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Abstract: Analysis of instrumental variables is an effective approach to dealing with endogenous
variables and unmeasured confounding issue in causal inference. We propose using the piecewise
linear model to fit the relationship between the continuous instrumental variable and the continuous
explanatory variable, as well as the relationship between the continuous explanatory variable and
the outcome variable, which generalizes the traditional linear instrumental variable models. The
two-stage least square and limited information maximum likelihood methods are used for the
simultaneous estimation of the regression coefficients and the threshold parameters. Furthermore,
we study the limiting distribution of the estimators in the correctly specified and misspecified models
and provide a robust estimation of the variance-covariance matrix. We illustrate the finite sample
properties of the estimation in terms of the Monte Carlo biases, standard errors, and coverage
probabilities via the simulated data. Our proposed model is applied to an education-salary data,
which investigates the causal effect of children’s years of schooling on estimated hourly wage with
father’s years of schooling as the instrumental variable.

Keywords: causal inference; instrumental variables; piecewise linear; thresholds model

1. Introduction

In observational studies, the measured confounders can be controlled by a variety of
methods such as propensity score based matching and regression adjustment. However,
when the confounding variable is unmeasured, the traditional causal inference methods
usually lead to biased estimators since changes in the unmeasured confounder will lead to
changes in the explanatory variable, both of which will result in changes in the response
variable. Failing to adjust such a confounder will lead to spurious association between the
explanatory variable and the outcome. Analysis of instrumental variables (IV) has gained
popularity in causal inference, such as investigating causal graphical structures [1,2] and
controlling for unmeasured confounding [3,4]. An instrument is a variable that is correlated
with the explanatory variable but not associated with any unmeasured confounders. In
addition, the instrumental variable is supposed to have influence on the response variable
only through the explanatory variable, i.e., there is no direct effect of this variable on the
response. Instrumental variable analysis can be applied to many areas and disciplines, such
as economics and epidemiology. For example, causality between the years of schooling
and earnings in economics has been studied in the literature [5]. This example exploits
the college proximity as the instrumental variable because it is revealed that those living
near college or university usually have significantly higher level of education than others.
On the other hand, it is believed that college proximity may improve earnings only by
increasing the subject’s years of schooling. Both indicate that college proximity is a useful
instrumental variable. In biomedical and epidemiological research, the main interest is to
investigate the causal effect of an exposure variable on a certain disease outcome. A gene
can be assumed as a good instrument if it is closely linked to the exposure but has no direct
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effect on the disease [6]. The study of genetic variants as instrumental variables is known as
Mendelian randomization, which is discussed extensively in the literature (e.g., [7,8]). For
instance, a set of 32 recently identified genetic variants are used as instrumental variables to
study whether child fat mass causally affects academic achievement and blood pressure [9].

1.1. Related Work

Since the development of instrumental variables, a plenty of instrumental variable
estimation methods have been proposed for the causal effect estimation. Two-stage least
squares (2SLS) [10] is one of the most commonly used methods for the instrumental variable
estimation. Theoretical analyses such as consistency and asymptotic normality also exist
in the literature. When the response variable is binary, the second stage can be modified
with logistic regression in mendelian randomization studies [11]. Another method is
the likelihood-based method, particularly the limited information maximum likelihood
(LIML) [12]. It is proved that the LIML method is more effective in dealing with the weak
instruments [13]. The phenomenon of weak instruments occurs when the correlation
between the instrument(s) and the explanatory variable is close to zero. When there are
weak instruments, 25LS is generally unstable and the causal effect estimators are badly
biased. The typical rule of thumb to detect weak instruments is the F-statistic, which states
that an instrument may be weak if the first-stage F-statistic is less than 10 [14].

Most of the IV approaches impose linear assumptions among the instrument, explana-
tory and response variables. However, this is not always the case. For example, a subject’s
years of schooling may only have a positive effect on subsequent earnings if the subject
obtained at least a high-school degree. There would be no difference in the earnings if the
subject obtained either an elementary or middle school degree. In this hypothetical sce-
nario, a linear regression model between the explanatory and response variables is clearly
misspecified. When the null hypothesis of linearity relationship is rejected, one strategy
could be to develop piecewise linear models, which is more interpretable compared to the
completely nonlinear models.

In this paper, we propose a piecewise linear instrumental variable (PLIV) model for
estimating the causal effect via a continuous threshold function. The continuous threshold
function assumes that both the explanatory variable and the instrumental variable are
continuous. Instrumental variable models with continuous variables have been studied
extensively in the literature. For example, continuous instruments have been used in
the classical IV models, developed in a structural equation modeling framework [15]. A
recent paper proposes semiparametric doubly robust estimators of causal effects with the
continuous instruments [16]. Moreover, some discussions about continuous exposure and
a continuous response for Mendelian randomization can be found in a review paper [8] .

A threshold in a variable occurs when there is a sudden change in the values of this
variable. We call the point where the change happens as a cut-off point or a threshold.
The subset causal effect exists when there is a threshold in the explanatory variable. The
proposed PLIV model is useful because it can study the subset causal effect when the true
model is not linear and it can also degenerate to a linear instrumental variable model when
the relationship among the variables is indeed linear. In other words, by using piecewise
linear functions, we can quantitatively find the subset effects of the explanatory and the
instrumental variables.

