this work is organized as follows: Section 2 reviews related work
regarding ESA pause rate and vehicle dwell time estimation. The proposed method,
including the framework, data preprocessing, feature engineering, the VR-XGBoost model,
and the K-VDTE model, is described in Section 3. Section 4 shows the experimental results
and analysis. Finally, the conclusion is presented in Section 5.

2. Related Work
2.1. Pause Rate Estimation

In this section, an overview of pause rate estimation methods is presented. The elastic
coefficient method (ECM) was proposed in early Japanese expressway design standards for
calculating the pause rate of various types of VeESAs [6]. Drawing on relevant experience
in Japan, Sun et al. [7] concluded that ECM was also applicable to the development pattern
of the ESA pause rate in Guangdong Province, China, and used the ECM to estimate the
average growth rate of the pause rate to achieve prediction.

Considering the close relationship between the pause rate and ESA spacing, Cui et al. [8]
proposed a new method for determining the pause rate based on the continuous vehicle
travel time. Through an in-depth analysis of the relationship between the pause rate and
traffic flow parameters [9,10], Chen et al. [11] proposed a pause rate estimation method
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based on a traditional linear regression model, which provided an important reference basis
for the layout optimization and function design of ESA. In response to the low accuracy of
pause rate prediction, a BP neural network-based ESA pause rate prediction model was
constructed [12]. On the basis of previous work, Shen et al. [13] extracted multidimensional
feature vectors from the data and constructed a tree-level BP neural network for pause
rate prediction, which further improved the prediction accuracy. To further optimize the
essential parameters of the wavelet neural network (WNN), some scholars introduced
evolutionary algorithms, such as particle swarm optimization (PSO) [14] and genetic
algorithm (GA) [15], to optimize the initial parameters of the WNN. The improved WNN-
based pause rate prediction models were established, and the validity and reliability were
verified on a real dataset. Under the premise of fully investigating the global optimal search
capability of particles, Sun et al. [16] improved the topology of traditional PSO and fused
it with the XGBoost algorithm to form a combined model for ESA traffic flow prediction.
Experiments have demonstrated that the combined model has higher prediction accuracy
and stronger generalization ability than a single model.

In the past few decades, deep learning methods [27,28], such as long short-term mem-
ory (LSTM) and convolutional neural networks (CNN), have achieved good performance
in the field of transportation and are widely used in traffic flow prediction. Wang et al. [17]
built a model based on LSTM for ESA instantaneous population analysis and prediction.
The experimental results showed that it was able to accurately predict population mobility
despite the relatively large population fluctuations. Zhao et al. [18] extracted spatiotempo-
ral features using CNN, LSTM, and attention mechanism models and proposed a short-term
traffic flow prediction model based on STL-OMS to achieve an accurate prediction of ESA
traffic flow.

2.2. Vehicle Dwell Time Estimation

In this section, an overview of dwell time estimation methods is presented. King et al. [19]
conducted an early field survey at nine locations in the United States. The results showed
that the average vehicle dwell time in rest areas was 11.4 min, with a standard deviation of
12.87 min, a minimum dwell time of 1 min and a maximum dwell time of 3 h and 31 min.
Recently, the Japanese Institute of Expressway General Technology noted through actual
statistics that the average dwell time of small vehicles in most ESAs exceeded 25 min [20],
while the dwell time for families with elderly and children was extended by an average of
10~20 min in ESAs [21]. Furthermore, analysis of dwell time by vehicle type showed that
heavy vehicles had the longest average dwell time, significantly longer than other vehicle
types [22]. Analysis of dwell time by seasonal differences showed that all categories of
vehicles had longer dwell times in summer than in any other season [23]. Analysis of dwell
time by diurnal differences showed that the average dwell time was significantly longer at
night than during the day [24].

In addition, Hirai et al. [29] estimated the total dwell time in the service area for
the whole trip by mining the ETC trip data using the average travel speed method. The
correlation analysis of the dwell time distribution characteristics and rest behavior [30]
was expected to construct the next rest behavior model. At the same time, the driver’s
rest behavior was used to characterize the distribution of vehicle travel time [31] to further
construct driving behavior characteristics [32]. A method for calculating the number of
stranded vehicles across time was proposed through statistical analysis of vehicle dwell
time and rest behavior characteristics [33], and then a mathematical model for ESA scale
design was proposed [34], which was used to optimize the ESA layout [35,36].

3. Methodology
3.1. Framework

In this section, we present the framework of this study, as shown in Figure 1. First,
we perform data preprocessing, including extraction of required data, ETC trajectory
construction, data cleaning, data fusion and forming of structured data. Second, we
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consider features such as speed features, spatiotemporal features and external features to
construct feature engineering, thus building an XGBoost-based VeESA recognition model.
On this basis, a kinematics-based vehicle dwell time estimation model is proposed. This
study not only enables the effective recognition of VeESA but also further estimates their
dwell time in the service area.
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3.2. Data Overview and Preprocessing
3.2.1. Data Overview

The experimental datasets in this work contain the ETC dataset and ESA dataset. The
ETC data were collected by more than 1000 ETC gantries deployed in the whole road
network of the Fujian Provincial Expressway. Specifically, as the world’s largest IoV system,
the ETC system uses radio frequency identification (RFID) technology to enable mobile
vehicles equipped with an onboard unit (OBU) to communicate with roadside units (RSU)
for data collection [37]. The collection period was from 3 to 10 September 2020. We obtained
a total of 42,964,489 ETC data, including vehicle ID (after desensitization), transaction time,
gantry ID, vehicle type, etc., as shown in Table 1. According to the classification of vehicle
types and tolls of China’s expressway, vehicles can be divided into 4 categories of buses,
6 categories of trucks and 6 categories of special operating vehicles. The total number of
vehicles is approximately 1.72 million in the dataset. Specifically, each transaction data
contains all field information.

