The Impact of Information Flow by Co-Shareholder Relationships on the Stock Returns: A Network Feature Perspective
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. The Construction of Information Flow Network Embodied by Shareholders
2.2.2. The Information Flow Represented by Network Indicators
2.2.3. Panel Regression Model and Hypotheses
- Dependent variables
- Control variables
- Independent variables
3. Results and Discussion
3.1. The Evolution of Information Flow Network by Co-Shareholder Relationships
3.2. The Information Flow Features between Listed Energy Companies in the EL-EL Network
3.3. The Impact of Information Flow by Co-Shareholder Relationship on the Stock Returns
3.3.1. The Overall Impact of Information Flows between Listed Energy Companies on the Stock Returns
3.3.2. The Impact of Each Network Indicator of Listed Energy Companies on the Stock Returns
3.3.3. The Robustness Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia-Medina, A.; Sandoval, L.; Banuelos, E.U.; Martinez-Arguello, A.M. Correlations and flow of information between the New York Times and stock markets. Phys. A-Stat. Mech. Its Appl. 2018, 502, 403–415. [Google Scholar] [CrossRef]
- Lu, J.G.; Chen, X.H.; Liu, X.X. Stock market information flow: Explanations from market status and information-related behavior. Phys. A-Stat. Mech. Its Appl. 2018, 512, 837–848. [Google Scholar] [CrossRef]
- Yue, P.; Cai, Q.; Yan, W.F.; Zhou, W.X. Information Flow Networks of Chinese Stock Market Sectors. IEEE Access 2020, 8, 13066–13077. [Google Scholar] [CrossRef]
- Bossomaier, T.; Barnett, L.; Steen, A.; Harre, M.; d’Alessandro, S.; Duncan, R. Information flow around stock market collapse. Account. Financ. 2018, 58, 45–58. [Google Scholar] [CrossRef]
- Chua, C.L.; Tsiaplias, S. Information flows and stock market volatility. J. Appl. Econom. 2019, 34, 129–148. [Google Scholar] [CrossRef]
- Aman, H.; Moriyasu, H. Volatility and public information flows: Evidence from disclosure and media coverage in the Japanese stock market. Int. Rev. Econ. Financ. 2017, 51, 660–676. [Google Scholar] [CrossRef]
- Pareek, A. Information Networks: Implications for Mutual Fund Trading Behavior and Stock Returns. SSRN Electron. J. 2012. [Google Scholar] [CrossRef]
- Hong, H.; Kubik, J.D.; Stein, J.C. Thy neighbor’s portfolio: Word-of-mouth effects in the holdings and trades of money managers. J. Financ. 2005, 60, 2801–2824. [Google Scholar] [CrossRef]
- Prevost, A.K.; Wongchoti, U.; Marshall, B.R. Does institutional shareholder activism stimulate corporate information flow? J. Bank. Financ. 2016, 70, 105–117. [Google Scholar] [CrossRef]
- Han, C.; Hwang, S.; Ryu, D. Market overreaction and investment strategies. Appl. Econ. 2015, 47, 5868–5885. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.S.; Huang, P.Y.; Chen, Y.H. Board structure, considerable capital, and stock price overreaction informativeness in terms of technical indicators. N. Am. J. Econ. Financ. 2019, 48, 514–528. [Google Scholar] [CrossRef]
- Cen, L.; Wei, K.C.J.; Yang, L.Y. Disagreement, Underreaction, and Stock Returns. Manag. Sci. 2017, 63, 1214–1231. [Google Scholar] [CrossRef]
- Chattopadhyay, M.; Garg, A.K.; Mitra, S.K. Herding by Foreign Institutional Investors: An Evidential Exploration for Persistence and Predictability. J. Behav. Financ. 2018, 19, 73–88. [Google Scholar] [CrossRef]
- Zheng, D.Z.; Li, H.M.; Zhu, X.W. Herding behavior in institutional investors: Evidence from China’s stock market. J. Multinatl. Financ. Manag. 2015, 32, 59–76. [Google Scholar] [CrossRef]