We use the Rectified Linear Unit (ReLU) function, mathematically defined in Equa-
tion (1), to incorporate the piecewise relationships. Utilization of ReLU function for defining
the subset effects have been studied in the literature, such as a regression kink model that
tests the presence of the threshold [17] and the segmented and hinge models to study the
subset effects in logistic regression [18]. Besides, the continuous threshold models via the
ReLU function with two-way interactions is considered in the Cox’s proportional hazards
model, where the asymptotic normality under mild conditions is established [19]. In this
paper, we use a continuous threshold function with multiple thresholds to formulate the
piecewise linear instrumental variable models. A similar study of the piecewise linear
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instrumental variable model through the random slope approach is studied in the litera-
ture [20]. It divides the data into a few segments and analyzes the data in each segment
individually. However, this method suffers from huge efficiency and accuracy loss.

1.2. Contribution of This Article

In this paper, we consider a piecewise linear model when the linearity assumption of
the data is inappropriate and provide a rigorous treatment of the statistical properties of
the model. Our contributions can be summarized as follows.

¢  We simultaneously estimate the coefficients and thresholds of the piecewise linear
instrumental variable model by the limited information maximum likelihood (LIML)
method, assuming the number of thresholds is known.

¢  The proposed piecewise linear instrumental variable model will degenerate to the
linear instrumental variable model if there are no thresholds. Therefore, it provides a
generalization to the linear instrumental variable model. To our best knowledge, this
is the first work on the piecewise linear extension to the traditional linear instrumental
variable models.

*  We also study the theoretical properties of the PLIV model, including the consistency
and asymptotic normality of the estimators.

2. Piecewise Linear Instrumental Variable Model

Notations: we denote scalars by unbolded lowercase letters (e.g., sample size n and
the i-th observation of outcome variable y;), random variable by unbolded capital letter
(e.g., X), random vectors by boldface lowercase letters (e.g., x; and B), and matrices with
boldface capital letters (e.g., X ).

In the ordinary linear regression model y; = x; B + ¢;, there is an assumption that the
explanatory variables are uncorrelated with the error term, i.e., cov(x;,€;) = 0. However,
there are some situations where the covariance between the explanatory variables and
error term exists. This leads to inconsistent estimation of ordinary least squares due to
the phenomenon of endogeneity in x. One way to deal with this issue is to introduce an
instrument variable, whose changes are related to changes in the explanatory variable but
do not lead to the change in the response variable directly.

Let (x,v;,2i),i = 1,...,n, denotes the observed data for (X,Y,Z), where X is the
explanatory variable, Y is the response variable, and Z is the instrumental variable. To
estimate the subset causal effect and establish the piecewise linear relationship, for any
threshold parameter t € R, we use a continuous threshold function which is defined as:

p(xi,t) = (x; =) I(x; > t) = (x; — 1), 1)

where I(-) is an indicator function. ReLU function, commonly used as an activation
function in deep learning, is a special case with t = 0 such that ¢(x;,0) = (x; — 0)I(x; >
0)=(x;—0)".

The proposed model provides sparsity and computational efficiency compared to the
smoothing or approximation approach in the literature. The estimation stage involves
indicator functions but it does not require an approximation of the indicator function. Let
K and | denote the number of thresholds in Z and X, respectively. Denote ¢ = (cy, ..., ¢ K)T
as the vector of thresholds in Z and denote t = (#4,...,¢t ])T as the vector of thresholds in X.
We propose the following piecewise linear instrumental variable model:

X; = &g + zxup(zi, C]) +-+ CKKQD(ZZ', CK) + ag4+12; +0; 2)

yi = Bo+ Prp(xi, t1) + -+ Bro(xi ty) + Br1xi +uj, 3)

where B = (Bo, ..., Bj+1)T is the vector of coefficients representing the causal effect of X on
Y; e = (ag,...,« k+1) T is the vector of coefficients representing the instrumental effect of Z
on X; u; and v; are the error terms for the ith observation. In the context of causal inference,
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we interpret B as the causal effect of x on y. More specifically, for t; <x <t;;1,1 <j <]

with t;, 1 denoting the maximum value of x, one unit increase in x leads to ;1 + Z;-,:l Bjr
units change in y. Besides, ;1 represents the change in y that is caused by one unit
increase in x for tg < x < t; where tj is the minimum value of x. To better understand this,
in Figure 1, we plot the functiony = ¢(x,2) +3 x ¢(x,3) +2x where 1 =1, = 3,3 =2
as an example. When 2 < x < 3, the slope is 1 + 83 = 3. When 3 < x < 4, the slope is
Prtp2tps =6

7
4

/
i 2

Figure 1. Plot of the function y = ¢(x,2) + 3 x ¢(x,3) + 2x.

3 4
x

Here, we assume K and | are prespecified according to some prior knowledge or
theoretical justifications. Practically, we may use the Akaike information criterion (AIC) or
the Bayesian information criterion (BIC) [21] to select them. A more elegant examination
of the condition for the number of thresholds can be found in Newey [22]. In particular,
whena; = --- = ag =0and By = --- = Bj = 0, our proposed model degenerates to the
traditional linear instrumental variable model.