The ESA data were collected by the cameras at the entrance and exit of Yangli ESA
Part A/B. Specifically, the camera uses the technology of license plate recognition to obtain
information about the vehicles entering the service area [38]. The collection period is
consistent with the ETC data. We obtained more than 30,000 data points, including vehicle
ID (after desensitization), capture time, service area ID and entrance/exit information, as
shown in Table 2. The total number of vehicles is approximately 18,000 in the dataset. It
is worth noting that this dataset is only used for experimental validation to evaluate the
recognition effect and the estimation accuracy of vehicle dwell time.
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Table 1. Description of partial fields in ETC data.

Field Name Description Example

1 VehID vehicle ID A000001
2 VehClass vehicle type 1
3 EnWeight entrance gross axle weight 1500
4 EnStation entrance ID 1002
5 EnTime entrance time 2020/9/5 00:00:00
6 GantryID gantry ID G000335001000120020
7 TradeTime transaction time 2020/9/5 01:00:00
8 Workday workday 0

Table 2. Description of fields in ESA data.

Field Name Description Example

1 SAID service area ID Yangli Part A
2 EnEx entrance/exit 0/1
3 VehID vehicle ID A000001
4 CapTime capture time 2020/9/5 00:00:00

In this work, only the data of Yangli ESA and two ETC gantries before and after it
are used, whose deployment locations are shown in Figure 2. To facilitate the following
explanation, we have made relevant definitions as follows.
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Expressway Section QD [39]: Each ETC gantry and the entrance/exit of an express-
way toll station is collectively called a node G, and two adjacent nodes constitute an
expressway section, referred to as QD:

QD = 〈G1, G2〉 (1)

where G1 and G2 are the start and end points of QD.
Taking road upline as an example, it can be seen from Figure 2 that G1 and G2 constitute

Section 1 (QD1), G2 and G3 constitute Section 2 (QD2), where the ESA is located, and G3
and G4 constitute Section 3 (QD3). It can be found from the partial enlarged detail that the
gantries always appear in pairs, which are distributed along the upline and downline of
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the road, such as G2 and G′2. Therefore, the discrete ETC data need to be processed into
vehicle trajectories and fused with the ESA data, as detailed in Section 3.2.2.

3.2.2. Data Preprocessing

The prerequisite for effective data mining is to ensure data quality. However, there is
a large amount of “dirty” data in ETC data, which is caused by various objective factors
such as equipment failure, wireless signal crosstalk and bad weather in the process of ETC
data collection, transmission and storage, which seriously affects the potential value of
ETC data mining. There are 3 main problems in the “dirty” data as follows:

(1) Data Redundancy

Generally, it is generated by repeated uploading of data in the transmission process or
repeated copying in the storage process. This tends to cause an increase in the data scale
and serious interference with data mining. In addition, the continuous communication
between vehicle OBUs and ETC antennas due to traffic congestion and anchor failure within
the antenna coverage area is also a cause of data redundancy. In general, it is sufficient to
keep only one of the instances of data and delete the rest directly.

(2) Data Missing

Due to equipment failure, bad weather and other reasons, the vehicle OBU does not
communicate or communicates unsuccessfully with the ETC antenna, which results in
missing data. At the same time, there is also the possibility of missing data due to network
packet loss during data transmission.

(3) Data Abnormality

With the influence of wireless signal crosstalk and other factors, the vehicle OBU of
the vehicle traveling on the road upline communicates successfully with the ETC antenna
deployed on the road downline, and the dataset generates records that do not comply with
expressway driving rules.

However, due to the highly discrete characteristic of ETC data, it is difficult to achieve
effective judgment of data abnormalities due to isolated data points. Therefore, it is
necessary to rely on the trajectory semantic context formed by the topology of the ex-
pressway ETC gantry network to accurately detect and repair the above situation. For
this purpose, we further define it as follows: ETC Trajectory eTr: The sequence of ETC
gantry nodes formed by a vehicle passing through a continuous expressway Section
〈QD1, QD2, . . . , QDn−1〉 is called an ETC trajectory eTr:

eTr = 〈tr1, tr2, . . . , trn〉 (2)

where tr1 and trn are the start and end points of the trajectory, respectively. tri is the
transaction data when the vehicle travels through the ETC gantry, which contains infor-
mation such as gantry ID tri.N, transaction timestamp tri.T, vehicle ID tri.P, vehicle type
tri.C, entrance gross axle weight tri.EW, entrance ID tri.EID, entrance timestamp tri.ET and
workday tri.H (consistent with Table 1). n indicates the total number of nodes that the
vehicle passes through.

