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Abstract: In this paper, a surjective mapping that satisfies the Li–Yorke chaos in the unit area is
constructed and a perturbation algorithm (disturbing its parameters and inputs through another high-
dimensional chaos) is proposed to enhance the randomness of the constructed chaotic system and
expand its key space. An algorithm for the composition of two systems (combining sequence based
on quantum random walks with chaotic system’s outputs) is designed to improve the distribution
of the system outputs and a compound chaotic system is ultimately obtained. The new compound
chaotic system is evaluated using some test methods such as time series complexity, autocorrelation
and distribution of output frequency. The test results showed that the new system has complex
dynamic behavior such as high randomicity, unpredictability and uniform output distribution. Then,
a new scheme for generating pseudorandom numbers is presented utilizing the composite chaotic
system. The proposed pseudorandom number generator (PRNG) is evaluated using a series test
suites such as NIST sp 800-22 soft and other tools or methods. The results of tests are promising, as
the proposed PRNG passed all these tests. Thus, the proposed PRNG can be used in the information
security field.

Keywords: Li–Yorke chaos; perturbation algorithm; composition of two systems; PRNG

1. Introduction

Chaos theory is a conspicuous area in the researches of mathematics and dynamic
system and has attracted many researchers for nearly fifty years [1]. A chaotic dynamic
system has the special nonlinear dynamics characteristics that can be regarded as a random
motion, and its motion trail is characterized by sensitivity of the initial value and the initial
parameter, unpredictability and ergodicity. Therefore, chaos theory is comprehensively
applied in engineering fields of the communication, signal processing, etc. [1–4]. Especially
in the information security field, many designs of safety algorithms based on the chaotic
map are proposed, such as the block cipher S-box, the key generator in stream cipher,
and the construction of Hash compression function, etc.

One of the most significant components of an information security system is the
random number generator. Random number generator (RNG) are widely applied in many
fields such as Artificial intelligence, Digital communications, System testing, Statistical
simulation, Software development and Crypto-system [5–8]. In different application fields,
RNG has diverse properties and these properties include: a sequence generated by a
RNG has any weakness in statistics; attackers can not predict the leading sequence or
the following sequence; a sequence can be generated or predicted as the internal state
value is known. In view of the forgoing premises, random number generators are divided
into two categories: true random number generator (TRNG) and pseudorandom number
generator (PRNG). True random number generators are usually based on the phenomena
of the true world and the physical process. However, TRNG has some disadvantages, such
as slow speed, high cost and over dependence on hardware. Accordingly, most practical
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application systems choose the pseudorandom number generator, especially in network
information security system (cryptographical system). A Cryptographical system requires
that a PRNG with little wasted memory can generate a sequence of long period and generate
unpredictable data quickly. A complex cryptosystem possesses two main operations:
Diffusion and Confusion. Chaotic system has many characteristics: ergodicity, sensitivity
to initial conditions and structural complexity of dynamic system. These properties are
equivalent to the confusion, diffusion and algorithm complexity in traditional cryptosystem.
Therefore, many Chaotic-maps-based PRNGs have been put forward. Chaotic maps such
as logistic mapping and its variant, quantum logistic map, one dimension piecewise linear
map and tinkerbell map have been widely used in PRNGs [1,9–12].

Most application depend on the performance of the original chaotic system, that is
to say, chaos in ideal state. However, in the practical system operation, original chaos
system may lead to arise problems such as short cycle, nonergodicity and decreased
complexity, which will make application systems lose their original characteristics like
long-term unpredictability, etc.; thus, a cryptosystem based on the original chaotic map
may be successfully attacked [4,13,14]. Security of the analyzed PRNG is much lower than
expected and it should be used with caution [14]. Even some security problems can allow
attackers to completely crack and analyze the cryptosystems, getting the secret data and
secret keys. It is critically necessary to improve chaos power performance degeneration
and further optimize the chaos. Common methods of improving chaos power performance
degeneration include [4]: high precision, approaches of the connection of multiple chaos
systems, and methods of the disturbance, etc. Among those, the method of the disturbance
can improve the performance (prolong the cycle and enhance the complexity) of the chaos
greatly if constructed rationally. We usually hope to get the chaos map with uniform output;
it is necessary to further optimize the output distribution. A brilliant simple solution to
optimize the output distribution can be chosen, which is to combine chaotic outputs with
another pseudorandom signals.