For instrumental variable analysis, an instrumental variable is correlated with the
explanatory variable but not correlated with the error term. In our model, (Z —¢)™ = {(Z —
c1), -+, (Z —cx) ™} is the vector of instrumental variables with the following properties:

e Instrument relevance: cov{(Z —¢)", X} # 0: (Z — ¢)™ is correlated with the explana-
tory variable X.

e Instrument exogeneity: cov{(Z —¢)", U} = 0: (Z — ¢)™ is uncorrelated with the error
term U.

We assume K > ] for identifiability, i.e., the number of instruments should be larger
than or equal to the number of endogenous variables.

Remark 1. Note that intensive research about nonlinear instrumental variable models has been
conducted in the literature, such as the nonparametric instrumental regression [23-25]. We point
out that the target of our method is to quantitatively find the thresholds and estimate the subset
causal effects. We aim to generalize the traditional linear IV model and fit an interpretable model
rather than approximate the data by a nonlinear function.

To estimate the unknown parameters in (2) and (3), we utilize the two-stage least
square (25LS) method and the limited information maximum likelihood (LIML) method.
Details about the proposed estimation methods are discussed below.
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3. Simultaneous Maximum Likelihood Estimation

We first introduce how the LIML method is used in our model and initialize the naive
estimators by the 2SLS method.

3.1. Limited Information Maximum Likelihood

As discussed in the introduction about the advantages, limited information maximum
likelihood is another popular approach for estimation in the instrumental variable models.
Here, we assume the error terms (U, V) are jointly normally distributed and correlated to
some extent due to the unmeasured confounding effect. Let 0 be the zero-mean vector and
p be the correlation of (U, V). Denote ¢ and 02 as the variance of the error terms U and
V, respectively. Then the probability density function of the bivariate normal (U,V) can be

written as: . .
fU,V) = ———————exp {—MQ(U, V)} ,

270,091/ 1 — p?

. T T T . .
where the quadratic form Q(U, V) = % — 2‘;21%‘/ + VUZV. For a single observation, the

log-likelihood is

u?

0iB) o — el ) (M 20w U
0(u;,v;;0) < —log(0y,00) 2log(l ) 20 =7 (‘7124 0 +0’5 ,

where 0 = (aT, BT, cT,tT, 0,04, 0,)T denote all the model parameters and
% P
v; = x; —ag — a1(zj,01) — -+ — axP(zi, CK) — AK41Zi

up =yi — Po— Pro(xi, t1) — - — Bro(xi, ty) — B1xi-

To simplify notations, we let £(0) = ¢(u;,v;; 0) denote the log-likelihood. The maxi-
mum likelihood estimates for 6 is obtained by maximizing the log-likelihood within the
compact set ® C RP®) such that 6, = argmaxg.g ¢n(0), where £,(0) = 1/nY"  £(0).
However, there is no closed-form solution for 8, so we take the gradient-based algorithm
for estimation. This yields approximate M-estimators. To speed up estimation, we use the
two-stage least square method to initialize the estimators.

3.2. Initialization: Two-Stage Least Square

The traditional two-stage least squares method regresses the explanatory variable on
the instrumental variable and computes the predictions £ in the first stage. In the second
stage, it regresses the response variable on the predictions £. The causal effect of interest
is estimated from the second stage. In our method, we employ 2SLS to obtain the initial
values of the parameters of the piecewise linear instrumental variable model. Below we
describe the 2SLS procedures for initializations:

Stage 1: First, we regress x on {(z — ¢)*, z} and then obtain the fitted values £, where
=0 ={(z—c)",--+, z—c)"}.

Stage 2: We regress y on { (£ — )", £}, where (£ — )" = {(* —t1)",--- , (8 —t))T}.
Thus, in the second stage, we fit the following regression model:

yi = Bo+ Bro(Xi t1) + -+ Bro(Xi, ty) + Brpaki + uj

For each combination of the number of thresholds in X and Z, we could pick ¢, t and
the regression coefficients simultaneously through grid search when the sum of squared
errors (SSE) of Y is minimized. However, for | > 2 or K > 2, it is slightly computationally
expensive to conduct grid search. Since we only need 25LS to provide the initialization
of the parameters in our method, we choose ¢ to be a vector of the points that are evenly
spaced between the 5% to 95% quantiles of Z. Similarly, we choose t to be a vector of the
points that are evenly spaced between the 5% to 95% quantiles of X. We ignore points
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below and above the 5% to 95% quantiles in order to avoid boundary effects. The regression
coefficients are obtained accordingly.

