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Abstract: The quantification of entropy in images is a topic of interest that has had different appli-
cations in the field of agronomy, product generation and medicine. Some algorithms have been
proposed for the quantification of the irregularity present in an image; however, the challenges to
overcome in the computational cost involved in large images and the reliable measurements in small
images are still topics of discussion. In this research we propose an algorithm, EspEn Graph, which
allows the quantification and graphic representation of the irregularity present in an image, revealing
the location of the places where there are more or less irregular textures in the image. EspEn is used
to calculate entropy because it presents reliable and stable measurements for small size images. This
allows an image to be subdivided into small sections to calculate the entropy in each section and
subsequently perform the conversion of values to graphically show the regularity present in an image.
In conclusion, the EspEn Graph returns information on the spatial regularity that an image with
different textures has and the average of these entropy values allows a reliable measure of the general
entropy of the image.
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1. Introduction

Image processing allows us to obtain quantitative data to perform detection, recog-
nition, segmentation and classification tasks. These tasks are useful in the generation of
high-quality products and to reduce time and costs in the production of goods and services
in different fields of industry, commerce, agriculture and medicine [1].

Currently there is great interest in objectively evaluating entropy in 2D data. Da
Silva et al., in 2014, propose a two-dimensional sample entropy analysis (SampEn2D),
an algorithm to classify groups of old and young rats through measures of irregularity
obtained from histological images. The old rat images were more regular than the young
rat images [2]. Subsequently, Da Silva et al., in 2016, used SampEn2D in three sets of
images: simulated images, a database of images with different textures and biological
images of rat sural nerves. The obtained measures of irregularity were reliable for images
of relatively large size, but the measures were less reliable with images of small size. The
properties and parameters of SampEn2D are two-dimensional matrix (u), patterns of length
mxm, which are square windows (m), and tolerance threshold (r) [3]. Other algorithms
to evaluate the entropy in images are Shannon’s entropy, described as the amount of
individual information weighted by the probability of occurrence of the elements of the
image [4], Distribution Entropy (DistrEn2D) and Dispersion Entropy (DispEn2D) [5], with
interesting results, but focused on small images. Furthermore, mixing random values with
an image does not significantly change the value of DistrIn2D [6]. Espinosa et al., in 2021,
propose EspEn, an algorithm to quantify the regularity in both large and small images
with great stability. However, the computational cost for large images is high and requires
extensive computation time [7].

The challenge that arises in the calculation of entropy (image regularity) is related to
the size of the images and the reliability of the measures of regularity obtained. In addition,
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entropy measures provide a single measure to evaluate the whole image, but there is no
reliable algorithm that spatially shows the places in the image where there is more or
less regularity.

In this study we propose an algorithm called EspEn Graph to measure the irregularity
present in an image. The proposed algorithm sectorizes the total image to calculate the
entropy, through EspEn, to show graphically the places where there is more or less entropy
with a color code. This algorithm was applied to images from a database containing
different textures.

2. Entropy Images

In this section, we expose the attempts of some investigations to show entropy graph-
ically. Currently, much of the information we obtain is visual through cameras attached
to drones, smartphones, security systems, laptops and other specialized devices such as
robots. Image processing systems to extract information include artificial intelligence (AI)
algorithms. These AI algorithms frequently extract features from the image to achieve
better image classification or detection. [8].

Gen-Min Lin et al., in 2018, used entropy images to represent the complexity of
fundus photographs, in order to improve performance in classifying diabetic retinopathy
(DR) lesions using deep learning (neural network convolutional (CNN)). Entropy images
increased the heterogeneity of fundus photographs and strengthened the contrast between
RD lesions and unaffected areas. The spatial entropy used in this study is a function of the
probability distribution of the local gray values [9]. The local entropy image is described as:

Elocal = −∑
i

P(i)× log2P(i) (1)

In the probability density function, P(i) denotes the relative frequency associated with
the i-th gray level within a n × n block [9]. This method is the application of Shannon
Entropy in n × n sections (or windows) of an image.

Khattak et al., in 2015, analyzed the appearance and conditions of different skin lesions,
which constitute a challenge for the development of better methods of segmentation of the
affected area with respect to healthy tissue. The entropy image was made by calculating
the maximum entropy based on Shannon et al.; for details of the calculation, see [10].

Ricardo Espinosa et al., in 2021, proposed the EspEn to evaluate the global entropy in
an image. EspEn presented important advantages, compared to other similar algorithms
(Shannon, SampEn2D, DistrEn2D, DispEn2D, among others), in relation to the stability of
the measurement when the size of the image is smaller, and the sensitivity of the algorithm
to determine the degree of contamination of an image [7]. Next, the EspEn algorithm and
the EspEn Graph proposal are described.