On the basis of the fact that ring graph quantum random walks (QRWs) are prone
to generate the pseudorandom sequence with uniform distribution, the system output
distribution can be improved by mixing original system outputs and QRWs outputs to-
gether. QRWs is a quantum corresponding scene of the classical random walk. For the
widespread applications of the classical random walk in fields of physics, biology, com-
puter science and finance, etc. [15]. Hence in the future, QRWs probably become tools for
many applications, and it may appear lots of information security algorithms based on the
QRWs [16–19]. In literature [18], Y. Yang and Q. Zhao constructed a novel PRNG based
on QRWs. The present QRWs-based PRNG has some advantages such as better statistical
complexity and recurrence, whose normalized Shannon entropy are close to 1. Thus, it is
indicated that outputs of PRNG based on QRWs distribute uniformly. Therefore, it is a
good method by simulating QRWs to construct a “stochastic” system.

In conclusion, if a PRNG based on the chaotic map is to be designed, the original
chaotic system is should not be used directly. A perturbation algorithm (makeing use of
a high dimensional chaotic system to disturb the inputs and parameters of the original
system) should be applied to enhance randomness of chaotic system and expand its key
space. The devise of combining the chaotic system with a sequence based on QRWs will be
further improved output distribution. A predicted outcome is that a compound chaotic
system with large key space, high randomness and high uniform output distribution can
be obtained.

Inspired by reasons discussed above, we are motivated to search for a novel compound
chaotic system with complex dynamic behavior and design a PRNG based on compound
chaotic system to meet the needs of practical applications.

The rest of this paper is arranged as following: In Section 2, we constructed a surjective
chaotic map that satisfies Li–Yorke chaos condition in unit region; in Section 3, we used
a discrete two-dimensional chaotic system to disturb the parameters and inputs of the
constructed system and combined its outputs with the sequence generated by the quantum
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random walk, thus obtaining a compound chaotic system with complex behavior and nearly
uniform distribution; in Section 4, a new scheme for generating pseudorandom numbers
is presented utilizing the composite chaotic system, and the security and randomness of
the proposed PRNG are analyzed and tested roundly; in Section 5, the research results
are summarized.

2. A Internal Randomness System is Constructed in Unit Region

The parameter equations of conic curve in unit region are given:x(t) = 2 ω1 t(1−t)x1+ω2 t2

ω0 (1−t)2+2 ω1 t(1−t)+ω2 t2 ,

y(t) = 2 ω1 t(1−t)y1

ω0 (1−t)2+2 ω1 t(1−t)+ω2 t2 .
(1)

When t ∈ [0, 1], the two ends of the curve are (0, 0) and (1, 0). The shape of the curve is
determined by ω0, ω1 and ω2, and the bump and height of the curve are determined by
(x1, y1). The curve is shown in Figure 1(1).

(1) (2) (3)
Figure 1. Conical section in unit region.

As shown in Figure 1(1): point A is the maximum value of the curve, the ordinate of
point A is the same as the abscissa of point C, the abscissa of point A is the same as the
abscissa of point E, and the abscissa of point C is the same as the abscissa of point D. Point
A is mapped to point D through two times of recursion. According to the conclusion in
literature [20], map (1) satisfied the general conditions for Li–Yorke chaos as long as the
ordinate of point D is greater than the ordinate of point E. The system satisfying conditions
for Li–Yorke chaos should be constructed from the explicit form of the curve because
explicit form is more understandable than implicit expression. There are three types of
conic curves, namely, parabola, ellipse and hyperbola. In this paper, we choose an ellipse
curve for researching and focus on constructing a chaotic system.

Let f be an elliptic curve. Because the two endpoints of the curve are (0, 0) and (1, 0)
respectively, the curve equation can be given:

f (x) = a
√
−x3 + x, (2)

calculate the maximum value of curve D(xmax, ymax), we have{
xmax =

√
3

3 ,
ymax = f (xmax).