3.3. Theoretical Analysis

Under mild conditions, we study the statistical properties of the proposed model and
establish the robust variance-covariance estimators for the estimated parameters under
the correctly specified and misspecified models, separately. To investigate the theoretical
properties, we consider the following regularity conditions:

e Cl. Observations (X;, Y;, Z;),i = 1,...,n are independently and identically distributed on
acompactset ¥ ® Y ® Z C R! ® R! ® R. Furthermore, E(|| X||?) < oo, E(||Y||?) <

and E(||Z]|?) < o0
* (2. The explanatory variable X and the instrumental variable Z are continuous in the

parameter space, i.e., they have continuous probability density functions fx(-) and

fz(+). The density functions are uniformly bounded, that is, there exist constants ¢y,
¢y, €1, and &, such that

¢ < Zlggfz( ) < ;‘;ng(') <¢ and ¢ < Xigg(fx(-) < ilelgfx(-) <c

Furthermore, the true value of the coefficients for the threshold effects satisfy a; # 0
and B, # 0, where ay = (a2, ..., &(x_1)0) and By = (B20,---, B(j-1)0)-
e (3. /(0) is upper-semicontinuous for almost all (X, Y, Z), that is, for every 6,

limsup¢(X,Y,Z;6,) < {(X,Y,Z;0), as.
6,—06

Remark 2. Condition C1 is commonly used in regression models. Condition C2 is used for esti-
mating the unknown thresholds and ensures the model is identifiable. The continuity requirements
of X and Z are used to estimate the thresholds. Condition C3 is used to establish the consistency
and the asymptotic normality of the maximum likelihood estimator.

In terms of estimation, we take the gradient-based method which depends on the first
order derivative /(0) = 9/(8) /90 (details can be found in Appendix A) with the initialized
estimators by 2SLS. In this paper, we do not approximate the indicator function by the
logistic function as some researchers do (e.g., [18,26,27]). The gradient-based algorithm for
the ReLU function has shown success in the context of deep learning and machine learning.
Compared to the approximation techniques as discussed in Section 1, model estimation
with the ReLU function is computationally cheaper since no approximation of the indicator
function is required. In fact, as long as Condition C2 is satisfied which requires variables X
and Z to be continuous, the gradients composed of the indicator functions converge to a
continuous function of the threshold parameters as n — oo, for example,

1 n
- Y I(zi > ) EA E{I(z; > cx)} = P(z; > c}),
i=1

fork = 1,...,K by the law of large numbers. Therefore, the second order derivative of
the ReLU function with respect to the thresholds can be derived based on the resulting
continuous probability function. More specifically, the second order derivative with respect
to ¢ is simply —fz(ck).

To prove the asymptotic normality, we first need to show the consistency of the
proposed estimators.

Theorem 1. Under conditions C1-C4, assume that © is compact and the true parameter vector
6 = argmaxy.g E{((0)} is unique. Furthermore, for every sufficiently small ball B C O,

SUPgcR £(0) is measurable with E SUPgcR £(0) < oo, then 0, LA 6.
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Proof. The proof follows the Theorem 5.7 of van der Vaart [28]. For completeness, we
include it as Theorem Al in Appendix B. To utilize Theorem 5.7, we need to check the con-
dition that £(8,) > £(8g) — op(1) for some 8y € @. This is true since ¢, () is continuous
in 8, £,(0) converges to £(8) uniformly, and 8,, (approximately) maximizes £, (8). Thus, all
the conditions are satisfied and the result follows. [

Theorem 2. Under conditions C1-C4, let 8 be the true value of 8. Let £(0) be a measurable
function with E [{@(B)E(B)T}(i,j)} < oofori,j=1,...,|0|., where |0|. denotes the number of
elements in 0, then

Vi (8, — 80) % N (0, V5 M, V),

where Mg, = E{2(00)0(60)T} and £(8y) is the first order derivative of £(8) with respect to 6
evaluated at 0y and Vy, is the second order derivative of E{£(0)} with respect to 0 evaluated at 6
(derivations in Appendix A). Vg has the form

2)

o ov® 0o 00 0

0o 0 Vi ooo

v® 0 00 0

_ 1) (2) _ /(1) ce

VB_VQ +V6 _VB + Vt(tZ) 0 0 0 4

000

00

sym. 0

where 0 denotes a zero vector or a zero matrix and 0 denotes a scalar. Details of Ve(l) and VB(Z) are
given in the Appendix A.

Proof. First, note that £(0) is Lipschitz continuous in 6. Moreover, the fact that Vp is
continuous in 6 admits the Taylor expansion of Exyz¢(0):

1
E(x,v,2)0(0) = E(x,y,2)!(60) + 5 (6 — 60) Vi, (6 — 00)" +0p (||9 - 6o||2)-

Since @ is the maximum likelihood estimate of 8, 1 Y, £(8) > sup, 2 Y1, £(8) — op(1).

Plus the result from Theorem 1 that 8, L 6y, we conclude from Theorem 5.14 of van der
Vaart [28] that:

Vi (B = 60) = Ve, = Y- u60) + 0n(1),
i=1

which implies an asymptotic normal distribution with mean 0 and variance-covariance
matrix V, 'Mp,V, '. O
0 0

For completeness, we include Theorem 5.14 of van der Vaart [28] (2000) as Theorem
A2 in Appendix B. When the model is correctly specified, Vg, = —Mp,, the asymptotic
variance is the inverse of Fisher information. Matrices Vg, and My, are estimated through
the replacement of 6y by the MLE 0,.. Thus, for the correctly specified model, the variance-
covariance matrix is estimated by the inverse of My . For the misspecified model, the

variance-covariance matrix is estimated by V- lMén Vé_l. Let us define V}, as the second
derivative of ¢,,(0) with respect to 6, then we can decompose V,, the same way as Vp into

two matrices V,gl) and V,Sz). Note that V}, is the empirical process of Vg and V,, LA by the
law of large numbers, so we use the estimated probability densities f7(¢) and fx (f;) for