The ETC data cleaning algorithm (Algorithm 1) includes the construction of the
vehicle trajectory, data cleaning and data repair. First, the ETC data are grouped by
vehicle ID tri.P, entrance ID tri.EID, and entrance timestamp tri.ET. Second, we eliminate
duplicate data after sorting by transaction timestamp tri.T for each set of data. Third, we
obtain two adjacent data in each set of data and judge the correctness by its topological
information, which mainly includes the removal of redundant data generated by the
opposite gantries and the repair of missing data. It is worth noting that the topology
dataset includes two subsets: TP and TP′, which is a collection of topologies (e.g., 〈G1, G2〉).
Specifically, TP = {〈G1, G2〉, 〈G2, G3〉, 〈G3, G4〉, . . .} denotes normal topology data and
TP′ =

{
〈G1, G′2〉,

〈
G2, G′3

〉
,
〈

G3, G′4
〉
, . . .

}
denotes opposite topology data. The topologies

in TP and TP′ always appear in pairs, such as 〈G1, G2〉 and 〈G1, G′2〉. Finally, the vehicle
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trajectories that meet the requirements are added to the trajectory dataset eTRAJ. The
specific algorithm is shown as follows:

Algorithm 1: ETC data cleaning algorithm

Input: ETC data eData, Topology data TP, Opposite topology data TP′

Output: ETC trajectory dataset eTRAJ
1: G_eData = eData.Groupby([trp,trEID,trET]); # Grouping
2: For eTrj∈ G_eData do: # Traversal operation for each set of data
3: eTrj ← eTrj.sorted(by = trT) # Sorted by transaction time
4: eTrj ← eTrj.drop_duplicates()# Data deduplication
5: While (i=1, i < len(eTrj)):
6: tp← 〈tri.N , tri+1.N〉
7: IF tp ∈ TP:
8: i+ = 1;
9: continue;
10: Else IF tp ∈ TP′:
11: tp′ ← 〈tri.N , tri+2.N〉
12: IF : tp′ ∈ TP
13: delete tri+1# Delete opposite gantry transaction data
14: i+= 2;
15: Else :
16: tp′′ ← 〈tri.N , tri+1.N〉 , tp′′′ ← 〈tri+1.N , tri+2.N〉
17: IF tp′′ ∈ TP&& tp′′′ ∈ TP:
18: tri+1.N ← tri+1.N′ # Replacement of opposite gantry ID
19: i+= 2;
20: Else:
21: break;
22: End IF
23: End IF
24: Else:
25: break;
26: End IF
27: IF i = len(eTrj)-1:
28: eTRAJ.append

(
eTrj

)
;

29: End IF
30: End While
31: End For

The ETC driving trajectory through data cleaning also needs to be fused and matched
with the service area traffic data as the label data for subsequent experiments. Therefore,
we designed algorithm for fusion of ETC trajectory and ESA data (Algorithm 2). As seen
from Section 3.2.1, the ESA is located in QD2. Therefore, only the ETC driving trajectory
data and service area data vehicle data must be obtained, and at the same time, the service
area entrance and exit capture time in the 2nd and 3rd gantry transaction time periods can
match the VeESA to the corresponding ETC driving trajectory. The remaining unmatched
driving trajectories are not driven into the service area trajectories.

Notably, the gantry system and the service area entrance/exit camera system appear to
be clocked out of sync. Therefore, the time difference delta is set. We make the transaction
time of G2 ∆t hours ahead and the transaction time of G3 ∆t hours behind, i.e., trj

2.T − ∆t
and trj

3.T + ∆t. By expanding the time range, we ensure that VeESA is fully matched. After
the experiments, the time difference in this work is set to 1 h, i.e., ∆t = 1 h. The specific
algorithm is shown as follows:
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Algorithm 2: Fusion of ETC trajectory and ESA data

Input: ETC trajectory dataset eTRAJ, ESA dataset sData, time difference ∆t
Output: final trajectory data eTr
1: VIDSet = unique(sData. VehID)
2: For eTrj ∈ eTRAJ do:
3: eTrj = 〈trj

P, trj
1,T , trj

2,T , trj
3,T , trj

4,T , trj
C, trj

EID, trj
ET , trj

W , trj
H〉;

4: trj
l ← 0; trj

PCT ← null; trj
NCT ← null;

5: If trj
P in VIDSet :

6: sdTmp = sData[sData. VehID == trj
P]

7: For row in sdTmp.iterrows():
8: IF trj

2.T − ∆t< row.CapTime < trj
3.T + ∆t:

9: trj
l ← 1 ;

10: IF row.ExEn = 0:
11: trj

PCT ← row.CapTime;
12: Else:
13: trj

NCT ← row.CapTime;
14: End IF
15: Else:
16: continue;
17: End IF
18: End For
19: Else:
20: continue;
21: End IF
22: eTrj.append(〈trj

PCT , trj
NCT , trj

l〉)
23: End For

Through data cleaning and data fusion, a total of approximately 44,000 and
39,000 trajectories were obtained in Yangli Part A and Part B, respectively. The final
data samples are shown in Table 3. In these trajectories, the total ETC trajectories of enter-
ing Part A and Part B are approximately 7800 and 6700, respectively, and the pause rates of
both Parts A and B are approximately 17%. It is worth noting that due to equipment failure
and other reasons, there is a missing situation of service area entrance/exit capture data in
the experimental dataset. However, this problem does not affect the experiments on the
recognition of VeESA in this work. In other words, only one valid capture of data needs
to exist in the ESA entrance/exit data to complete the tagging work. Subsequent vehicle
dwell time estimation experiments will be conducted by selecting the trajectories where
both entrance and exit capture data exist.

