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Abstract: Analysis of instrumental variables is an effective approach to dealing with endogenous
variables and unmeasured confounding issue in causal inference. We propose using the piecewise
linear model to fit the relationship between the continuous instrumental variable and the continuous
explanatory variable, as well as the relationship between the continuous explanatory variable and
the outcome variable, which generalizes the traditional linear instrumental variable models. The
two-stage least square and limited information maximum likelihood methods are used for the
simultaneous estimation of the regression coefficients and the threshold parameters. Furthermore,
we study the limiting distribution of the estimators in the correctly specified and misspecified models
and provide a robust estimation of the variance-covariance matrix. We illustrate the finite sample
properties of the estimation in terms of the Monte Carlo biases, standard errors, and coverage
probabilities via the simulated data. Our proposed model is applied to an education-salary data,
which investigates the causal effect of children’s years of schooling on estimated hourly wage with
father’s years of schooling as the instrumental variable.

Keywords: causal inference; instrumental variables; piecewise linear; thresholds model

1. Introduction

In observational studies, the measured confounders can be controlled by a variety of
methods such as propensity score based matching and regression adjustment. However,
when the confounding variable is unmeasured, the traditional causal inference methods
usually lead to biased estimators since changes in the unmeasured confounder will lead to
changes in the explanatory variable, both of which will result in changes in the response
variable. Failing to adjust such a confounder will lead to spurious association between the
explanatory variable and the outcome. Analysis of instrumental variables (IV) has gained
popularity in causal inference, such as investigating causal graphical structures [1,2] and
controlling for unmeasured confounding [3,4]. An instrument is a variable that is correlated
with the explanatory variable but not associated with any unmeasured confounders. In
addition, the instrumental variable is supposed to have influence on the response variable
only through the explanatory variable, i.e., there is no direct effect of this variable on the
response. Instrumental variable analysis can be applied to many areas and disciplines, such
as economics and epidemiology. For example, causality between the years of schooling
and earnings in economics has been studied in the literature [5]. This example exploits
the college proximity as the instrumental variable because it is revealed that those living
near college or university usually have significantly higher level of education than others.
On the other hand, it is believed that college proximity may improve earnings only by
increasing the subject’s years of schooling. Both indicate that college proximity is a useful
instrumental variable. In biomedical and epidemiological research, the main interest is to
investigate the causal effect of an exposure variable on a certain disease outcome. A gene
can be assumed as a good instrument if it is closely linked to the exposure but has no direct
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effect on the disease [6]. The study of genetic variants as instrumental variables is known as
Mendelian randomization, which is discussed extensively in the literature (e.g., [7,8]). For
instance, a set of 32 recently identified genetic variants are used as instrumental variables to
study whether child fat mass causally affects academic achievement and blood pressure [9].

1.1. Related Work

Since the development of instrumental variables, a plenty of instrumental variable
estimation methods have been proposed for the causal effect estimation. Two-stage least
squares (2SLS) [10] is one of the most commonly used methods for the instrumental variable
estimation. Theoretical analyses such as consistency and asymptotic normality also exist
in the literature. When the response variable is binary, the second stage can be modified
with logistic regression in mendelian randomization studies [11]. Another method is
the likelihood-based method, particularly the limited information maximum likelihood
(LIML) [12]. It is proved that the LIML method is more effective in dealing with the weak
instruments [13]. The phenomenon of weak instruments occurs when the correlation
between the instrument(s) and the explanatory variable is close to zero. When there are
weak instruments, 2SLS is generally unstable and the causal effect estimators are badly
biased. The typical rule of thumb to detect weak instruments is the F-statistic, which states
that an instrument may be weak if the first-stage F-statistic is less than 10 [14].

Most of the IV approaches impose linear assumptions among the instrument, explana-
tory and response variables. However, this is not always the case. For example, a subject’s
years of schooling may only have a positive effect on subsequent earnings if the subject
obtained at least a high-school degree. There would be no difference in the earnings if the
subject obtained either an elementary or middle school degree. In this hypothetical sce-
nario, a linear regression model between the explanatory and response variables is clearly
misspecified. When the null hypothesis of linearity relationship is rejected, one strategy
could be to develop piecewise linear models, which is more interpretable compared to the
completely nonlinear models.

In this paper, we propose a piecewise linear instrumental variable (PLIV) model for
estimating the causal effect via a continuous threshold function. The continuous threshold
function assumes that both the explanatory variable and the instrumental variable are
continuous. Instrumental variable models with continuous variables have been studied
extensively in the literature. For example, continuous instruments have been used in
the classical IV models, developed in a structural equation modeling framework [15]. A
recent paper proposes semiparametric doubly robust estimators of causal effects with the
continuous instruments [16]. Moreover, some discussions about continuous exposure and
a continuous response for Mendelian randomization can be found in a review paper [8] .

A threshold in a variable occurs when there is a sudden change in the values of this
variable. We call the point where the change happens as a cut-off point or a threshold.
The subset causal effect exists when there is a threshold in the explanatory variable. The
proposed PLIV model is useful because it can study the subset causal effect when the true
model is not linear and it can also degenerate to a linear instrumental variable model when
the relationship among the variables is indeed linear. In other words, by using piecewise
linear functions, we can quantitatively find the subset effects of the explanatory and the
instrumental variables.

We use the Rectified Linear Unit (ReLU) function, mathematically defined in Equa-
tion (1), to incorporate the piecewise relationships. Utilization of ReLU function for defining
the subset effects have been studied in the literature, such as a regression kink model that
tests the presence of the threshold [17] and the segmented and hinge models to study the
subset effects in logistic regression [18]. Besides, the continuous threshold models via the
ReLU function with two-way interactions is considered in the Cox’s proportional hazards
model, where the asymptotic normality under mild conditions is established [19]. In this
paper, we use a continuous threshold function with multiple thresholds to formulate the
piecewise linear instrumental variable models. A similar study of the piecewise linear
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instrumental variable model through the random slope approach is studied in the litera-
ture [20]. It divides the data into a few segments and analyzes the data in each segment
individually. However, this method suffers from huge efficiency and accuracy loss.