7(cx) and fx(t;) fork=1,...,Kandj=1,...,], respectively.
j J p Yy
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4. Simulation Studies

In this section, we evaluate the performance of the proposed model using simulated
datasets. We consider two scenarios with the same sample size n = 500. We let error terms
U and V be jointly normally distributed with mean 0 and correlation p € {0.2,0.5,0.8}.
Here, we consider a common standard deviation ¢, = ¢, = v/0.3. Besides, we simulate
the instrumental variable Z ~ N(0, 1). The first scenario has one threshold in X and one
threshold in z, and it takes the following form:

xj=—1+05x (z; —05)" +z; +v;
yi=—02+ (x; —0)" +0.5 x x; + u;.

The true values of the parameters in PLIV models are « = (—1,0.5,1), B = (—0.2,1,0.5),
¢ = 0.5, and t = 0. The second scenario has two thresholds in x and two thresholds in z,
and it takes the following form:

xi=-14+05x(zi+ )"+ (z;—1)" +z; +v;
yi=-14+12x (xl-+1)++(xi—2)+—0—0.5xxl-—i—ui.

The true parametersarea = (—1,0.5,1,1), = (-1,1.2,1,05),c = (—1,1),and t = (—1,2).
We show the simulated piecewise linear instrumental variable models for scenario 1 and
scenario 2 in Figure 2. We replicate the simulation 1000 times to evaluate the finite sample
properties of the proposed model by the PLIV method.

0.0-

25-

25-
0.0-

25-

z X

Figure 2. Piecewise linear instrumental variable models with simulated data for scenario 1 and
scenario 2. The upper panel plots the simulated X versus Z, Y versus X for scenario 1, respectively.
The lower panel plots the simulated X versus Z, Y versus X for scenario 2, respectively.

Table 1 summarizes the biases, standard errors of § and coverage probabilities of 8 by
the proposed PLIV method for scenario 1, where tse is the theoretical standard error and
ese is the empirical standard error. As we can see in the table, all the biases of  are close
to zero. We also find that the theoretical standard error and the empirical standard error
are close enough, which confirms the validity of our theoretical results in Section 3. The
results show that our model estimation is quite accurate and therefore provides unbiased
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and consistent estimators. Besides, we notice that the coverage probabilities are around
95% under different values of p. Moreover, biases and the standard errors decrease as we
increase p because the instrumental variables becomes stronger.

Table 1. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of 6, as
well as 95% coverage probabilities (cp) on 0 for scenario 1.

p=02 p=205 p =08

bias tse ese  cp bias tse ese cp bias tse ese  cp

ag —1925 4125 4580 937 -—-16.43 3826 4156 939 —-910 3208 33.78 940
o 765 9827 102.66 927 636 9313 97.02 924 410 7732 8180 919
ap —1695 4620 4771 931 —-1479 4282 43.64 933 828 3352 3434 943
Bo —7.86 5541 5487 950 —6.88 5237 5274 944 428 4392 4480 945
B1 048 80.58 77.07 955 035 7548 7469 942 058 6037 6250 940
B2 —435 3457 3406 947 384 3249 3260 945 238 2621 2657 933
c —95.15 17821 247.82 839 —82.89 159.34 22483 846 —46.25 11396 16549 864
t —-14.88 9777 108.77 922 1271 8780 101.10 908 —6.76 62.69 71.68 908
0 2.82 4899 4754 951 267 3791 36.81 947 1.62 1770 1722 941
o? —232 1400 1372 954 185 1565 1540 953 110 1812 17.82 956

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

Table 2 summarizes the biases, standard errors of § and 95% coverage probabilities of
0 by the PLIV method for scenario 2, where tse is the theoretical standard error and ese is
the empirical standard error. We find the similar patterns as in Table 1 from scenario 1. For
instance, all the biases are small. Theoretical standard errors and the empirical standard
errors are close to each other. Most coverage probabilities are around 95% when p = 0.2
and p = 0.5. We also observe that the coverage probabilities of the thresholds are slightly
low when p = 0.8. The reason might be due to the high correlation between errors. With
multiple thresholds and high correlation, it poses challenges to estimate the exact locations.