3.3. XGBoost-Based VeESA Recognition
3.3.1. Feature Vector Modeling

There are numerous factors that affect the pause rate and dwell time of ESA, which
have highly nonlinear characteristics. Therefore, we summarize the previous research
results [15,18] and construct feature vectors from 3 dimensions, such as speed features,
spatiotemporal features, and external factors. The details are as follows:

(1) Speed Features

The speed features are the key features for the recognition of VeESA. When a vehicle
enters the ESA, the average speed of ESA section (QD2) will be significantly lower than
QD1 and QD2. Meanwhile, it will also be lower than the overall average speed of other
vehicles of the same type in this section. Therefore, we construct the speed feature vector
as follows:

v = (v1, v2, v3, v4)
T (3)

where v1 ∼ v3 represent the driving state of the individual vehicle during the whole
trip. Among them, v1 = d1/(tr2.T − tr1.T) indicates the average speed of the vehicle
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in QD1, v2 = d2/(tr3.T − tr2.T) represents the average speed of the vehicle in QD2,
v3 = d3/(tr4.T − tr3.T) represents the average speed of the vehicle in QD3, represent the
total mileage of QD1, QD2 and QD3, respectively, and v4 = 1

n ∑n
j=1 vj

2 represents the overall
average speed of vehicles of the same type, except for the vehicle in QD3. v4 mainly
avoids the disturbance caused by the reduction in v2 in certain time periods due to special
conditions or traffic congestion.

Table 3. Examples of experimental data.

trp tr1.T tr2.T tr3.T tr4.T trC trEID trET trW trH trPCT trNCT trl

Part A

A0000001 2020-09-05
08:06:03

2020-09-05
08:08:20

2020-09-05
08:14:12

2020-09-05
08:23:02 23 6101 2020-09-05

06:29:55 18.8 1 2020-09-05
08:01:59

2020-09-05
08:04:08 1

A0000002 2020-09-03
06:28:34

2020-09-03
06:30:46

2020-09-03
06:43:52

2020-09-03
06:52:07 22 6103 2020-09-03

04:24:28 11.4 0 2020-09-03
06:24:42

2020-09-03
06:33:32 1

A0000003 2020-09-10
23:38:27

2020-09-10
23:40:24

2020-09-10
23:43:03

2020-09-10
23:50:57 1 2202 2020-09-10

23:19:23 0 0 0

A0000004 2020-09-07
03:51:13

2020-09-07
03:54:27

2020-09-07
03:59:52

2020-09-07
04:11:46 11 6101 2020-09-06

22:46:11 14.3 0 0

A0000005 2020-09-03
21:14:13

2020-09-03
21:17:24

2020-09-04
04:56:05

2020-09-04
05:06:41 16 6307 2020-09-03

19:33:43 45.1 0 2020-09-03
21:12:24 1

Part B

A0000006 2020-09-04
17:17:52

2020-09-04
17:32:36

2020-09-04
17:48:00

2020-09-04
17:50:17 16 6707 2020-09-04

16:48:35 50.1 0 2020-09-04
17:36:41 1

A0000007 2020-09-08
13:42:53

2020-09-08
13:54:00

2020-09-08
14:05:48

2020-09-08
14:07:57 2 6707 2020-09-08

13:23:20 0 0 0

A0000008 2020-09-06
10:47:19

2020-09-06
10:55:17

2020-09-06
11:19:16

2020-09-06
11:21:21 3 2903 2020-09-06

09:52:21 0 1 2020-09-06
10:47:21

2020-09-06
11:08:32 1

A0000009 2020-09-06
16:58:22

2020-09-06
17:07:12

2020-09-06
17:09:52

2020-09-06
17:12:13 12 6707 2020-09-06

16:37:20 7.6 1 0

A0000010 2020-09-10
21:51:28

2020-09-10
22:01:59

2020-09-10
22:21:59

2020-09-10
22:24:20 14 6707 2020-09-10

21:25:11 17.9 0 2020-09-10
21:53:26

2020-09-10
22:09:52 1

(2) Spatiotemporal Features

In general, the longer a vehicle spends on the expressway, the more demands on the
ESA for drivers and passengers. Therefore, we construct the actual cumulative travel time
of the vehicle from the entrance of the toll station to the ESA as one of the spatiotemporal
features. At the same time, people’s needs for ESA are also different during different
times of the day and on non-workdays. For example, the pause rate of ESA is generally
higher at meal times, after midnight and on non-workdays. Therefore, we construct the
spatio-temporal features vector as shown below.

γ = (γ1, γ2, γ3)
T (4)

where γ1 represents the actual cumulative travel time of the vehicle from the entrance of
the toll station to the ESA, γ2 represents the time period feature, which divides the whole
day into 24 time periods by hour, whose value range is 0~23, and γ3 is a variable for the
workday, and its value is 0 (workday) or 1 (non-workday).

(3) External Features

Vehicle type is also an important feature in road traffic. Different types of vehicles
have different demands on the ESA. At the same time, the difference in passenger/freight
volume will also have some influence on the pause rate of ESA. For example, the more
passengers a bus carries, the more stops it needs for rest, dining, etc. Fully loaded large
trucks often require services such as breaks and water refills. Therefore, the feature vector
is constructed as follows:

θ = (θ1, θ2, θ3)
T (5)

where θ1 represents vehicle type. From the data source of Section 3.2.1, the vehicle types
are divided into 16 categories, θ2 represents passenger/freight volume, and θ3 represents
the traffic flow of the same time slice.