- Kim, I.; Pantzalis, C.; Wang, B. Shareholder coordination and stock price informativeness. J. Bus. Financ. Account. 2018, 45, 686–713. [Google Scholar] [CrossRef]
- Connelly, B.L.; Lee, K.B.; Tihanyi, L.; Certo, S.T.; Johnson, J.L. Something in common: Competitive dissimilarity and performance of rivals with common shareholders. Acad. Manag. J. 2019, 62, 1–21. [Google Scholar] [CrossRef]
- Li, H.J.; An, H.Z.; Huang, J.C.; Huang, X.; Mou, S.T.; Shi, Y.L. The evolutionary stability of shareholders’ co-holding behavior for China’s listed energy companies based on associated maximal connected sub-graphs of derivative holding-based networks. Appl. Energy 2016, 162, 1601–1607. [Google Scholar] [CrossRef]
- Li, H.J.; Fang, W.; An, H.Z.; Yan, L.L. The shareholding similarity of the shareholders of the worldwide listed energy companies based on a two-mode primitive network and a one-mode derivative holding-based network. Phys. A-Stat. Mech. Its Appl. 2014, 415, 525–532. [Google Scholar] [CrossRef]
- Cohen, L.; Frazzini, A.; Malloy, C. The Small World of Investing: Board Connections and Mutual Fund Returns. J. Political Econ. 2008, 116, 951–979. [Google Scholar] [CrossRef]
- Costa, L.D.F.; Rodrigues, F.A.; Cristino, A.S. Complex networks: The key to systems biology. Genet. Mol. Biol. 2008, 31, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.X.; Thomas, C.E.; Brunak, S. Network biology concepts in complex disease comorbidities. Nat. Rev. Genet. 2016, 17, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Hornberg, J.J.; Bruggeman, F.J.; Westerhoff, H.V.; Lankelma, J. Cancer: A systems biology disease. Biosystems 2006, 83, 81–90. [Google Scholar] [CrossRef]
- Schweitzer, F.; Fagiolo, G.; Sornette, D.; Vega-Redondo, F.; Vespignani, A.; White, D.R. Economic Networks: The New Challenges. Science 2009, 325, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Bargigli, L. Statistical Ensembles for Economic Networks. J. Stat. Phys. 2014, 155, 810–825. [Google Scholar] [CrossRef]
- Jia, X.L.; An, H.Z.; Fang, W.; Sun, X.Q.; Huang, X. How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective. Energy Econ. 2015, 49, 588–598. [Google Scholar] [CrossRef]
- Huang, S.P.; An, H.Z.; Gao, X.Y.; Hao, X.Q. Unveiling heterogeneities of relations between the entire oil-stock interaction and its components across time scales. Energy Econ. 2016, 59, 70–80. [Google Scholar] [CrossRef]
- Wen, X.Q.; Guo, Y.F.; Wei, Y.; Huang, D.S. How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China. Energy Econ. 2014, 41, 63–75. [Google Scholar] [CrossRef]
- Inchauspe, J.; Ripple, R.D.; Truck, S. The dynamics of returns on renewable energy companies: A state-space approach. Energy Econ. 2015, 48, 325–335. [Google Scholar] [CrossRef]
- Li, H.J.; An, H.Z.; Gao, X.Y.; Huang, J.C.; Xu, Q. On the topological properties of the cross-shareholding networks of listed companies in China: Taking shareholders’ cross-shareholding relationships into account. Phys. A-Stat. Mech. Its Appl. 2014, 406, 80–88. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, C.M.; Niu, B.B.; Deng, L.C.; Liu, Y. Identify sectors’ role on the embedded CO2 transfer networks through China’s regional trade. Ecol. Indic. 2017, 80, 114–123. [Google Scholar] [CrossRef]