Table 2. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of 0, as
well as 95% coverage probabilities (cp) on 0 for scenario 2.

p=02 p=05 p=08

bias tse ese  cp bias tse ese ¢cp bias tse ese  Cp

ag —51.88 26822 247.08 946 —38.92 23237 22653 939 —20.83 158.06 169.46 921
ay 2920 176.58 157.46 966 24.67 157.87 143.26 965 1344 11056 107.65 949
1i%3 1511 17247 16640 943 11.80 178.03 163.63 949 1140 146.19 14376 955
a3 —2632 16495 14735 945 —-1939 14498 135,53 931 —-9.21 101.13 101.32 934
Bo —836 12042 11663 944 —823 111.05 108.00 950 —0.84 8531 8256 958
B1 6.61 7182 7149 947 6.57 66.84 66.57 948 339 5207 5212 950
B2 6.44 11513 99.07 966 538 10629  90.78 969 330 83.05 75.06 962
Bz —414 5789 5620 947 —433 5369 5240 950 —1.10 41.80 4031 955

c1 —3.01 253.38 246.83 930 9.41 22121 25736 924 690 152.06 218.68 898
c2 215 120.17 138.80 913 507 13996 140.17 901 910 8442 13444 880
t 079 7625 79.60 944 1.04 6831 7298 939 457 4870 4952 935
tr 18.65 168.54 189.81 926 17.60 149.74 17454 0911 16.26 10490 158.56 922
0 287 4744 4558 950 340 3681 3535 953 214 1737 1677 948

o2 —3.64 1400 13.64 939 —299 1555 1521 946 —1.84 1799 1763 955
Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

We include results with a sample size of 1000 in Appendix C, while fixing p = 0.5.
Overall, as n increases, we observe that both biases and standard errors drop.

5. Application

In this section, we revisit the Card’s education data [5]. We apply the proposed model
to study the causal effect of years of schooling on hourly wage in cents with father’s years
of schooling as the instrumental variable. The interest here is to find a threshold and study
the threshold effect of the years of schooling. It is generally believed that a child’s years
of schooling has a direct effect on the child’s wage and parents” education only affects the
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child’s income by affecting the child’s education level. In other words, parents” education
level has no direct effect on child’s wage. Therefore, the father’s years of schooling can be
treated as a valid instrumental variable.

In Card’s data, we remove the missing values and include a total of n = 2657 obser-
vations. The explanatory variable X (child’s years of education) is between 1 and 18 with
median 13, and the instrumental variable Z (father’s years of education) has minimum 0,
maximum 18, and median 12. Figure 3 indicates that variables X and Y are skewed and
have heavy tails so transformations are needed before the analysis. A log transformation is
applied to both.

1000 - = =

750
300 -

400 -

count
@
8
8

count

count

200~
250-

. Imnmlﬂ I ) g_wmﬂlmHﬂﬂJLH

0 5 10 15 0 500 1000 1500 2000 2500 0 5 10
Y z

Figure 3. Histogram plots of the raw data X, Y, and Z.

Table 3 shows the point estimate, standard error, and associated 95% confidence
interval of 0 by the proposed model with K = 1 and | = 0, which are selected by BIC.
In the table, a1 and c are the coefficient and threshold for the transformed father’s years
of schooling, respectively. B is the causal effect of years of schooling on earnings. The
estimated causal effect of interest B is 0.87, which results in a difference of exp(0.87 x a)
units increase in wage if there are a units increase in the log of years of schooling. In
economics, f3; is interpreted as “elasticity". That is, if years of education increases by 1%,
the person’s income will increase by 0.87% by our estimation. In terms of the instrumental
variable, we notice that the threshold c is estimated to be 7.86. The corresponding p-value
is not calculated since testing ¢ = 0 is meaningless in this context. It shows that there exists
a threshold at around 8 in the father’s years of schooling. That is, the father’s years of
schooling only has a positive effect on the child’s years of schooling if father receives at
least 8 years of education. This information can not be observed if the traditional 25LS
method or nonparametric approaches are applied to analyze the data. The threshold effect
as well as the thresholds are all statistically significant since their corresponding p-values
are far less than 0.05.

Table 3. Summary table of 8 by the SML-PLIV model.

Parameter Estimate Std. Error z Value 95% C.I. p-Value
xq: intercept 2.25 0.013 168.8 (2.222,2.274) ~

ar: (Z—c)* —0.02 0.003 —4.8 (—0.023, —0.009) ~0
w: Z 0.04 0.003 14.3 (0.033, 0.043) R~

Bo: intercept 4.04 0.217 18.6 (3.613, 4.464) ~
B1:log X 0.87 0.084 10.4 (0.705, 1.033) ~

c 7.86 0.939 8.4 (6.016, 9.696) -

6. Discussion, Limitations, and Future Research

In this paper, we propose a simultaneous maximum likelihood estimation for a piece-
wise linear instrumental variable model. We use the two-stage least square estimators as



Entropy 2022, 24, 1235

110f15

the initial values and the limited information maximum likelihood methods to estimate
the regression coefficients and the threshold parameters simultaneously. We also provide a
robust inference of the proposed model. The proposed model with the piecewise linear
functions allows us to find the thresholds for both the explanatory and the instrumental
variables, which generalizes the traditional linear instrumental variable models. In the sim-
ulation study, we evaluate the performance of the proposed model and find that it behaves
well in terms of the biases, standard errors, and coverage probabilities in different settings.