Feature vector modeling is completed by constructing all feature values into vector form.
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3.3.2. Modeling of Recognition of VeESA

XGBoost is an integrated learning method based on the boosting algorithm, whose
learner usually chooses the decision tree model [40], as shown in Figure 3. The model learns
the residuals of the true values and the predicted values of the decision tree by iteratively
generating new decision trees. Eventually, the results of all trees are accumulated as the
final result to obtain better classification accuracy, i.e., the weak classifiers are combined into
a stronger classifier. Therefore, we introduce XGBoost to build a VeESA recognition model.
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We abstracted a 10-dimensional feature vector from the raw ETC data with known label in-
formation to form the sample dataset. We set the dataset as S = {(x1, y1), (x2, y2), . . . , (xn, yn)},
where xi = (v1, v2, v3, v4, γ1, γ2, γ3, θ1, θ2, θ3)

T(i = 1, 2, . . . , N) represents the feature vector
of the i-th sample. yi = 0/1(i = 1, 2, . . . , N) represents the classification label value corre-
sponding to xi. We assume that VR-XGBoost integrates K decision trees, and the prediction
result is shown in Equation (6):

ˆ
yi =

K

∑
k=1

fk(xi) , fk ∈ F (6)

where K represents the number of trees, fk(xi) represents the predicted value of the k-
th decision tree on sample xi, and F represents the integrated classifier composed of all
decision trees.

The objective function of XGBoost consists of the loss function and the regularization
item, as shown in Equation (7):

Obj =
n

∑
i=1

loss
(

yi,
ˆ
yi

)
+

K

∑
k=1

Ω( fk) (7)
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where loss represents the logistic regression loss function used for classification.

loss
(

yi,
ˆ
yi

)
= yiln(1 + e−

ˆ
yi ) + (1− yi)ln(1 + e

ˆ
yi ) (8)

Ω( fk) represents the L1 regularizer, which is used to prevent the model from overfit-
ting. The formula for the regularizer is Equation (9):

Ω( fk) = αTk +
1
2

α ‖ wk ‖1 (9)

where α represents the regularization penalty coefficient, which takes values in the range
of [0, 1]. Tk presents the number of leaves of the k-th tree and wk represents the leaf weight
of the k-th tree.

The XGBoost algorithm adopts an additive stepwise integration strategy in the training
process. Tree-1 is optimized first, followed by Tree-2 until Tree-K has been optimized.

ˆ
yi

(0) = 0 (10)

ˆ
yi

(1) = f1(xi) =
ˆ
yi

(0) + f1(xi) (11)

ˆ
yi

(2) = f1(xi) + f2(xi) =
ˆ
yi

(1) + f2(xi)
. . .

(12)

ˆ
yi

(k) =
ˆ
yi

(k−1) + fk(xi) (13)

We improve the prediction accuracy by adding an incremental function fk to optimize
the objective function during the iterative process, which is calculated as in Equation (14):

Obj(k) =
n

∑
i=1

loss
(

yi,
ˆ
yi

(k−1) + fk(xi)

)
+ Ω( fk) + c (14)

where c represents the constant term and
ˆ
yi

(k−1) denotes the predicted value in the k− 1st
iteration on sample xi.

Next, we expand the second-order Taylor formula and discard the constant term to
speed up the solution and reduce the running time, which is calculated as Equation (15):

Obj(k) =
n
∑

i=1
[l
(

yi,
ˆ
yi

(k−1)
)
+ gi fk(xi) +

1
2 hi f 2

k (xi)] + Ω( fk)

=
K
∑

j=1
[( ∑

i∈Ij

gi)wj +
1
2 ( ∑

i∈Ij

hi + αwj
2)] + αT

(15)

where Ij = {i|q(xi) = j} denotes the sample set of leaf j, and gi and hi are the first derivative
and the second derivative of the loss function, respectively.

The objective function is transformed into a quadratic Obj(k) minimization problem
on wj. Then, we obtain the optimal prediction of each leaf node and the minimum value of
the objective function, that is, the optimal value:

wj
∗ = −

Gj

Hj + α
(16)

(Obj(k))
∗
= −1

2

T

∑
j=1

Gj
2

Hj + α
+ αT (17)

where Gj = ∑i∈Ij
gi, Hj = ∑i∈Ij

hi.
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3.4. Kinematics-Based Dwell Time Estimation

The vehicle dwell time is also an essential parameter in the operation and management
of ESA. Therefore, after the recognition of VeESA, we need to further estimate the dwell
time in the ESA. From the location of the service area between Gantry 2 and Gantry 3, we
know that the total travel time of the section consists of the actual travel time of the vehicle
in the section and the dwell time. Therefore, the dwell time ∆ts can be obtained as follows:

∆ts = ∆tQD2 − ∆tr (18)

where ∆tQD2 = tr3.T − tr2.T , ∆tr represents the actual travel time, which is an unknown
parameter.