1.2. Contribution of This Article

In this paper, we consider a piecewise linear model when the linearity assumption of
the data is inappropriate and provide a rigorous treatment of the statistical properties of
the model. Our contributions can be summarized as follows.

• We simultaneously estimate the coefficients and thresholds of the piecewise linear
instrumental variable model by the limited information maximum likelihood (LIML)
method, assuming the number of thresholds is known.

• The proposed piecewise linear instrumental variable model will degenerate to the
linear instrumental variable model if there are no thresholds. Therefore, it provides a
generalization to the linear instrumental variable model. To our best knowledge, this
is the first work on the piecewise linear extension to the traditional linear instrumental
variable models.

• We also study the theoretical properties of the PLIV model, including the consistency
and asymptotic normality of the estimators.

2. Piecewise Linear Instrumental Variable Model

Notations: we denote scalars by unbolded lowercase letters (e.g., sample size n and
the i-th observation of outcome variable yi), random variable by unbolded capital letter
(e.g., X), random vectors by boldface lowercase letters (e.g., xi and β), and matrices with
boldface capital letters (e.g., X ).

In the ordinary linear regression model yi = x>i β + εi, there is an assumption that the
explanatory variables are uncorrelated with the error term, i.e., cov(xi,εi) = 0. However,
there are some situations where the covariance between the explanatory variables and
error term exists. This leads to inconsistent estimation of ordinary least squares due to
the phenomenon of endogeneity in x. One way to deal with this issue is to introduce an
instrument variable, whose changes are related to changes in the explanatory variable but
do not lead to the change in the response variable directly.

Let (xi, yi, zi), i = 1, . . . , n, denotes the observed data for (X, Y, Z), where X is the
explanatory variable, Y is the response variable, and Z is the instrumental variable. To
estimate the subset causal effect and establish the piecewise linear relationship, for any
threshold parameter t ∈ R, we use a continuous threshold function which is defined as:

ϕ(xi, t) = (xi − t)I(xi > t) = (xi − t)+, (1)

where I(·) is an indicator function. ReLU function, commonly used as an activation
function in deep learning, is a special case with t = 0 such that ϕ(xi, 0) = (xi − 0)I(xi >
0) = (xi − 0)+.

The proposed model provides sparsity and computational efficiency compared to the
smoothing or approximation approach in the literature. The estimation stage involves
indicator functions but it does not require an approximation of the indicator function. Let
K and J denote the number of thresholds in Z and X, respectively. Denote c = (c1, . . . , cK)

T

as the vector of thresholds in Z and denote t = (t1, . . . , tJ)
T as the vector of thresholds in X.

We propose the following piecewise linear instrumental variable model:

xi = α0 + α1 ϕ(zi, c1) + · · ·+ αK ϕ(zi, cK) + αK+1zi + vi (2)

yi = β0 + β1 ϕ(xi, t1) + · · ·+ β J ϕ(xi, tJ) + β J+1xi + ui, (3)

where β = (β0, . . . , β J+1)
T is the vector of coefficients representing the causal effect of X on

Y; α = (α0, . . . , αK+1)
T is the vector of coefficients representing the instrumental effect of Z

on X; ui and vi are the error terms for the ith observation. In the context of causal inference,
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we interpret β as the causal effect of x on y. More specifically, for tj < x ≤ tj+1, 1 ≤ j ≤ J

with tJ+1 denoting the maximum value of x, one unit increase in x leads to β J+1 + ∑
j
j′=1 β j′

units change in y. Besides, β J+1 represents the change in y that is caused by one unit
increase in x for t0 < x ≤ t1 where t0 is the minimum value of x. To better understand this,
in Figure 1, we plot the function y = ϕ(x, 2)+ 3× ϕ(x, 3)+ 2x where β1 = 1, β2 = 3, β3 = 2
as an example. When 2 < x ≤ 3, the slope is β1 + β3 = 3. When 3 < x ≤ 4, the slope is
β1 + β2 + β3 = 6.

Figure 1. Plot of the function y = ϕ(x, 2) + 3× ϕ(x, 3) + 2x.

Here, we assume K and J are prespecified according to some prior knowledge or
theoretical justifications. Practically, we may use the Akaike information criterion (AIC) or
the Bayesian information criterion (BIC) [21] to select them. A more elegant examination
of the condition for the number of thresholds can be found in Newey [22]. In particular,
when α1 = · · · = αK = 0 and β1 = · · · = β J = 0, our proposed model degenerates to the
traditional linear instrumental variable model.

For instrumental variable analysis, an instrumental variable is correlated with the
explanatory variable but not correlated with the error term. In our model, (Z− c)+ = {(Z−
c1)

+, · · · , (Z− cK)
+} is the vector of instrumental variables with the following properties:

• Instrument relevance: cov{(Z− c)+, X} 6= 0: (Z− c)+ is correlated with the explana-
tory variable X.

• Instrument exogeneity: cov{(Z− c)+, U} = 0: (Z− c)+ is uncorrelated with the error
term U.

We assume K ≥ J for identifiability, i.e., the number of instruments should be larger
than or equal to the number of endogenous variables.

Remark 1. Note that intensive research about nonlinear instrumental variable models has been
conducted in the literature, such as the nonparametric instrumental regression [23–25]. We point
out that the target of our method is to quantitatively find the thresholds and estimate the subset
causal effects. We aim to generalize the traditional linear IV model and fit an interpretable model
rather than approximate the data by a nonlinear function.

To estimate the unknown parameters in (2) and (3), we utilize the two-stage least
square (2SLS) method and the limited information maximum likelihood (LIML) method.
Details about the proposed estimation methods are discussed below.
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3. Simultaneous Maximum Likelihood Estimation

We first introduce how the LIML method is used in our model and initialize the naive
estimators by the 2SLS method.