In our model, we include a single continuous explanatory variable and a single con-
tinuous instrumental variable. We assume the explanatory variable and the instrumental
variable are continuous. More complicated cases can be considered. For example, devel-
oping a piecewise linear model with count data might be interesting. However, finding
the optimal number of thresholds as well as the locations is challenging from the theo-
retical side. Furthermore, we assume the number of thresholds K and | are prespecified.
Treating the numbers of thresholds as random variables, finding the optimal values, and
investigating the theoretical properties can be future research.
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Appendix A. Derivation of the Information and Hessian Matrices

The likelihood to be minimized is

1 1 2 1 u% 20u;0; 01-2
&’_”Z{ 108(uce) = 5 1081 =) z<1—pz><ag ur, T2 [

v

When the model is specified,

1 ) 1 utu 2pu’v VTV
Exyzfe:—log(auvv)—zlogﬂ—P)—MEXYZ< 3 e @)

To write out the first order derivative /() of £g with respect to 6, we define the
following notations. d¢g/dac is the row concatenation of the first order derivative of /g
with respect to & and c. 9/ /0Bt is the row concatenation of the first order derivative of /g
with respect to g and t. For notation simplicity, we drop the subscription i. Letal(z > ¢) =


https://github.com/hyunseungkang/ivmodel/tree/master/data
https://github.com/hyunseungkang/ivmodel/tree/master/data
https://github.com/shuoshuoliu/PLIV
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{a1l(z > c1),...,apI(z > ck) } and BI(x > t) = {B1I(x > t1),...,B;I(x > t;)}. Then we
can divide the first order derivative /(8) as following

ool —el(e > ) (- £

14

S = 1 {1 (= 0 x =Bl > O} il (B — )]

Mg 1 2 20uv 2

=i allp—a%ﬁé—&fﬁﬁ+aﬁﬁﬂ SN
aly _ puw 1

oo~ (1- p Dor  (1—pH)oerh O

ouv 1

dow " (1- p o3 (1-pHowed 0o

The interchangeability of expectation and differentiation is satisfied here and it implies
OExyz((0)/00 = Exyz{!(6)}. Itis easy to check dExyzlp/00 = 0 at 8y as it should be.
We next derive the second order derivative Vjy of Exyz{y when the model is specified. We
partition the symmetric matrix Vy as two symmetric matrices V; g and V; g such that

o o V¥ 0o 00 0
(2)

0 (())vﬁtooo

2
v, 0 000

(1) (2) (1) ce
Vo=V + v = vV + v® o 0 o
00 0
0 0
0

sym.

For the derivation of Ve(l), letze ={1,(z—¢)",z} and xt = {1, (x — #)*, x}. Since the
matrix Ve(l) is symmetric, we only need to derive the upper diagonal elements. The first row
of Ve(l) is is the row concatenation of d*Exyz¢(8)/0a?, 0°Exyz{(0)/0adp, 0*Exy{(0)/
aaac, 82EXYZ€(6) /aaat, aZEXYZE((-)) /aaap, a2Exyzé(6) /aaaau, and azExyzg(e) /aaaav,
such that

1) _ Tf zc pxt al(z>c) —pBI(x>t) 200 u(1+p?) pu_ pu_ le
Vi 0 (1- p )EXYZ (ze) 02! ooy’ g2 7 oo o3(1—p2)  (1—p2)ou0u’ ool ooy a3 f|°

The second row of Ve(l) is the row concatenation of 9°Exy /() /982, 3*Exyz£(8)/9Bdc,
82EXYZ€(6)/E)/38t, azExyzf(e)/aﬁap, azExyzf(e)/aﬁaUu, and azExyzﬂ(e)/aﬁaO'U such
that

1 1 [ { Lt oal(z>c) BI(x>t) 20u v(1+0?) pv 2y _pU }}
V26 —Q )EXYZ (Xt) o2’ ooy of 7 g%(1-p2) (1—p?)owou” 03 03’ oyos f]°

The third row of Ve(l) is the row concatenation of 9*Exy¢(0)/dc?, 0*Exyz£(8)/9cot,
9?Exy7z£(0)/3cdp, 9*Exy{(0)/9cdr,, and 9*Exy{(0)/dcdr, such that

(1) Tfal(z>c) BI(x>t) v(p>+1) 200  pu 29 _ pu }
Vi = o vz [{wl(e > ) {52, B Sl - it~ B - ]

The fourth row of Ve(1> is the row concatenation of 9?Exy7/(0)/9t%, 0°Exyz{(0)/dtdp,
9?Exyz{(0)/0tdc,, and 0*Exy{(0)/dtdc, such that

(1) BI(x>t) v(1+p%) 200 2y pv pv
Vid = i Exvz ({10 > 0} { -BIO20, Colee, A o o .

(1)

The remaining terms in V"’ is given by

1+p>  duvp(p* +1) 2puv
(1—p2)?  ouoo(p*—1)°  ouow(p? —1)%

d*Exyz{(0)/0p" =
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9*Exyz((6)/0pdoy = 1 _2’;?203 - ggaf(ﬁpi 12 U%Uv(l;v— )’
9*Exyz((6) /9030, = 1 _2223203 B Uua;(”;;#’i 12 aua%gv— 0?)’
O*Exyz((0) /007 = a 223;003 - aﬁ(fu_zpz) + (71%,
*Exyz{(0)/30,00 = %,
P Exyz{(0)/90; = Sl id 1

A—)eud o312 o7

(2)

In terms of the matrix V™', we decompose the following elements

_ o .. .. 0
—I(z>c¢) 0 ... 0
@ _ o : .
Vwe' = Exyz (75(1U—P2) N 00y (1—-p2) % : | ,
0 —I(z > ck)
- 0 O
) 0 0
—I(x>t) 0 0
@) _ e .
Vﬂt - EXYZ U,%(lbipz) Vu”v(lfpz) X : ,
0 . —I(x > ty)
_ 0 . 0
—ua1fz(c1) 0 0
VCC) = EXYZ [0'140'17(1_P2):| x ’
0 _“KfZ(CK)
Bifx(t1) O 0
2 : :
Ve = EXYZ[az,(plzfl)} s : :
0 s e Brfx(ty)

It is easy to check that when the model is correctly specified, V6(2) = 0 and
Vo= —Exyz{£(6)(8)"}.