- Li, H.J.; An, H.Z.; Huang, J.C.; Gao, X.Y.; Shi, Y.L. Correlation of the holding behaviour of the holding-based network of Chinese fund management companies based on the node topological characteristics. Acta Phys. Sin. 2014, 63, 048901. [Google Scholar]
- Wang, P.; Pattison, P.; Robins, G. Exponential random graph model specifications for bipartite networks A dependence hierarchy. Soc. Netw. 2013, 35, 211–222. [Google Scholar] [CrossRef]
- Mesa-Arango, R.; Kumar, I. Hierarchical Value Chains Encompassing Freight Transportation and Logistics Sectors in the United States Network Analysis Approach. Transp. Res. Rec. 2017, 2609, 1–10. [Google Scholar] [CrossRef]
- Liang, S.; Qi, Z.L.; Qu, S.; Zhu, J.; Chiu, A.S.F.; Jia, X.P.; Xu, M. Scaling of global input-output networks. Phys. A-Stat. Mech. Its Appl. 2016, 452, 311–319. [Google Scholar] [CrossRef]
- An, P.L.; Li, H.J.; Zhou, J.S.; Chen, F. The evolution analysis of listed companies co-holding non-listed financial companies based on two-mode heterogeneous networks. Phys. A-Stat. Mech. Its Appl. 2017, 484, 558–568. [Google Scholar] [CrossRef]
- An, P.; Zhou, J.; Li, H.; Sun, B.; Shi, Y. The evolutionary similarity of the co-shareholder relationship network from institutional and non-institutional shareholder perspectives. Phys. A-Stat. Mech. Its Appl. 2018, 503, 439–450. [Google Scholar] [CrossRef]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep.-Rev. Sect. Phys. Lett. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Cai, M.; Du, H.F.; Ren, Y.K.; Feldman, M.W. A new network structure entropy based node difference and edge difference. Acta Phys. Sin. 2011, 60, 110513. [Google Scholar]
- Gurgul, H.; Wojtowicz, T. The impact of US macroeconomic news on the Polish stock market the importance of company size to information flow. Cent. Eur. J. Oper. Res. 2014, 22, 795–817. [Google Scholar] [CrossRef]
- Lin, C.C. Asia-Pacific Stock Return Predictability and Market Information Flows. Emerg. Mark. Financ. Trade 2015, 51, 658–671. [Google Scholar] [CrossRef]
- Oh, G.; Oh, T.; Kim, H.; Kwon, O. An information flow among industry sectors in the Korean stock market. J. Korean Phys. Soc. 2014, 65, 2140–2146. [Google Scholar] [CrossRef]
- Frey, C.; Zufle, A.; Emrich, T.; Renz, M. Efficient Information Flow Maximization in Probabilistic Graphs. IEEE Trans. Knowl. Data Eng. 2018, 30, 880–894. [Google Scholar] [CrossRef]
- Xinming, H.U.; Qiming, T. The Spillover Effects and Information Flow between B Shares and H Shares, Red Chips. J. Ind. Eng. Eng. Manag. 2008, 22, 159–162. [Google Scholar]
- Forch, T.; Sunde, U. Central bank independence and stock market returns in emerging economies. Econ. Lett. 2012, 115, 77–80. [Google Scholar] [CrossRef]
- Baumann, M.H. On Stock Trading via Feedback Control When Underlying Stock Returns Are Discontinuous. IEEE Trans. Autom. Control 2017, 62, 2987–2992. [Google Scholar] [CrossRef]
- Kwon, O.; Yang, J.S. Information flow between stock indices. EPL 2008, 82, 4. [Google Scholar] [CrossRef] [Green Version]
Company | Market Capitalization | Company | Market Capitalization | Company | Market Capitalization | Company | Market Capitalization |
---|---|---|---|---|---|---|---|
000554.SZ | 5.36 | 600188.SH | 53.17 | 600688.SH | 69.52 | 601808.SH | 61 |
000937.SZ | 23.94 | 600256.SH | 31.65 | 600871.SH | 78.21 | 601898.SH | 77.08 |
000968.SZ | 10.05 | 600348.SH | 16.21 | 600971.SH | 7.54 | 60166.SH | 11.50 |
000983.SZ | 26.66 | 600395.SH | 13.41 | 600997.SH | 11.42 | 601857.SH | 1453.53 |
600028.SH | 654.09 | 600397.SH | 5.07 | 601001.SH | 10.24 | 601918.SH | 12.19 |