3.1. Limited Information Maximum Likelihood

As discussed in the introduction about the advantages, limited information maximum
likelihood is another popular approach for estimation in the instrumental variable models.
Here, we assume the error terms (U, V) are jointly normally distributed and correlated to
some extent due to the unmeasured confounding effect. Let 0 be the zero-mean vector and
ρ be the correlation of (U, V). Denote σ2

u and σ2
v as the variance of the error terms U and

V, respectively. Then the probability density function of the bivariate normal (U,V) can be
written as:

f (U, V) =
1

2πσuσv
√

1− ρ2
exp

[
− 1

2(1− ρ2)
Q(U, V)

]
,

where the quadratic form Q(U, V) = UTU
σ2

u
− 2ρUTV

σvσu
+ VTV

σ2
v

. For a single observation, the
log-likelihood is

`(ui, vi; θ) ∝ − log(σuσv)−
1
2

log(1− ρ2)− 1
2(1− ρ2)

(
u2

i
σ2

u
− 2ρuivi

σuσv
+

v2
i

σ2
v

)
,

where θ = (αT , βT , cT , tT , ρ, σu, σv)T denote all the model parameters and

vi = xi − α0 − α1 ϕ(zi, c1)− · · · − αK ϕ(zi, cK)− αK+1zi

ui = yi − β0 − β1 ϕ(xi, t1)− · · · − β J ϕ(xi, tJ)− β J+1xi.

To simplify notations, we let `(θ) = `(ui, vi; θ) denote the log-likelihood. The maxi-
mum likelihood estimates for θ is obtained by maximizing the log-likelihood within the
compact set Θ ⊂ RD(θ) such that θ̂n = arg maxθ∈Θ `n(θ), where `n(θ) = 1/n ∑n

i=1 `(θ).
However, there is no closed-form solution for θ, so we take the gradient-based algorithm
for estimation. This yields approximate M-estimators. To speed up estimation, we use the
two-stage least square method to initialize the estimators.

3.2. Initialization: Two-Stage Least Square

The traditional two-stage least squares method regresses the explanatory variable on
the instrumental variable and computes the predictions x̂ in the first stage. In the second
stage, it regresses the response variable on the predictions x̂. The causal effect of interest
is estimated from the second stage. In our method, we employ 2SLS to obtain the initial
values of the parameters of the piecewise linear instrumental variable model. Below we
describe the 2SLS procedures for initializations:

Stage 1: First, we regress x on {(z− c)+, z} and then obtain the fitted values x̂, where
(z− c)+ = {(z− c1)

+, · · · , (z− cK)
+}.

Stage 2: We regress y on {(x̂− t)+, x̂}, where (x̂− t)+ = {(x̂− t1)
+, · · · , (x̂− tJ)

+}.
Thus, in the second stage, we fit the following regression model:

yi = β0 + β1 ϕ(x̂i, t1) + · · ·+ β J ϕ(x̂i, tJ) + β J+1 x̂i + ui.

For each combination of the number of thresholds in X and Z, we could pick c, t and
the regression coefficients simultaneously through grid search when the sum of squared
errors (SSE) of Y is minimized. However, for J ≥ 2 or K ≥ 2, it is slightly computationally
expensive to conduct grid search. Since we only need 2SLS to provide the initialization
of the parameters in our method, we choose c to be a vector of the points that are evenly
spaced between the 5% to 95% quantiles of Z. Similarly, we choose t to be a vector of the
points that are evenly spaced between the 5% to 95% quantiles of X. We ignore points
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below and above the 5% to 95% quantiles in order to avoid boundary effects. The regression
coefficients are obtained accordingly.

3.3. Theoretical Analysis

Under mild conditions, we study the statistical properties of the proposed model and
establish the robust variance-covariance estimators for the estimated parameters under
the correctly specified and misspecified models, separately. To investigate the theoretical
properties, we consider the following regularity conditions:

• C1. Observations (Xi, Yi, Zi), i = 1, . . . , n are independently and identically distributed on
a compact set X ⊗Y ⊗Z ⊂ R1 ⊗R1 ⊗R1. Furthermore, E(‖X‖2) < ∞, E(‖Y‖2) < ∞,
and E(‖Z‖2) < ∞.

• C2. The explanatory variable X and the instrumental variable Z are continuous in the
parameter space, i.e., they have continuous probability density functions fX(·) and
fZ(·). The density functions are uniformly bounded, that is, there exist constants c1,
c2, c̄1, and c̄2 such that

c1 ≤ inf
Z∈Z

fZ(·) ≤ sup
Z∈Z

fZ(·) ≤ c̄1 and c2 ≤ inf
X∈X

fX(·) ≤ sup
X∈X

fX(·) ≤ c̄2.

Furthermore, the true value of the coefficients for the threshold effects satisfy α−0 6= 0
and β−0 6= 0, where α−0 = (α20, . . . , α(K−1)0) and β−0 = (β20, . . . , β(J−1)0).

• C3. `(θ) is upper-semicontinuous for almost all (X, Y, Z), that is, for every θ,

lim sup
θn→θ

`(X, Y, Z; θn) ≤ `(X, Y, Z; θ), a.s.

Remark 2. Condition C1 is commonly used in regression models. Condition C2 is used for esti-
mating the unknown thresholds and ensures the model is identifiable. The continuity requirements
of X and Z are used to estimate the thresholds. Condition C3 is used to establish the consistency
and the asymptotic normality of the maximum likelihood estimator.