Therefore, the vehicle dwell time estimation is converted into the actual vehicle travel
time estimation. Since the traffic conditions of the expressway are relatively smooth,
the expressway can approximate the free-flow state in noncongested and nonemergency
conditions. Vehicles usually travel smoothly on the highway, so the average speed of QD1
and QD3 can be used as the speed of QD2, and thus the actual travel time of QD2 can
be estimated:

∆tr =
d2

v1+v2
2

=
2d2

v1 + v2
(19)

By substituting Equation (19) into Equation (20), we can obtain the following:

∆ts = tr3.T − tr2.T −
2d2

v1 + v2
(20)

Although the average speed method is simple and straightforward, it does not take
into account the kinematics of the VeESA during the entrance/exit ramp. In general,
VeESA goes through a total of five kinematic stages, including smooth driving upstream,
decelerating into the ESA, dwelling in the service area, accelerating out of the ESA and
smooth driving downstream, as shown in Figure 4.
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Therefore, we construct a kinematics-based model for estimating the dwell time, where
the actual travel time ∆tr is redefined as follows:

∆tr = ∆t1 + ∆t2 + ∆t4 + ∆t5 (21)

where ∆t1 ∼ ∆t5 correspond to the time spent in each of the above five stages.

Stage 1: smooth driving upstream

According to the principle of inertia, the driving state of this stage can be considered
as the continuation of the previous section (QD1). Therefore, we approximate Stage 1 as
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uniform motion. We take the average travel speed of QD1 as the travel speed of Stage 1,
and we can obtain the time spent in Stage 1:

∆t1 =
∆s1

v1
(22)

where ∆s1 is the distance from Gantry 2 to the diversion point of the entrance ramp and v1
is the average travel speed of QD1.

Stage 2: decelerating into the ESA

To a certain extent, the ramps in ESA are similar to the ramps at the entrance and exit
of the expressway toll station. However, the ramps at the entrances and exits of toll stations
are usually designed with large curvature, while the ramps at service areas are generally of
small curvature or even similar to straight lines. This makes the vehicle smoother when
driving in/out of the service area. Therefore, we approximate Stage 2, i.e., the deceleration
driving process into the service area entrance ramp, as uniform deceleration linear motion.
From stage 1, the initial velocity of uniformly decelerating linear motion is v1. Let the
velocity at the moment ∆t2 be v∆t2 , the displacement be ∆s2 and the acceleration be a−,
which gives the following.

v∆t2 = v1 + a−∆t2 (23)

v2
∆t2
− v2

1 = 2a−∆s2 (24)

We combine Equations (23) and (24) to obtain the following.

∆t2 =
2∆s2

v1 + v∆t2

(25)

where ∆s2 is the distance from the diversion point of the entrance ramp to the service area.

Stage 4: accelerating out of the ESA

Similarly, we approximate Stage 4, i.e., the service area exit ramp acceleration process,
as uniformly accelerated rectilinear motion until the driving speed reaches a steady state.
From Stage 4, it can be seen that the vehicle reaches a smooth state after moment ∆t4, whose
driving speed is v3. Meanwhile, we assume the initial velocity v30 and acceleration a+ of
uniformly accelerated linear motion. From Equation (23), we can obtain the time spent in
Stage 4:

∆t4 =
v3 − v30

a+
(26)

In general [41], a+ = 0.8 ∼ 1.2 m·s−2.

Stage 5: smooth driving downstream

This stage is similar to the smooth driving upstream. Therefore, we approximate
Stage 5 as uniform motion. The driving state of the next section (QD3) can be considered
a continuation of Stage 5. We take the average travel speed of QD3 as the travel speed of
Stage 5, and we can obtain the time spent in Stage 5 as follows:

∆t5 =
∆s5

v3
(27)

where v3 is the average travel speed in the back section of the service area, and ∆s5 is the
distance from the smooth point in Stage 4 to Gantry 3, which is expressed as follows:

∆s5 = v30∆t4 +
1
2

a+∆t4
2 (28)
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We substitute Equations (22) and (25)–(27) into Equation (21) to obtain the following.

∆tr =
∆s1

v1
+

2∆s2

v1 + v∆t2

+
v3 − v30

a+
+

∆s5

v3
(29)

After finishing, we obtain the mathematical model for the estimation of vehicle dwell
time based on kinematics.

∆ts = ∆tQD2 − (
∆s1

v1
+

2∆s2

v1 + v∆t2

+
v3 − v30

a+
+

∆s5

v3
) (30)

It can be generally considered that the velocity v∆t2 in uniformly decelerating linear
motion and the initial velocity v30 in uniformly accelerating linear motion are both zero,
which can be simplified as follows:

∆ts = ∆tQD2 −
∆s1 + 2∆s2

v1
− v3(v3 − 2)

2a+
(31)

4. Experiments

The experimental platform is a Centos Linux release 7.9.2009 (Core) operating system
based on an Intel(R) Core (TM) i9-10900K CPU @ 3.70 GHz and 64 GB RAM, and all
experiments were implemented on the open-source web application Jupyter Notebook
using Python version 3.8.8.

4.1. VR-XGBoost Evaluation
4.1.1. Construction of Feature Vector

We constructed the feature vector dataset for the training of VR-XGBoost by using
10 statistical features, as shown in Table 4. In the feature vector dataset, each vector contains
10 dimensions of attributes and its classification label l, where l = 0 represents non-VeESA
and l = 1 represents VeESA. It is worth noting that the cumulative travel time γ1 is not
directly available in the ETC data. We replaced it with the cumulative travel time from the
entrance of the toll station to the front gantry of ESA, i.e., γ1 is the cumulative travel time
from the entrance of the entrance to G2.