If Equation (2) satisfied the following conditions (3):{
1 ≥ ymax > 0,
f 2(ymax) > xmax,

(3)



Entropy 2023, 25, 166 4 of 25

system (2) is Li-Yorke chaos as (1.4690 < a ≤ 1.6110) by calculation.
Chaotic map satisfying conditions (3) is transformed to surjective map by isometric

scaling, and it does not change chaotic characteristics. So, curve (2) is first shifted to the
left and down m = f (ymax), as shown in Figure 1(2). Then, the map is magnified by
t = 1/(ymax− f (ymax) times and obtains a surjective chaotic map in unit region. The surjective
map is shown in Figure 1(3), and the expression is as the following:

g(x) = t

a

√
1
t

x + m−
(

1
t

x + m
)3
−m

. (4)

Lyapunov Exponent, Trajectory Iteration Diagram and Bifurcation Diagram

Lyapunov exponent is a main quantitative index of chaotic analysis by reason that it is
used to describe the local stability of the trajectory of the dynamic system. In general, as the
system is chaotic, the Lyapunov exponent is positive. The calculation of Lyapunov exponent
is by using the definition method, and the evaluating expression is as the following:gn(x) = g

(
gn−1(x)

)
,

LE = lim 1
n ∑n−1

i=0 ln
∣∣∣ dgn(x)

dx

∣∣∣
x=xi

.
(5)

The Lyapunov exponent of system (4) calculated by Formula (5) is shown in Figure 2.
Figure 2 shows the Lyapunov exponent of system (4) for different control parameter a.
According to Figure 2, the system (4) can exhibit chaotic behavior for 1.52 ≤ a ≤ 1.6.

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1.5 1.52 1.54 1.56 1.58 1.6 1.62

-1.5

-1

-0.5

0

0.5

Figure 2. Lyapunov exponent of the map (4).

Bifurcation diagram of map (4) is shown in Figure 3. From Figure 3, the results indicate
that as parameter a gradually increases from 1.5 to 1.61, chaos phenomena appears. In a
certain range of values of the control parameter, 1.59 ≤ a ≤ 1.60, full chaotic behavior can
be seen with Figures 2 and 3.
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Figure 3. Bifurcation diagram of the map (4).

For a chaotic system, it will be found that the iterative trajectory of the system will
present chaotic state as giving an initial value and analyzing its output sequence. The itera-
tive trajectory of system (4) is shown in Figure 4. It can be judged from the Figure 4 that
as a = 1.59, the system has obvious chaos characteristics; as a = 1.44, the system takes on
periodic oscillation state; as a = 1.38, the system converges to a stable state.

To facilitate the simplification of the established chaotic system, let α = (a− 1.56)×
20 + 1, then Equation (4) can be rewritten as:

g(x) = t

a(α)

√
1
t

x + m−
(

1
t

x + m
)3
−m

, a(α) =
α− 1

20
+ 1.56. (6)

Figure 4. Iterative trajectory of map (4).

3. Design and Performance Analysis of a New Compound Chaotic System

In practical applications, a chaotic system with large key space, complex dynamic
behaviors and nearly uniform distribution is generally required. As a chaotic system has
been in operation of digital systems with finite precision, the dynamic performance can
deteriorate. So, to impove morely the dynamic performance of the chaotic system (4)
and overcome the short period of chaotic sequence caused by the finite precision effect,
a mechanism needs to be designed.

Firstly, we choose perturbation method [4,21], that is, known two-dimensional chaotic
map outputs are used to perturb the constructed system parameters and inputs; Then, we
research the quantum random walk on the ring graph under control of two-dimensional
chaos, and the outputs of the perturbed system are merged into outputs of the quantum
random walk. A new compound chaotic system with complex behavior is obtained and the
output sequence generated by new system distributes uniformly in the whole state space.
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3.1. Optimization Algorithm Based on Two-Dimensional Chaotic Map and Quantum
Random Walk

The discretization of (6) is derived as the following:

xn+1 = t

a(α)

√
1
t

xn + m−
(

1
t

xn + m
)3
−m

. (7)

Call equation (7) as the Ecsys; then, we select a two-dimensional hyperchaotic system to
disturb the parameters and inputs of Ecsys while controlling the quantum random walk.