In terms of estimation, we take the gradient-based method which depends on the first
order derivative ˙̀(θ) = ∂`(θ)/∂θ (details can be found in Appendix A) with the initialized
estimators by 2SLS. In this paper, we do not approximate the indicator function by the
logistic function as some researchers do (e.g., [18,26,27]). The gradient-based algorithm for
the ReLU function has shown success in the context of deep learning and machine learning.
Compared to the approximation techniques as discussed in Section 1, model estimation
with the ReLU function is computationally cheaper since no approximation of the indicator
function is required. In fact, as long as Condition C2 is satisfied which requires variables X
and Z to be continuous, the gradients composed of the indicator functions converge to a
continuous function of the threshold parameters as n→ ∞, for example,

1
n

n

∑
i=1

I(zi > ck)
P→ E{I(zi > ck)} = P(zi > ck),

for k = 1, . . . , K by the law of large numbers. Therefore, the second order derivative of
the ReLU function with respect to the thresholds can be derived based on the resulting
continuous probability function. More specifically, the second order derivative with respect
to ck is simply − fZ(ck).

To prove the asymptotic normality, we first need to show the consistency of the
proposed estimators.

Theorem 1. Under conditions C1–C4, assume that Θ is compact and the true parameter vector
θ0 = arg maxθ∈Θ E{`(θ)} is unique. Furthermore, for every sufficiently small ball B ⊂ Θ,

supθ∈B `(θ) is measurable with E supθ∈B `(θ) < ∞, then θ̂n
p→ θ0.
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Proof. The proof follows the Theorem 5.7 of van der Vaart [28]. For completeness, we
include it as Theorem A1 in Appendix B. To utilize Theorem 5.7, we need to check the con-
dition that `(θ̂n) ≥ `(θ0)− oP(1) for some θ0 ∈ Θ0. This is true since `n(θ) is continuous
in θ, `n(θ) converges to `(θ) uniformly, and θ̂n (approximately) maximizes `n(θ). Thus, all
the conditions are satisfied and the result follows.

Theorem 2. Under conditions C1–C4, let θ0 be the true value of θ. Let ˙̀(θ) be a measurable
function with E

[{ ˙̀(θ) ˙̀(θ)T}
(i,j)

]
< ∞ for i, j = 1, . . . , |θ|∗, where |θ|∗ denotes the number of

elements in θ, then √
n
(
θ̂n − θ0

) d→ N
(

0, V−1
θ0

Mθ0 V−1
θ0

)
,

where Mθ0 = E
{ ˙̀(θ0) ˙̀(θ0)

T} and ˙̀(θ0) is the first order derivative of `(θ) with respect to θ
evaluated at θ0 and Vθ0 is the second order derivative of E{`(θ)} with respect to θ evaluated at θ0
(derivations in Appendix A). Vθ has the form

Vθ = V(1)
θ + V(2)

θ = V(1)
θ +



0 0 V(2)
αc 0 0 0 0

0 0 V(2)
βt 0 0 0

V(2)
cc 0 0 0 0

V(2)
tt 0 0 0

0 0 0
0 0

sym. 0


,

where 0 denotes a zero vector or a zero matrix and 0 denotes a scalar. Details of V(1)
θ and V(2)

θ are
given in the Appendix A.

Proof. First, note that `(θ) is Lipschitz continuous in θ. Moreover, the fact that Vθ is
continuous in θ admits the Taylor expansion of EXYZ`(θ):

E(X,Y,Z)`(θ) = E(X,Y,Z)`(θ0) +
1
2
(θ− θ0)Vθ0(θ− θ0)

T + op

(
‖θ− θ0‖2

)
.

Since θ̂ is the maximum likelihood estimate of θ, 1
n ∑n

i=1 `(θ̂) ≥ supθ
1
n ∑n

i=1 `(θ)− oP(
1
n ).

Plus the result from Theorem 1 that θ̂n
p→ θ0, we conclude from Theorem 5.14 of van der

Vaart [28] that:
√

n
(
θ̂n − θ0

)
= −V−1

θ0

1√
n

n

∑
i=1

˙̀ i(θ0) + oP(1),

which implies an asymptotic normal distribution with mean 0 and variance-covariance
matrix V−1

θ0
Mθ0 V−1

θ0
.

For completeness, we include Theorem 5.14 of van der Vaart [28] (2000) as Theorem
A2 in Appendix B. When the model is correctly specified, Vθ0 = −Mθ0 , the asymptotic
variance is the inverse of Fisher information. Matrices Vθ0 and Mθ0 are estimated through
the replacement of θ0 by the MLE θ̂n. Thus, for the correctly specified model, the variance-
covariance matrix is estimated by the inverse of Mθ̂n

. For the misspecified model, the
variance-covariance matrix is estimated by V−1

θ̂n
Mθ̂n

V−1
θ̂n

. Let us define Vn as the second
derivative of `n(θ) with respect to θ, then we can decompose Vn the same way as Vθ into

two matrices V(1)
n and V(2)

n . Note that Vn is the empirical process of Vθ and Vn
p→ Vθ by the

law of large numbers, so we use the estimated probability densities f̂Z(ĉk) and f̂X(t̂j) for
fZ(ck) and fX(tj) for k = 1, . . . , K and j = 1, . . . , J, respectively.
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4. Simulation Studies

In this section, we evaluate the performance of the proposed model using simulated
datasets. We consider two scenarios with the same sample size n = 500. We let error terms
U and V be jointly normally distributed with mean 0 and correlation ρ ∈ {0.2, 0.5, 0.8}.
Here, we consider a common standard deviation σu = σv =

√
0.3. Besides, we simulate

the instrumental variable Z ∼ N(0, 1). The first scenario has one threshold in X and one
threshold in z, and it takes the following form:

xi = −1 + 0.5× (zi − 0.5)+ + zi + vi

yi = −0.2 + (xi − 0)+ + 0.5× xi + ui.

The true values of the parameters in PLIV models are α = (−1, 0.5, 1), β = (−0.2, 1, 0.5),
c = 0.5, and t = 0. The second scenario has two thresholds in x and two thresholds in z,
and it takes the following form:

xi = −1 + 0.5× (zi + 1)+ + (zi − 1)+ + zi + vi

yi = −1 + 1.2× (xi + 1)+ + (xi − 2)+ + 0.5× xi + ui.