Appendix B. Theorems

Define Pf as the expectation Ef(X) = [ fdP and abbreviate the average n =1 Y1 ; f(X;)
to P, f, an empirical distribution. Furthermore, we define

n

Mn(e) =1/n img(Xi) = P,my and ‘Pn(e) =1/n Z¢9(Xz) = Pypg.
i=1

i= i=1

Theorem A1 (Theorem 5.7 of van der Vaart [28]). Let M,, be random functions and let M be a
fixed function of 6 such that for every e > 0

sup| M, (6) — M(0)] 5o,

sup M(6) < M(6p).
0:4(6,00)>e
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Then every sequence of estimators 8, with My (8,) > M, (69) — op(1) converges in probability to
6o.

Theorem A2 (Theorem 5.14 of van der Vaart [28]). For each 6 in an open subset of Euclidean
space, let 6 — 1g(x) be twice continuously differentiable for every x. Suppose that Pipg, = 0, that
P||1pg, |I* < oo and that the matrix Pipg, exists and is nonsingular. Assume that the second-order
partial derivatives are dominated by a fixed integrable function {(x) for every 0 in a neighborhood
of 8g. Then every consistent estimator sequence 8, such that ¥,,(8,)) = 0 for every n satisfies

(6, —6) = —(P%o)ljﬁ ilpeo(xi) +op(1).

In particular, the sequence \/n (én — 0) is asymptotically normal with mean zero and covariance
. | i1

matrix (Pya,) ~ Pyaybg, (Pipo,) -

Appendix C. Additional Simulation Results

Table Al. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of 6,
as well as 95% coverage probabilities (cp) on 0 for scenario 1 with sample size 1000.

p =02 p =205 p =038
bias tse ese  cp bias tse ese  cp bias tse ese cp

xQ —-830 27.04 2978 928 —-648 2541 2735 933 328 22.00 2278 942
ap 3.08 6829 7076 950 296 6499 6754 932 246 53.88 55.17 949
%3 —-790 3092 3250 936 —6.05 2890 30.11 938 279 2305 2346 955
Bo —361 3876 3970 949 280 36.66 37.62 938 177 3074 3119 945
B1 —046 5544 5445 956 —0.18 52.00 51.80 948 0.65 4179 4211 939
B> —121 2418 2478 938 —-0.88 2276 2335 928 —0.43 1838 1842 949
c —41.08 12392 167.07 873 —31.07 111.23 148.14 873 1270 7947 98.09 886
t —7.63 6818 7636 919 —490 6113 6647 920 —1.50 43.69 46.31 935
0 1.08 3423  34.63 948 1.08 2653 2677 948 072 1241 1249 946
o2 —0.86 9.82 9.68 949 —-0.64 1096 1075 949 026 12.68 1242 946

Note: all numbers are multiplied by 1000. These results are based on 1000 replications.

Table A2. Empirical biases, theoretical standard errors (tse), and empirical standard errors (ese) of 6,
as well as 95% coverage probabilities (cp) on 0 for scenario 2 with sample size 1000.

p =02 p=205 p=08

bias tse ese  cp bias tse ese  cp bias tse ese cp

xg —2584 176.86 168.03 943 —15.74 155.65 161.09 929 —7.23 10442 114.68 927
K1 853 11579 106.55 956 7.00 103.98 101.28 947 401 7382 75.63 944
xo 8.49 11253 105.08 964 555 10898 10791 958 331 9838 93.69 957
x3 —11.29 10814 9984 951 551 9598 9587 934 —-184 6737 7138 935
Bo —287 8331 8473 942 203 77.04 7841 945 -—-1.09 59.84 6278 929
B1 386 49.69 5023 945 272 4632 4696 942 234 3627 3733 941
B2 577 7264 67.82 960 388 6756 6316 963 232 5365 5282 939
Bz —0.69 3992 40.14 940 -048 37.14 3755 943 011 29.14 31.00 944
g —16.09 171.89 185.99 923 096 15210 21249 907 2,67 10326 15839 891
c2 —2.69 8176 9551 912 437 7510 125.84 903 786  56.60 131.88 894

t 218 5328 5774 933 208 4782 5228 921 233 3417 3855 921
tr 20.13 111.57 13646 925 13.61 9930 10845 930 1330 7022 85.85 927
0 121 3296 33.18 953 152 25,63 2573 950 093 1214 1231 942

o2 —141 9.81 964 948 117 1088 1059 951 —0.58 1257 1227 948
Note: all numbers are multiplied by 1000. These results are based on 1000 replications.
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