3.1.1. Two-Dimensional Hyper-Chaotic System

The general expression of two-dimensional hyperchaotic system is as the following:

un+1 = k11 + k12un + k13u2
n + k14vn + k15v2

n + k16unvn,

vn+1 = k21 + k22un + k23u2
n + k24vn + k25v2

n + k26unvn.
(8)

Limit the coefficients in Equation (8) and make most of them zero, a simplified two-
dimensional chaotic system can be obtained ultimately. Let k11 = k12 = k13 = k16 = k21 =
k23 = k25 = k26 = 0, that is

un+1 = k14vn + k15v2
n,

vn+1 = k22un + k24vn,
(9)

where k15 = −1.55, k22 = −1.1 and k24 = 0.1. We take k14 as the control parameter.
In order to discuss chaotic characteristics of system (9) caused by the variation of

parameter k14, a modified version of Marotto’s theorem is first presented in literature [22].
A discrete dynamical system is as the following:

Xn+1 = F(Xn), n ≥ 0, (10)

where F : X → X is the mapping, and (X , ‖�‖) is the Banach space.

Theorem 1. Let z ∈ Rn be a fixed point of the mapping F : Rn → Rn. Assume that

a. F is continuously differentiable in some fields of z and the absolute values of all eigenvalues of
DF(z) are greater than 1. Thus, there exists a normal number r and a norm of ‖�‖ , so that F
can expand on B̄r(z) under ‖�‖, B̄r(z) is a closed sphere of space (Rn, ‖�‖) centered on z;

b. z is the return-expansion fixed point of F, that is, it exists a point x0 ∈ Br(z) and pos-
itive integer m such that Fm(x0) = z(x0 6= z), where B̄r(z) is the opening ball of space
(Rn, ‖�‖) centered on z. F is continuous and differentiable in a field of x0, x1, · · · , xm−1 and
detDF

(
xj
)
6= 0(0 ≤ j ≤ m− 1), where xj = F

(
xj−1

)
.

Then, the system (10) is chaotic in the sense of Li–Yorke .

The value of k14 is discussed below for system (9), as it satisfies theorem (1). A fixed
point of system (9) is O = (0, 0), we can define the following norm:

‖(u, v)‖ =
√

u2 + v2.

Let h = (h1, h2), where h1(u, v) = k14v− 1.55v2 and h2(u, v) = −1.1u + 0.1v. It is obvious
that h is continuously differentiable in R2, and its Jacobian matrix is

Dh(u, v) =
(

0 k14 − 3.1v
−1.1 0.1

)
.

For the fixed point O = (0, 0), we assume that the absolute values of all eigenvalues of the
matrix Dh(O) are greater than 1, that is, system (9) may be chaotic when
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k14 < −1.023532631 or k14 > 1.023532631. The Lyapunov exponent of the system is shown
in Figure 5(1–2), and the bifurcation diagram of the system (8) is shown in Figure 5(3–6).
It can be seen that when parameter k14 increases gradually from 0.9 to 1.47, the system
gradually enters a complex chaotic state. Without losing generality, let k14 = 1.55 and
analyze whether system (9) with the fixed point O = (0, 0) satisfies the Theorem 1.

It is shown that ‖h(x)− h(y)‖ ≥ 1.1‖x− y‖ for all x, y ∈ B̄r(O) where
r = 5.556897× 10−163. Therefore, O is an expansion fixed point of h in B̄r(O). After the
calculation, there is a point x0 =

(
6.253681× 10−163,−1.485254× 10−162) 6= O, x0 ∈ B̄r(O)

and a positive integer m = 1290 to hm(x0) = O. It can be obtained ∂h1
∂u , ∂h1

∂v , ∂h2
∂u and ∂h2

∂v are
continuous in Br(O), because that ∂h1

∂u = 0, ∂h1
∂v = 1.5− 2.6v, ∂h2

∂u = −1.1 and ∂h2
∂v = 0.1.