The true parameters are α = (−1, 0.5, 1, 1), β = (−1, 1.2, 1, 0.5), c = (−1, 1), and t = (−1, 2).
We show the simulated piecewise linear instrumental variable models for scenario 1 and
scenario 2 in Figure 2. We replicate the simulation 1000 times to evaluate the finite sample
properties of the proposed model by the PLIV method.

Figure 2. Piecewise linear instrumental variable models with simulated data for scenario 1 and
scenario 2. The upper panel plots the simulated X versus Z, Y versus X for scenario 1, respectively.
The lower panel plots the simulated X versus Z, Y versus X for scenario 2, respectively.

Table 1 summarizes the biases, standard errors of θ̂ and coverage probabilities of θ by
the proposed PLIV method for scenario 1, where tse is the theoretical standard error and
ese is the empirical standard error. As we can see in the table, all the biases of θ̂ are close
to zero. We also find that the theoretical standard error and the empirical standard error
are close enough, which confirms the validity of our theoretical results in Section 3. The
results show that our model estimation is quite accurate and therefore provides unbiased
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and consistent estimators. Besides, we notice that the coverage probabilities are around
95% under different values of ρ. Moreover, biases and the standard errors decrease as we
increase ρ because the instrumental variables becomes stronger.

Table 1. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of θ̂, as
well as 95% coverage probabilities (cp) on θ for scenario 1.

ρ = 0.2 ρ = 0.5 ρ = 0.8

bias tse ese cp bias tse ese cp bias tse ese cp

α0 −19.25 41.25 45.80 937 −16.43 38.26 41.56 939 −9.10 32.08 33.78 940
α1 7.65 98.27 102.66 927 6.36 93.13 97.02 924 4.10 77.32 81.80 919
α2 −16.95 46.20 47.71 931 −14.79 42.82 43.64 933 −8.28 33.52 34.34 943
β0 −7.86 55.41 54.87 950 −6.88 52.37 52.74 944 −4.28 43.92 44.80 945
β1 0.48 80.58 77.07 955 −0.35 75.48 74.69 942 −0.58 60.37 62.50 940
β2 −4.35 34.57 34.06 947 −3.84 32.49 32.60 945 −2.38 26.21 26.57 933
c −95.15 178.21 247.82 839 −82.89 159.34 224.83 846 −46.25 113.96 165.49 864
t −14.88 97.77 108.77 922 −12.71 87.80 101.10 908 −6.76 62.69 71.68 908
ρ 2.82 48.99 47.54 951 2.67 37.91 36.81 947 1.62 17.70 17.22 941
σ2 −2.32 14.00 13.72 954 −1.85 15.65 15.40 953 −1.10 18.12 17.82 956

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

Table 2 summarizes the biases, standard errors of θ̂ and 95% coverage probabilities of
θ by the PLIV method for scenario 2, where tse is the theoretical standard error and ese is
the empirical standard error. We find the similar patterns as in Table 1 from scenario 1. For
instance, all the biases are small. Theoretical standard errors and the empirical standard
errors are close to each other. Most coverage probabilities are around 95% when ρ = 0.2
and ρ = 0.5. We also observe that the coverage probabilities of the thresholds are slightly
low when ρ = 0.8. The reason might be due to the high correlation between errors. With
multiple thresholds and high correlation, it poses challenges to estimate the exact locations.

Table 2. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of θ̂, as
well as 95% coverage probabilities (cp) on θ for scenario 2.

ρ = 0.2 ρ = 0.5 ρ = 0.8

bias tse ese cp bias tse ese cp bias tse ese cp

α0 −51.88 268.22 247.08 946 −38.92 232.37 226.53 939 −20.83 158.06 169.46 921
α1 29.20 176.58 157.46 966 24.67 157.87 143.26 965 13.44 110.56 107.65 949
α2 15.11 172.47 166.40 943 11.80 178.03 163.63 949 11.40 146.19 143.76 955
α3 −26.32 164.95 147.35 945 −19.39 144.98 135.53 931 −9.21 101.13 101.32 934
β0 −8.36 120.42 116.63 944 −8.23 111.05 108.00 950 −0.84 85.31 82.56 958
β1 6.61 71.82 71.49 947 6.57 66.84 66.57 948 3.39 52.07 52.12 950
β2 6.44 115.13 99.07 966 5.38 106.29 90.78 969 3.30 83.05 75.06 962
β3 −4.14 57.89 56.20 947 −4.33 53.69 52.40 950 −1.10 41.80 40.31 955
c1 −3.01 253.38 246.83 930 9.41 221.21 257.36 924 6.90 152.06 218.68 898
c2 2.15 120.17 138.80 913 5.07 139.96 140.17 901 9.10 84.42 134.44 880
t1 0.79 76.25 79.60 944 1.04 68.31 72.98 939 4.57 48.70 49.52 935
t2 18.65 168.54 189.81 926 17.60 149.74 174.54 911 16.26 104.90 158.56 922
ρ 2.87 47.44 45.58 950 3.40 36.81 35.35 953 2.14 17.37 16.77 948
σ2 −3.64 14.00 13.64 939 −2.99 15.55 15.21 946 −1.84 17.99 17.63 955

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

We include results with a sample size of 1000 in Appendix C, while fixing ρ = 0.5.
Overall, as n increases, we observe that both biases and standard errors drop.

5. Application

In this section, we revisit the Card’s education data [5]. We apply the proposed model
to study the causal effect of years of schooling on hourly wage in cents with father’s years
of schooling as the instrumental variable. The interest here is to find a threshold and study
the threshold effect of the years of schooling. It is generally believed that a child’s years
of schooling has a direct effect on the child’s wage and parents’ education only affects the
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child’s income by affecting the child’s education level. In other words, parents’ education
level has no direct effect on child’s wage. Therefore, the father’s years of schooling can be
treated as a valid instrumental variable.