600123.SH | 9.16 | 600508.SH | 7.84 | 601088.SH | 319.79 | ||
600157.SH | 49.77 | 600583.SH | 32.78 | 601699.SH | 24.05 |
Dependent Variable. Stock Returns | Control Variable | Independent Variable | |||
---|---|---|---|---|---|
General Assets | Net Profits | Degree | Closeness Centrality | Betweenness Centrality | |
Hypothesis 1. efficiency of information flow (degree) | √ | √ | √ | ||
Hypothesis 2. independence (closeness centrality) | √ | √ | √ | √ | |
Hypothesis 3. Information control ability (betweenness centrality) | √ | √ | √ | √ | √ |
Variables | Mean | S.D. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|---|
1. Stock Returns | −5.795052 | 44.43605 | 1 | |||||
2. General Assets | 20,353,714 | 50,879,771 | −0.0042 | 1 | ||||
3. Net Profits | 844,420.1 | 2,256,781 | 0.0244 | 0.8312 | 1 | |||
4. Degree | 20.24000 | 14.14151 | −0.1278 | 0.1760 | 0.0736 | 1 | ||
5. Closeness Centrality | 1.815812 | 0.501725 | 0.2247 | −0.1624 | −0.0825 | −0.8884 | 1 | |
6. Betweenness Centrality | 29.98618 | 38.00608 | 0.0693 | 0.0763 | 0.1189 | 0.0394 | −0.0481 | 1 |
Model | Chi-Sq. Statistic | Chi-Sq. d.f. | Prob. |
---|---|---|---|
Model 1 | 1.507650 | 3 | 0.6805 |
Model 2 | 6.666736 | 4 | 0.1546 |
Model 3 | 5.672577 | 5 | 0.3394 |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
General Assets | −2.81 × 10−8 (−0.303675) | −4.06 × 10−8 (−0.451809) | −3.48 × 10−8 (−0.387413) |
Net Profits | 1.19 × 10−6 (0.578055) | 1.60 × 10−6 (0.800870) | 1.32 × 10−6 (0.657425) |
Degree | −0.397639 ** (−2.143442) | 1.093366 *** (2.833822) | 1.094130 *** (2.839841) |
Closeness Centrality | 47.20543 *** (4.369654) | 47.54138 *** (4.405863) | |
Betweenness Centrality | 0.089400 (1.356995) |
Dependent Variable. Stock Returns | Control Variable | Independent Variable | |||
---|---|---|---|---|---|
General Assets | Net Profits | Degree | Closeness Centrality | Betweenness Centrality | |
Hypothesis 1. efficiency of information flow (degree) | + | − | − ** | ||
Hypothesis 2. independence (closeness centrality) | − | + | + *** | + *** | |
Hypothesis 3. Information control ability (betweenness centrality) | − | + | + *** | + *** | + |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
General Assets | 5.81 × 10−8 (0.351548) | −3.22 × 10−8 (−0.202623) | −2.31 × 10−8 (−0.144665) |
Net Profits | −6.89 × 10−7 (−0.217639) | 1.26 × 10−6 (0.412163) | 8.68 × 10−7 (0.282561) |
Degree | −0.742132 ** (−2.324114) | 1.591635 ** (2.344781) | 1.615970 ** (2.375856) |
Closeness Centrality | 66.97370 *** (3.844647) | 68.16986 *** (3.901876) | |
Betweenness Centrality | 0.119855 (1.362799) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, P.; Guo, S. The Impact of Information Flow by Co-Shareholder Relationships on the Stock Returns: A Network Feature Perspective. Entropy 2022, 24, 1237. https://doi.org/10.3390/e24091237
An P, Guo S. The Impact of Information Flow by Co-Shareholder Relationships on the Stock Returns: A Network Feature Perspective. Entropy. 2022; 24(9):1237. https://doi.org/10.3390/e24091237
Chicago/Turabian StyleAn, Pengli, and Sui Guo. 2022. "The Impact of Information Flow by Co-Shareholder Relationships on the Stock Returns: A Network Feature Perspective" Entropy 24, no. 9: 1237. https://doi.org/10.3390/e24091237
APA StyleAn, P., & Guo, S. (2022). The Impact of Information Flow by Co-Shareholder Relationships on the Stock Returns: A Network Feature Perspective. Entropy, 24(9), 1237. https://doi.org/10.3390/e24091237