Then, h is continuously differentiable at xi and det Dh(xi) 6= 0, 0 ≤ i ≤ m, according to
theorem 1, the fixed point O is the return-expansion fixed point of h, that is, h is Li–Yorke
chaos. It can be inferred that map (9) is chaotic in the sense of Li–Yorke as k14 = 1.55.

According to the above theoretical analysis and simulation, system (9) has complex
dynamic behavior when the parameter k14 ∈ [1.47, 1.57]. It can be used as a disturbance
source to Ecsys.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

1.46 1.48 1.5 1.52 1.54 1.56 1.58

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 5. Lyapunov exponent and Bifurcuresation diagram of sys (9) for k14.
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3.1.2. Sequence Generation Algorithm Based on Quantum Random Walk

Let G be n-nodes and undirected graph. It is a n-cycle graph, that is, the degree of
each node is 2. Then, the quantum random walk in G contains two quantum systems:
Walker and Coin. Walker is an N-dimensional Hilbert space Hp, whose location of the
ground state is {|i〉, i ∈ {0, 1, 2, · · · , N}}. Any position of Walker can be represented as
∑i ki|i〉 , and ∑i|ki|2 = 1. Coin is a two-dimensional dimensional Hilbert space Hc, whose
ground state is {|0〉, |1〉}. Then the state of any Coin can be expressed as a|0〉+ b|1〉, and∣∣a2
∣∣+ ∣∣b2

∣∣ = 1. The joint state of Walker and Coin is Ht = Hp ⊗ Hc, and the evolution of
the joint state is accomplished by using coin operation and position movement.

1. The coin operator Ĉθ is as following:

Ĉθ = cos θ|0〉〈0|+ sin θ|0〉〈1|+ sin θ|1〉〈0| − cos θ|1〉〈1|.

Let the position shift operator be Ŝ( f award,back), and the expression is as following:

Ŝ = ∑
i
(|i + f arward(mod n)〉〈i| ⊗ |0〉〈0|+ |i− back(mod n)〉〈i| ⊗ |1〉〈1|),

where f arward means that Walker gos right steps as the state of the coin is |0〉, and back
means the steps to left as |1〉. So, each step of the quantum random walk can be
written as

Û(θ, f arward,back) = Ŝ ·
(
Ĉ⊗ I

)
. (11)

Assuming that the initial state of the system is |ϕ(0)〉, and after t steps, according to
Equation (11), the joint state is

|ϕ(t)〉 = Ût|ϕ(0)〉 =
(
Ŝ ·
(
Ĉ⊗ I

))t|ϕ(0)〉. (12)

Then, the probability of stopping at point |υ〉 in graph G after step t is

Pt(υ|ϕ(0)) = |〈(υ, 0)|ϕ(t)〉|2 + |〈(υ, 1)|ϕ(t)〉|2, (13)

and the limiting distribution π of stopping at point |υ〉 is

π = lim
T→∞

P̄T(υ|ϕ(0)) = lim
T→∞

1
T

T−1

∑
t=0

Pt(υ|ϕ(0)). (14)

In order to design a sequence generation algorithm, the following theorem based on
Theorem 3.6 and Theorem 4.1 in literature [23] is given.

Theorem 2. Let U be a coined quantum walk on the n-cycle graph, with n odd, and with the
Hadamard transform as the coin. Then the limiting distribution π is uniform over the nodes of the
graph, independent of the initial state |ϕ(0)〉.