In Card’s data, we remove the missing values and include a total of n = 2657 obser-
vations. The explanatory variable X (child’s years of education) is between 1 and 18 with
median 13, and the instrumental variable Z (father’s years of education) has minimum 0,
maximum 18, and median 12. Figure 3 indicates that variables X and Y are skewed and
have heavy tails so transformations are needed before the analysis. A log transformation is
applied to both.

Figure 3. Histogram plots of the raw data X, Y, and Z.

Table 3 shows the point estimate, standard error, and associated 95% confidence
interval of θ by the proposed model with K = 1 and J = 0, which are selected by BIC.
In the table, α1 and c are the coefficient and threshold for the transformed father’s years
of schooling, respectively. β1 is the causal effect of years of schooling on earnings. The
estimated causal effect of interest β̂1 is 0.87, which results in a difference of exp(0.87× a)
units increase in wage if there are a units increase in the log of years of schooling. In
economics, β̂1 is interpreted as “elasticity". That is, if years of education increases by 1%,
the person’s income will increase by 0.87% by our estimation. In terms of the instrumental
variable, we notice that the threshold c is estimated to be 7.86. The corresponding p-value
is not calculated since testing c = 0 is meaningless in this context. It shows that there exists
a threshold at around 8 in the father’s years of schooling. That is, the father’s years of
schooling only has a positive effect on the child’s years of schooling if father receives at
least 8 years of education. This information can not be observed if the traditional 2SLS
method or nonparametric approaches are applied to analyze the data. The threshold effect
as well as the thresholds are all statistically significant since their corresponding p-values
are far less than 0.05.

Table 3. Summary table of θ by the SML-PLIV model.

Parameter Estimate Std. Error z Value 95% C.I. p-Value

α0: intercept 2.25 0.013 168.8 (2.222, 2.274) ≈0
α1: (Z− c)+ −0.02 0.003 −4.8 (−0.023, −0.009) ≈0
α2: Z 0.04 0.003 14.3 (0.033, 0.043) ≈0
β0: intercept 4.04 0.217 18.6 (3.613, 4.464) ≈0
β1: log X 0.87 0.084 10.4 (0.705, 1.033) ≈0
c 7.86 0.939 8.4 (6.016, 9.696) -

6. Discussion, Limitations, and Future Research

In this paper, we propose a simultaneous maximum likelihood estimation for a piece-
wise linear instrumental variable model. We use the two-stage least square estimators as
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the initial values and the limited information maximum likelihood methods to estimate
the regression coefficients and the threshold parameters simultaneously. We also provide a
robust inference of the proposed model. The proposed model with the piecewise linear
functions allows us to find the thresholds for both the explanatory and the instrumental
variables, which generalizes the traditional linear instrumental variable models. In the sim-
ulation study, we evaluate the performance of the proposed model and find that it behaves
well in terms of the biases, standard errors, and coverage probabilities in different settings.

In our model, we include a single continuous explanatory variable and a single con-
tinuous instrumental variable. We assume the explanatory variable and the instrumental
variable are continuous. More complicated cases can be considered. For example, devel-
oping a piecewise linear model with count data might be interesting. However, finding
the optimal number of thresholds as well as the locations is challenging from the theo-
retical side. Furthermore, we assume the number of thresholds K and J are prespecified.
Treating the numbers of thresholds as random variables, finding the optimal values, and
investigating the theoretical properties can be future research.
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Appendix A. Derivation of the Information and Hessian Matrices

The likelihood to be minimized is

`θ =
1
n

n

∑
i=1

{
− log(σuσv)−

1
2

log(1− ρ2)− 1
2(1− ρ2)

(
u2

i
σ2

u
− 2ρuivi

σuσv
+

v2
i

σ2
v

)}
.

When the model is specified,

EXYZ`θ = − log(σuσv)−
1
2

log(1− ρ2)− 1
2(1− ρ2)

EXYZ

(
UTU

σ2
u
− 2ρUTV

σvσu
+

VTV
σ2

v

)
.

To write out the first order derivative ˙̀(θ) of `θ with respect to θ, we define the
following notations. ∂`θ/∂αc is the row concatenation of the first order derivative of `θ

with respect to α and c. ∂`θ/∂βt is the row concatenation of the first order derivative of `θ

with respect to β and t. For notation simplicity, we drop the subscription i. Let αI(z > c) =

https://github.com/hyunseungkang/ivmodel/tree/master/data
https://github.com/hyunseungkang/ivmodel/tree/master/data
https://github.com/shuoshuoliu/PLIV
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{α1 I(z > c1), . . . , αk I(z > cK)} and βI(x > t) = {β1 I(x > t1), . . . , β j I(x > tJ)}. Then we
can divide the first order derivative ˙̀(θ) as following

∂`θ
∂αc = 1

n ∑n
i=1

[
{1, (z− c)+, z,−αI(z > c)}T 1

(1−ρ2)
( v

σ2
v
− ρu

σuσv
)
]

∂`θ
∂βt = 1

n ∑n
i=1

[
{1, (x− t)+, x,−βI(x > t)}T 1

(1−ρ2)
( u

σ2
u
− ρv

σuσv
)
]

∂`θ
∂ρ = 1

n ∑n
i=1

[
ρ

1−ρ2 −
ρ

(1−ρ2)2

(
u2

σ2
u
− 2ρuv

σuσv
+ v2

σ2
v

)
+ uv

σvσu(1−ρ2)

]
∂`θ
∂σu

= u2

(1−ρ2)σ3
u
− ρuv

(1−ρ2)σvσ2
u
− 1

σu
∂`θ
∂σv

= v2

(1−ρ2)σ3
v
− ρuv

(1−ρ2)σuσ2
v
− 1

σv

. (A1)

The interchangeability of expectation and differentiation is satisfied here and it implies
∂EXYZ`(θ)/∂θ = EXYZ

{ ˙̀(θ)
}

. It is easy to check ∂EXYZ`θ/∂θ = 0 at θ0 as it should be.
We next derive the second order derivative Vθ of EXYZ`θ when the model is specified. We
partition the symmetric matrix Vθ as two symmetric matrices V1,θ and V2,θ such that

Vθ = V(1)
θ + V(2)

θ = V(1)
θ +



0 0 V(2)
αc 0 0 0 0

0 0 V(2)
βt 0 0 0

V(2)
cc 0 0 0 0

V(2)
tt 0 0 0

0 0 0
0 0

sym. 0


.