Table 4. Sample of ESA feature vectors.

v1 v2 v3 v4 γ1 γ2 γ3 θ1 θ2 θ3 l

Part A

114.6 21.4 109.2 85.7 0.88 14 0 2 0 4 1
92.0 93.4 84.9 92.1 1.01 10 0 2 0 3 0
68.0 7.2 66.6 54.1 12.18 21 1 13 13.54 10 1
75.4 69.6 69.3 48.6 1.86 21 0 14 15.9 11 0
77.4 60.5 64.8 44.9 18.55 22 1 15 30.28 8 0
70.0 64.4 77.8 68.4 2.72 15 0 21 0 4 0

Part B

67.6 21.2 79.6 84.1 0.81 17 0 12 9.3 6 1
80.4 88.3 81.3 83.8 0.73 18 1 12 7.5 8 0
77.0 20.1 86.1 74.4 0.56 20 0 11 4.6 16 1
67.1 76.2 72.2 66.3 0.81 21 0 11 0 22 0
90.1 9.7 104.7 94.9 0.42 22 1 1 0 69 1
91.6 102.5 99.3 96.7 2.35 23 0 1 0 20 0

Notes: v1 ∼ v4: km/h; γ1:h; γ2: o’clock; θ2: t; θ3: veh; γ3, θ1,l: dimensionless.

The correlation heatmap is further inscribed for correlation analysis of the feature
vectors, as shown in Figure 5. In the figure, blue indicates a positive correlation between
vectors, and red indicates a negative correlation between feature vectors. At the same time,
when the color is more prominent, the correlation between vectors is stronger. The speed
features were positively correlated with the traffic flow and negatively correlated with the
cumulative travel time γ1, vehicle type θ1 and entrance gross axle weight θ2. Specifically,
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there is a strong positive correlation among v1, v3 and v4, which are both weakly positively
correlated with v2. The two features of γ2 and γ3 have a very low correlation with other
features. Through heatmap analysis, we can clearly understand the correlation between
feature vectors.
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4.1.2. Parameters Selection

The XGBoost classification algorithm has numerous parameters, including the follow-
ing three aspects.

(1) General Parameters: booster, silent, nthread, etc.
(2) Booster Parameters: the number of decision trees (n_estimators), learning rate

(learn_rate), maximum depth of the tree (max_depth), minimum weight in leaf nodes
(min_child_weight), parameter that controls the number of leaves (gamma), proportion
of sample sampling (subsample), scale of feature sampling (colsample_bytree), etc.

(3) Learning Task Parameters: objective and evaluative (eval_metric).

The general parameters and learning task parameters are set directly according to the
model needs, while the booster parameters should be parameter-seeking by the tuning
method. At present, the tuning method is mainly the grid search method, which is com-
bined with the K-fold cross-validation method to achieve the optimal parameters [42]. In
this work, we also used this method for tuning the parameters and set the cross-validation
parameter K = 5. The search range, step size and optimal values of parameters for each
parameter are shown in Table 5.

Table 5. Optimal combination of parameters.

Parameter Search Range Step Size Optimal Value

General
Parameters

booster gbtree/gblinear gbtree
silent 0/1 0

nthread 4

Booster
Parameters

n_estimators [100, 1000] 100 300
learn_rate [0, 0.5] 0.01 0.1

max_depth [1, 10] 1 5
min_child_weight [1, 10] 1 1

gamma [0, 0.5] 0.1 0
subsample [0.6, 1] 0.05 0.8

colsample_bytree [0.6, 1] 0.05 0.8

Learning Task
Parameters

objective reg:linear/reg:logistic/
binary:logistic/ . . . binary:logistic

eval_metric error/auc/rmse/ . . . auc
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4.1.3. Comparative Analysis of Classification Models

To comprehensively evaluate the effectiveness of the VR-XGBoost model, this work in-
troduced evaluation metrics such as accuracy, precision, recall, and F1-score, as shown below.

Accuracy =
TP + TN

TP + FP + FN + TN
(32)

Precision =
TP

TP + FP
(33)

Recall =
TP

TP + FN
(34)

F1− score =
2× Recall × Precision

Recall + Precision
(35)

We compared and analyzed this experimental model with commonly used machine
learning models (e.g., RF, GBDT, KNN), and the experimental results are shown in Table 6.
The experimental results showed that VR-XGBoost, RF and GBDT all obtained good
recognition results with accuracy above 95%, while DT performed the worst due to its
tendency to overfit. In particular, VR-XGBoost achieved the best results in evaluation
metrics. Specifically, in Part B, the accuracy of VR-XGBoost was as high as 97.4%. This
result showed the significant superiority of the VR-XGBoost model for the recognition
of VeESA.

Table 6. Performance comparison of classification models.

Model
Part A Part B

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

GaussianNB 0.937 0.94 0.937 0.937 0.962 0.962 0.962 0.962
SVM 0.954 0.954 0.954 0.954 0.973 0.974 0.973 0.973
KNN 0.955 0.956 0.955 0.955 0.973 0.974 0.973 0.973

DT 0.913 0.914 0.914 0.914 0.947 0.947 0.947 0.947
AdaBoost 0.941 0.942 0.941 0.941 0.969 0.97 0.969 0.969

LR 0.947 0.947 0.947 0.947 0.966 0.966 0.966 0.966
RF 0.958 0.96 0.958 0.958 0.973 0.974 0.973 0.973

GBDT 0.958 0.959 0.958 0.958 0.973 0.974 0.973 0.973
VR-XGBoost 0.959 0.96 0.959 0.959 0.974 0.974 0.974 0.974

Next, the feature contributions are further analyzed, as shown in Figure 6. As a whole,
the feature contribution ranking from largest to smallest is speed features, external features,
and spatiotemporal features. In particular, the contribution of the speed feature in Part A
and Part B, both of which exceed 65%, is much higher than that of the spatiotemporal feature
and external features. Specifically, the feature contribution of v2 in speed features is more
than 50%, indicating that the feature is the most important. In contrast, the contribution
rates of features, such as the actual cumulative travel time γ1, the time period feature γ2,
the passenger/freight volume θ2, and the traffic flow θ3, etc., are all less than 5%. These
features seem less important. Through quantitative analysis of contribution rate, we can
clearly know the importance of each feature.