2.1. EspEn Algorithm for Two Dimensions [7]

EspEn is an estimator of the irregularity of an image that considers the probability
of occurrence of a set of samples, of dimension m2, that are similar within a similarity
threshold r, with an acceptable percentage in the number of samples similar [7]. The EspEn
algorithm considers an image u(i,j) with width W and height H. Let xm(i,j) be the set of
pixels that form a square window, with column range j to j + m − 1 and row range i to i
+ m − 1. The window construction would be xm(i,j) = [u(i,j), u(i, j + 1), . . . , u(i,j + m − 1),
u(i + 1,j), u(i + 1, j + 1), . . . , u(i + 1, j + m − 1), . . . , u(i + m − 1, j + m − 1)]. Then, EspEn is
defined by the following:

EspEn(u, m, r) = − ln(Dm) (2)

where

Dm =
1

(H −m + 1)(W −m + 1)

i=H−m+1;j=W−m+1

∑
i=1;j=1

Cm
i,j (3)
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Cm
i,j =

[# o f ϕ(r) ≥ ρ]

(H −m + 1)(W −m + 1)− 1
(4)

where ρ is fixed and represents the percentage of similarity acceptable for the study, ex-
pressed in decimals.

ϕ(r) =
[# o f xm(a, b)|d[xm(i, j), xm(a, b)]≤ r]

m2 (5)

where 1 ≤ a ≤ H − m + 1, 1 ≤ b ≤W − m + 1 y (a,b) 6= (i,j) to exclude self-matches. The
distance function, d, for EspEn is defined by the following:

d[xm(i, j), xm(a, b)] = |u(i + k, j + l)− u(a + k, b + l)| (6)

where k, y, and l vary from 0 to m − 1.

2.2. Algorithm to Measure Entropy Graphically (EspEn Graph)

The EspEn presents great stability in entropy measurements when the images are of
small size [7]. This feature is used to evaluate the entropy in small sections of an image.

The image is evenly divided into boxes called “grains”. Each grain is made up of a
number of N × N pixels. The entropy in each grain is measured and the values obtained
from the EspEn calculation (from 0 to approx. 10) are readjusted to integer values from 0 to
255, where values close to 0 represent a regular image, and values close to 255 represent an
irregular image. Figure 1 shows a representation of an image with grains of 5 × 5 pixels
whose entropy has subsequently been calculated. The entropy values of each grain are
represented in a gray scale, where dark colors represent a regular image and light colors
represent an irregular image, modifying the color map; the resulting image would be: blue
colors represent a regular image, red represent an irregular image and intermediate values
of entropy is shown by green, yellow and orange colors.

Figure 1. Representation of the calculation of the EspEn in a grain of the algorithm of the EspEn
Graph. The red color represents greater irregularity, the blue color represents greater regularity, green
colors (more yellow) represent intermediate values of irregularity.

3. Materials and Methods
3.1. Image Set

Synthetic images with repetitive (predictable) and clearly identifiable patterns (shapes)
were created, following the methodology described in [7]. These images were progressively
contaminated with uniform white noise, similar to the process shown with detailed MIX2D
in [3], defined as:

MIX(p)ij = (1− p)Xij + p Yij (7)
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where Xij is the synthetic image, Yij the noise image with uniform distribution and p
represents the degree of contamination: p = 0 (no contamination) and p = 1 (only noise).
Four images with different degrees of contamination were obtained: MIX(0), MIX(0.33),
MIX(0.66), and MIX(1). From each MIX image, 1

4 fraction was taken to create a new image,
in different distributions. Figure 3a–c show the new images obtained, called ImMIX.

A second set of images from the normalized Brodatz texture database (NBT) was used,
which contains normalized images with different textures; the details of the characteristics
of this database can be seen in [7]. NBT images with low (approx. 3.4), medium (approx. 6.5)
and high (approx. 9.8) entropy values quantified with EspEn [7] were used. Figure 2 shows
the NBT images used with their respective denomination and entropy value calculated
with EspEn, reported in [7]. Fractions of the NBT images were taken to create images with
varied textures: a group of images with half of the image with regular texture (predominant
fraction), a quarter of the image completely irregular and the remaining quarter with a
half irregular texture. In the same way, a second group of images with a predominance
of medium irregular texture and a third group of images with an irregular predominance
were prepared. We call these image sets ImNBT in the following sections.