For the derivation of V(1)
θ , let zc = {1, (z− c)+, z} and xt = {1, (x− t)+, x}. Since the

matrix V(1)
θ is symmetric, we only need to derive the upper diagonal elements. The first row

of V(1)
θ is is the row concatenation of ∂2EXYZ`(θ)/∂α2, ∂2EXYZ`(θ)/∂α∂β, ∂2EXYZ`(θ)/

∂α∂c, ∂2EXYZ`(θ)/∂α∂t, ∂2EXYZ`(θ)/∂α∂ρ, ∂2EXYZ`(θ)/∂α∂σu, and ∂2EXYZ`(θ)/∂α∂σv,
such that

V(1)
1,θ = 1

(1−ρ2)
EXYZ

[
(zc)T

{
− zc

σ2
v

, ρxt
σvσu

, αI(z>c)
σ2

v
, −ρβI(x>t)

σvσu
, 2ρv

σ2
v (1−ρ2)

− u(1+ρ2)
(1−ρ2)σvσu

, ρu
σvσ2

u
, ρu

σ2
v σu
− 2v

σ3
v

}]
.

The second row of V(1)
θ is the row concatenation of ∂2EXYZ`(θ)/∂β2, ∂2EXYZ`(θ)/∂β∂c,

∂2EXYZ`(θ)/∂β∂t, ∂2EXYZ`(θ)/∂β∂ρ, ∂2EXYZ`(θ)/∂β∂σu, and ∂2EXYZ`(θ)/∂β∂σv such
that

V(1)
2,θ = 1

(1−ρ2)
EXYZ

[
(xt)T

{
− xt

σ2
u

,− ραI(z>c)
σuσv

, βI(x>t)
σ2

v
, 2ρu

σ2
u(1−ρ2)

− v(1+ρ2)
(1−ρ2)σvσu

, ρv
σ3

v
− 2u

σ3
u

, ρv
σuσ2

v

}]
.

The third row of V(1)
θ is the row concatenation of ∂2EXYZ`(θ)/∂c2, ∂2EXYZ`(θ)/∂c∂t,

∂2EXYZ`(θ)/∂c∂ρ, ∂2EXYZ`(θ)/∂c∂σu, and ∂2EXYZ`(θ)/∂c∂σv such that

V(1)
3,θ = 1

(1−ρ2)
EXYZ

[
{αI(z > c)}T

{
αI(z>c)

σvσu
, βI(x>t)

σ2
u

, v(ρ2+1)
σuσv(1−ρ2)

− 2ρv
σ2

v (1−ρ2)
,− ρu

σvσ2
u

, 2v
σ3

v
− ρu

σuσ2
v

}]
.

The fourth row of V(1)
θ is the row concatenation of ∂2EXYZ`(θ)/∂t2, ∂2EXYZ`(θ)/∂t∂ρ,

∂2EXYZ`(θ)/∂t∂σu, and ∂2EXYZ`(θ)/∂t∂σv such that

V(1)
4,θ = 1

(1−ρ2)
EXYZ

[
{βI(x > t)}T

{
− βI(x>t)

σ2
v

, v(1+ρ2)
σvσu(1−ρ2)

− 2ρu
(1−ρ2)σ2

u
, 2u

σ3
v
− ρv

σvσ2
u

,− ρv
σuσ2

v

}]
.

The remaining terms in V(1)
θ is given by

∂2EXYZ`(θ)/∂ρ2 =
1 + ρ2

(1− ρ2)2 −
4uvρ(ρ2 + 1)
σuσv(ρ2 − 1)3 +

2ρuv
σuσv(ρ2 − 1)2 ,



Entropy 2022, 24, 1235 13 of 15

∂2EXYZ`(θ)/∂ρ∂σu =
2ρu2

(1− ρ2)2σ3
u
− 2uvρ2

σ2
uσv(ρ2 − 1)2 −

uv
σ2

uσv(1− ρ2)
,

∂2EXYZ`(θ)/∂ρ∂σv =
2ρv2

(1− ρ2)2σ3
v
− 2uvρ2

σuσ2
v (ρ

2 − 1)2 −
uv

σuσ2
v (1− ρ2)

,

∂2EXYZ`(θ)/∂σ2
u =

2ρuv
(1− ρ2)σvσ3

u
− 3u2

σ4
u(1− ρ2)

+
1
σ2

u
,

∂2EXYZ`(θ)/∂σuσv =
ρuv

(1− ρ2)σ2
v σ2

u
,

∂2EXYZ`(θ)/∂σ2
v =

2ρuv
(1− ρ2)σuσ3

v
− 3v2

σ4
v (1− ρ2)

+
1
σ2

v
.

In terms of the matrix V(2)
θ , we decompose the following elements

V(2)
αc = EXYZ

 v
σ2

v (1−ρ2)
− ρu

σuσv(1−ρ2)
×


0 . . . . . . 0

−I(z > c1) 0 . . . 0
...

...
0 · · · · · · −I(z > cK)
0 . . . . . . 0



,

V(2)
βt = EXYZ

 u
σ2

u(1−ρ2)
− ρv

σuσv(1−ρ2)
×


0 . . . . . . 0

−I(x > t1) 0 . . . 0
...