4.2. K-VDTE Evaluation

We sliced in 5-min increments to count the dwell time, and the distribution is shown in
Figure 7. It can be seen that the dwell times in Part A and Part B both exhibit a long-tailed
distribution, which indicates that most vehicles stay in the ESA only temporarily and briefly.
Specifically, the number of vehicles with a dwell time of 5~10 min is the greatest, and more
than 90% of the vehicles have a dwell time of less than 1 h in the ESA. Furthermore, the
average dwell time in Part A and Part B was approximately 30 min, with a standard
deviation of approximately 70 min, a minimum dwell time of less than 30 s and a maximum
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dwell time of more than 12 h. Through the statistical analysis, we can clearly understand
the general situation of the vehicle dwell time in each ESA.
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To evaluate the effectiveness of the K-VDTE model, the estimation errors are quantified
using the evaluation metrics of root mean square error (RMSE), mean absolute error (MAE),
and R coefficient, as shown below:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (36)
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MAE =
1
n ∑n

i=1|yi − ŷi| (37)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (38)

where ŷi denotes the estimated dwell time obtained using the model, yi denotes the true
dwell time, yi is the average dwell time, and n denotes the amount of data.

We compared the proposed K-VDTE model with the traditional averaging speed
method and commonly used machine learning models, as shown in Table 7. The exper-
imental results show that the proposed K-VDTE method performs the best, while the
machine learning model performs the worst. Specifically, taking Part B as an example, the
MAE of the K-VDTE model was only 14 s, which was not only more than one times better
than the average speed method but also at least four times better than the machine learning
models. This demonstrated the higher accuracy of our method. Moreover, comparing
the RMSE of each model, the proposed K-VDTE model improved at least one order of
magnitude over the machine learning models, which indicated that the proposed method
was more robust.

Table 7. Performance comparison of estimation models (unit: s).

Model
Part A Part B

RMSE MAE R2 RMSE MAE R2

Lasso 4046 2095 0.275 3831 1823 0.2
KNN 3443 1148 0.475 3506 1073 0.33

AdaBoost 536 431 0.987 486 400 0.987
DT 318 90 0.995 263 65 0.996

ExtraTree 365 92 0.994 1248 146 0.915
RF 276 71 0.997 263 55 0.996

GBDT 272 72 0.997 315 61 0.994
XGBoost 242 70 0.997 263 62 0.996

AvgSpeed 85 71 1.000 36 30 1.000
K-VDTE 69 52 1.000 22 14 1.000

Moreover, the integrated learning models, such as XGBoost, RF and GBDT, among
machine learning models, perform better on evaluation metrics, while the single models,
such as Lasso and KNN, obtain very poor results on all evaluation metrics. This result
indicates that single models may not be suitable for vehicle dwell time estimation.

To investigate the estimated errors in depth, we performed a statistical analysis of the
MAE of the dwell times and carved out the distribution of the cumulative probabilities, as
shown in Figure 8. It can be seen that the distribution curves of the cumulative probabilities
in Part A and Part B all exhibited a rapid increase with the increase in the dwell time estima-
tion error until they stabilized after 2 min. Specifically, P{MAE ≤ 120 s} > 95% indicates
that the probability of keeping the MAE within 2 min is more than 95%. Specifically, taking
Part B as an example, the probability of controlling the MAE within 1 min and 2 min are
PB{MAE ≤ 60 s} > 97% and PB{MAE ≤ 120 s} > 99.8%, respectively. The results further
validate that the K-VDTE model has strong robustness.
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5. Conclusions

In this work, we proposed a method for the recognition of vehicles entering express-
way service areas and the estimation of dwell time based on ETC data. This method
provides reference ideas for scientific and reasonable evaluation of the service capacity of
the ESA, which can also provide decision support for the optimization of the layout when
reconstructing and extending the ESA. The specific conclusions are as follows:

(1) Experiments were conducted using real ETC data with a user penetration rate of
over 80%. It not only solves the issue of insufficient data volume but also solves
the geographical differences existing in different service areas in vehicle dwell time
estimation. It can provide a more scientific and reasonable reference basis for the
evaluation of the service capacity of ESA.

(2) Considering multidimensional information such as speed features, spatiotemporal
features and external features, we constructed a VR-XGBoost model. This model can
achieve not only the estimation of the overall pause rate of ESA but also the accurate
recognition of vehicles entering the service area.

(3) After an in-depth study of the driving pattern of vehicles in the process of driving
in/out of the ESA, we proposed a K-VDTE to realize vehicle dwell time estimation.
The estimation accuracy of vehicle dwell time can be further improved by considering
vehicle kinematics.

However, the present method also has certain limitations, whose expressway traffic
state must approximate free-flow conditions. In the future, we will further explore the
vehicle driving characteristics and laws under nonfree flow conditions to form a more
scientific and reliable evaluation system.
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