Figure 2. Images from the normalized Brodatz texture database (NBT) used in the second numerical
experiment. Top row regular images (low entropy value), middle row medium irregular images
(middle entropy value) and lower row irregular images (high entropy value).
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Figure 3. Synthetic images with homogeneous fractions of regular and irregular shapes (ImMIX
(a–c)). Result of the EspEn Graph for each case (d–f), shows the most irregular areas in red, the most
regular areas in blue, and the areas with intermediate degrees of contamination in orange and light
blue. The distribution pattern of the original images with different sections (a–c) is maintained in the
results (d–f).

3.2. Experiment and Parameters

Two numerical experiments were carried out to evaluate the capacity of the EspEn
Graph; the first experiment evaluates the stability of the measurements when the sizes
of the image are varied and the second experiment evaluates the capacity of regular and
irregular classification of an image with different textures inside.

The first experiment consisted of applying the EspEn Graph to obtain a new image
with information on the spatial entropy of the image. ImMIX images were upsampled
(s = 2, 5, and 10) to change image size. The original image is 500 × 500 pixels and the
sampled images have dimensions of 250 × 250, 100 × 100 and 50 × 50 pixels for s = 2, 5
and 10, respectively.

In addition, the overall EspEn of each sampled ImMIX image and the mean of the
EspEn entropy values of all the grains in each sampled image were calculated to compare
the EspEn values with the average value of EspEn Graph. The parameters used in the EspEn
algorithm were the image (u), the length of the square window (m = 3), the percentage of
similarity between windows (ρ = 0.7) and the similarity threshold (r = 35). In addition to
these values, for the EspEn Graph, the dimensions of the “grain” were set at 10 × 10.
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The second experiment consisted in calculating the average of the EspEn Graph in
ImNBT images to demonstrate that it allows the classification of regular and irregular
images, when they have a regular or irregular predominance, respectively.

4. Results

The calculation of entropy in images is a topic of interest today. EspEn has proven to
be a robust algorithm for measuring entropy in large and small images while maintaining
a certain stability in the measurement. In this study, an algorithm has been proposed
to measure the EspEn graphically, because the images can contain different shapes and
textures and a single general measurement of the entropy is not enough to obtain detailed
information on the regularity within the image.

Figure 3 shows the entropy image returned by the EspEn Graph algorithm for each of
the images (Figure 3a–c) that have different sections with different degrees of contamination.
The resulting images (Figure 3d–f) show the areas of greatest irregularity in red, the
more regular areas in blue and the areas with intermediate degrees of contamination in
orange and light blue. The EspEn Graph correctly delimits areas with different degrees of
irregularity; this capability is important for segmentation applications based on entropy.

Table 1 shows the values of the general entropy (EspEn) calculated for the images in
gray ImMIX (Figure 4a–c). These images have spatially distributed the same amount of
a regular image fraction, a regular image contaminated with noise at 33% and 66%, and
finally a noise-only fraction. The EspEn remained similar for all images in gray ImMIX
(Figure 4a–i), even when the images were resized. The mean of the entropy values, when
the EspEn Graph was applied to the ImMIX gray images (Figure 4a–i), turned out to
be similar for images with the same size, but different when the size of the images was
changed. The most relevant information of the EspEn Graph is visual, because it allows
spatial identification of the places in the image where there is more or less regularity.

Table 1. EspEn values and the mean of the entropy values of the EspEn Graph.

Images Sampling (s) Dimensions EspEn Mean EspEn Graph

ImMIX(a) 2 250 × 250 4.0376 3.0734
ImMIX(b) 2 250 × 250 4.0823 3.1322
ImMIX(c) 2 250 × 250 4.0906 3.1675

ImMIX(a) 5 100 × 100 4.1870 2.8370
ImMIX(b) 5 100 × 100 4.2190 2.9302
ImMIX(c) 5 100 × 100 4.2190 2.9590

ImMIX(a) 10 50 × 50 4.9705 4.0916
ImMIX(b) 10 50 × 50 4.9377 4.2453
ImMIX(c) 10 50 × 50 4.9377 4.1169

Figure 4 shows the result of the EspEn Graph for each ImMIX with different sizes. The
identification of the regular and irregular regions was maintained in all cases, both for large
and small images. The EspEn Graph shows in a stable way the colors that characterize the
irregularity in the images when they have different sizes.

Figure 5 shows the graph of the averages of the EspEn Graph where the separation
between ImNBT images with different predominance of irregularity (low, intermediate and
high) is evidenced. In addition, the average of the values of the EspEn Graph can be used
to estimate the global entropy of an image in less time and computational cost compared
to EspEn.
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Figure 4. Result of the EspEn Graph for ImMIX images with different spatial distribution of noise
contamination, in equal amounts and different sizes. Color images (a–c) show greater detail in the
identification of regularity through colors (red = irregular, dark blue = regular, light blue = 33%
contamination and orange = 66% contamination). The color images (d–f) show a clear differentiation
of the regularity, with less detail, and finally the color images (g–i) show a differentiation of the
regularity of the image that is not very detailed but identifiable.