...
0 · · · · · · −I(x > tJ)
0 . . . . . . 0



,

V(2)
cc = EXYZ

[
1

σuσv(1−ρ2)

]
×

−α1 fZ(c1) 0 . . . 0
...

...
0 . . . . . . −αK fZ(cK)

,

V(2)
tt = EXYZ

[
1

σ2
v (ρ2−1)

]
×

β1 fX(t1) 0 . . . 0
...

...
0 . . . . . . β J fX(tJ)

.

It is easy to check that when the model is correctly specified, V(2)
θ = 0 and

Vθ = −EXYZ
{ ˙̀(θ) ˙̀(θ)T}.

Appendix B. Theorems

Define P f as the expectation E f (X) =
∫

f dP and abbreviate the average n−1 ∑n
i=1 f (Xi)

to Pn f , an empirical distribution. Furthermore, we define

Mn(θ) = 1/n
n

∑
i=1

mθ(Xi) = Pnmθ and Ψn(θ) = 1/n
n

∑
i=1

ψθ(Xi) = Pnψθ .

Theorem A1 (Theorem 5.7 of van der Vaart [28]). Let Mn be random functions and let M be a
fixed function of θ such that for every ε > 0

sup
θ∈Θ
|Mn(θ)−M(θ)| P→ 0,

sup
θ:d(θ,θ0)≥ε

M(θ) < M(θ0).
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Then every sequence of estimators θ̂n with Mn(θ̂n) ≥ Mn(θ0)− oP(1) converges in probability to
θ0.

Theorem A2 (Theorem 5.14 of van der Vaart [28]). For each θ in an open subset of Euclidean
space, let θ 7→ ψθ(x) be twice continuously differentiable for every x. Suppose that Pψθ0 = 0, that
P‖ψθ0‖2 < ∞ and that the matrix Pψ̇θ0 exists and is nonsingular. Assume that the second-order
partial derivatives are dominated by a fixed integrable function ψ̈(x) for every θ in a neighborhood
of θ0. Then every consistent estimator sequence θ̂n such that Ψn(θ̂n) = 0 for every n satisfies

√
n
(
θ̂n − θ0

)
= −

(
Pψ̇θ0

)−1 1√
n

n

∑
i=1

ψθ0(Xi) + oP(1).

In particular, the sequence
√

n
(
θ̂n − θ0

)
is asymptotically normal with mean zero and covariance

matrix
(

Pψ̇θ0

)−1Pψθ0 ψT
θ0

(
Pψ̇θ0

)−1.

Appendix C. Additional Simulation Results

Table A1. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of θ̂,
as well as 95% coverage probabilities (cp) on θ for scenario 1 with sample size 1000.

ρ = 0.2 ρ = 0.5 ρ = 0.8

bias tse ese cp bias tse ese cp bias tse ese cp

α0 −8.30 27.04 29.78 928 −6.48 25.41 27.35 933 −3.28 22.00 22.78 942
α1 3.08 68.29 70.76 950 2.96 64.99 67.54 932 2.46 53.88 55.17 949
α2 −7.90 30.92 32.50 936 −6.05 28.90 30.11 938 −2.79 23.05 23.46 955
β0 −3.61 38.76 39.70 949 −2.80 36.66 37.62 938 −1.77 30.74 31.19 945
β1 −0.46 55.44 54.45 956 −0.18 52.00 51.80 948 0.65 41.79 42.11 939
β2 −1.21 24.18 24.78 938 −0.88 22.76 23.35 928 −0.43 18.38 18.42 949
c −41.08 123.92 167.07 873 −31.07 111.23 148.14 873 −12.70 79.47 98.09 886
t −7.63 68.18 76.36 919 −4.90 61.13 66.47 920 −1.50 43.69 46.31 935
ρ 1.08 34.23 34.63 948 1.08 26.53 26.77 948 0.72 12.41 12.49 946
σ2 −0.86 9.82 9.68 949 −0.64 10.96 10.75 949 −0.26 12.68 12.42 946

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

Table A2. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of θ̂,
as well as 95% coverage probabilities (cp) on θ for scenario 2 with sample size 1000.

ρ = 0.2 ρ = 0.5 ρ = 0.8

bias tse ese cp bias tse ese cp bias tse ese cp

α0 −25.84 176.86 168.03 943 −15.74 155.65 161.09 929 −7.23 104.42 114.68 927
α1 8.53 115.79 106.55 956 7.00 103.98 101.28 947 4.01 73.82 75.63 944
α2 8.49 112.53 105.08 964 5.55 108.98 107.91 958 3.31 98.38 93.69 957
α3 −11.29 108.14 99.84 951 −5.51 95.98 95.87 934 −1.84 67.37 71.38 935
β0 −2.87 83.31 84.73 942 −2.03 77.04 78.41 945 −1.09 59.84 62.78 929
β1 3.86 49.69 50.23 945 2.72 46.32 46.96 942 2.34 36.27 37.33 941
β2 5.77 72.64 67.82 960 3.88 67.56 63.16 963 2.32 53.65 52.82 939
β3 −0.69 39.92 40.14 940 -0.48 37.14 37.55 943 −0.11 29.14 31.00 944
c1 −16.09 171.89 185.99 923 0.96 152.10 212.49 907 2.67 103.26 158.39 891
c2 −2.69 81.76 95.51 912 4.37 75.10 125.84 903 7.86 56.60 131.88 894
t1 2.18 53.28 57.74 933 2.08 47.82 52.28 921 2.33 34.17 38.55 921
t2 20.13 111.57 136.46 925 13.61 99.30 108.45 930 13.30 70.22 85.85 927
ρ 1.21 32.96 33.18 953 1.52 25.63 25.73 950 0.93 12.14 12.31 942
σ2 −1.41 9.81 9.64 948 −1.17 10.88 10.59 951 −0.58 12.57 12.27 948

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.
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