Figure 5. Mean ± std of the EspEn Graph for the different groups of ImNBT images.
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Figure 6 shows the result of the EspEn Graph for the ImNBT images with different
predominance of regular and irregular textures. It shows, as examples, only one image with
a predominance of regularity, middle regularity and irregularity with low, intermediate
and high entropy values respectively, which occupy half of the total image in four different
spatial distributions.

Figure 6. ImNBT images with different textures and different irregularity predominance (low, middle
and high) and their respective EspEn Graph images with the mean values of the EspEn Graph entropy.
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5. Application of the EspEn Graph

The estimation of entropy in images is a very useful tool in medicine, technology
and industry. The EspEn Graph method, proposed in this study, shows the regularity
in different sections of the image. Next, some investigations that use entropy in images
are presented, the result of these investigations providing relevant information on the
characteristics of the material, structure or surface under study. In addition, the potential
use of EspEn Graph in these works for future research is exposed.

Miao et al., in 2019, studied the surface degradation of different functional road
pavements for two years. The evaluation of the deterioration of the pavement structure
was carried out through the entropy applied to images, each one with different asphalt
textures. The results showed the distinction between smooth pavements, described through
a low entropy value, compared to rougher pavements, with high entropy values. This
finding demonstrated advantages for evaluating the anti-slip characteristics of pavement
macrostructures [11].

The EspEn Graph, for the evaluation of pavement regularity could show the degrada-
tion of different types of paving materials when different pavement structures are shown
in the same image; an example is the filling of a hole in a section of the road. The EspEn
Graph facilitates the identification of the entropy of different materials in the same graph,
unlike the method used in the work of [11].

Fastowicz et al., in 2019, evaluated the regularity of the surface of 3D printed parts,
through the estimation of the regularity in images of 3D scanners applied to the printed
parts, in order to determine the quality of the surfaces during printing [12].

The application of the EspEn Graph would show the precise place where the printing
defect is located and the average of the values of the EspEn Graph would indicate the
general quality of the surface of the printed parts. Locating the specific place of the 3D
printing defect can help determine the conditions that are met in the printing environment
and consequently allows to correct in advance the events that influence achievement of a
high-quality print, avoiding waste of material and loss of time in printing.

Wu et al., in 2013, calculated the entropy of different sections of an image that do not
overlap, to evaluate encrypted images, overcoming the weaknesses shown (inaccuracy,
inconsistency and low efficiency) when evaluating the quality of encryption using global
entropy [13].

In an encrypted image, it is important that it does not have recognizable patterns
in order to guarantee the security of the information. For this reason, evaluating the
encryption efficiency in an image allows greater security and the possibility of improving
current encryption systems. The application of EspEn Graph in this type of study would
allow us to indicate the precise place where patterns are found in the encrypted image and,
in general, would show the quality of the encryption.

Breslavets et al., in 2019, evaluated the severity of a skin lesion by quantifying the
entropy in images of healthy and damaged skin. In medical practice, the evaluation of
skin lesions is subjective and can change from evaluator to evaluator, so it is important to
propose an objective tool for quantitative skin analysis [14].

The use of EspEn Graph in images of the skin can help determine the degree of skin
lesion and the place of greatest involvement of the lesion; since skin lesions are not normally
uniform, it is important to delimit and quantify places of greater or less gravity.

6. Conclusions

The algorithms to estimate the irregularity in images have been very useful for the
analysis, classification or segmentation of textures. However, a single entropy measure for
an image is not enough to detail the regions of greater or lesser regularity present in the
same image. The EspEn Graph returns an image showing the regions of greater or lesser
regularity graphically in gray scale or with a map of different colors. This study shows
that EspEn Graph is capable of recognizing the irregularity present in any region of the
image of any size. Although the entropy measures could vary by changing the size of the
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image, if the comparison is made between images of the same size with different degrees
of irregularity, the entropy measure is very consistent. The EspEn Graph is sensitive to the
predominance of the irregularity present in an image, showing not only graphically the
place of greater or lesser regularity, but the mean of the EspEn Graph values could be a
measure of the total entropy of the image with a significant decrease in computational cost,
because it calculates the entropy in small sections of the image and does not make extensive
comparisons with each pixel of the image, which can be computationally extensive with
large images. EspEn Graph is presented as a robust tool for calculating entropy with
potential applications in industry, commerce, agronomy and medicine.
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