According to Theorem 2, if quantum random walk is based on n-cycle graph G,
the number of vertices in graph G is n, n is an odd number, and the number of iterations t
is relatively large, (14) is close to uniform distribution. A vector (θ, f award, back, n, i0, c0)
is setup, where c0 is the initial state of coin and i0 is the initial position of the bludger. It
can be seen from (13) that there is a nonlinear map between the probability distribution
Pt = [Pt(υ1|ϕ(0)), Pt(υ2|ϕ(0)), · · · Pt(υn|ϕ(0))] and initial state |ϕ(0)〉 = (i0, c0). Accord-
ing to (12) and (13), a uniformly distributed sequence can be generated. Hence, a sequence
generation Algorithm 1 with high sensitivity to initial conditionsis is proposed following:
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Algorithm 1 Sequence generator algorithm.
Input: (θ, f award, back, n, i0, c0)
Output: AllOutputSeq
1. Tmax = 2n, AllOutputSeq = ∅;
2. f or T = 1 : Tmax

t = 1, |ϕ(0)〉 = (i0, c0),
while(t <= T)
|ϕ(t)〉 = Û|ϕ(t− 1)〉

end;
|ϕ(T)〉 = ∑n1

1 ki(xi, 0) + ∑n2
1 hj

(
yj, 1

)
,

S1 = {(k1, x1, 0), (k2, x2, 0) · · · (kn1 , xn1 , 0)},
S2 = {(h1, y1, 1), (h2, y2, 1) · · · (hn2 , yn2 , 1)},
RanSeq =

{
(p1, x1), (p2, x2) · · · (pn1 , xn1)

∣∣p = k2 }
f ors2 = 1 : length(S2)

f ors1 = 1 : length(S1)
i f (xs1 == ys2)

(ps1 , xs1) =
(

ps1 + h2
s2

, xs1

)
,

break,
endi f

end f or
i f (s1 == length(S1))

RanSeq+ =
(
h2

s2
, ys2

)
,ultimately

endi f
end f or,
OutputSeq =

{
±pi +

xi
n |i = 1, 2 · · · length(RanSeq)

}
,

AllOutputSeq+ = OutputSeq,
end f or.

3. return AllOutputSeq

3.1.3. Optimization Scheme and a Compound Chaotic System

The optimization block diagram is shown in Figure 6, where u of system (9) is used
to disturb the input x of Ecsys system, and v is used to disturb the control parameter α.
A name “ Qusys ” is given by the sequence based on Algorithm 1. (u, v) and output x of
Ecsys controled parameters (θ, c0, n, i0) of Qusys and other parameters of Qusys are fixed.
The outputs of Ecsys merged with outputs of Qusys, and yj is combined output. So, a new
compound chaotic system is ultimately obtained.

Hchao
(ui, vi)

Fnor T

xn

Ecsys

Qusys

xn

Merge
xn+1

qt

yn

Figure 6. Block diagram of the optimization scheme.

Detailed description of perturbation algorithm is as following. A simple normalized
processing function is given by

Fnor(x) = (x−xmin)/(xmax−xmin).
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Apparently, Fnor(x) can adjust the value of the output (u, v) of system (9) to the unit region
(0, 1). Two disturbance functions are constructed, and named, respectively, T1 and T2.
The functions is designed as the following:{

T1(ui+1, xn) = Fnor(ui+1) ∗ β + xn ∗ (1− β),
T2(vi+1) = 1.5 + Fnor(vi+1) ∗ γ,

where β ∈ (0, 1) and γ ∈ (0, 0.5) are two control parameters. After being perturbed,
a chaotic system can be obtained:

xn+1 = t

a(T2(vi+1))

√
1
t

T1(ui+1, xn) + m−
(

1
t

T1(ui+1, xn) + m
)3
−m

, (15)

where a(c(vi+1)) =
T2(vi+1)−1

20 + 1.56. Parameter settings of Qusys are as following:

θ = Fnor(u) · π

3
,

n = INT(Fnor(v) · 20) + 11,

i0 = INT(x · 20)(mod n),

f award = INT(Fnor(v) · 20)(mod n),

back = INT(Fnor(u) · 20)(mod n),

c0 = 1,

where INT(·) is an Integral function. Sequence
{

xj
}

merged with sequence
{

qj
}

in a
nonlinear way, and the ultimate output is

yj = η|cos(j)|xj + (1− η|cos(j)|)qj, (16)

where η is a proportion parameter and η ∈ (0, 0.2).

3.1.4. The Digital Compound Chaotic System Expression

If a realized chaotic system executes on a digital device and precision of the digital
device is S bit, a quantization function BS(x) is defined to analyze dynamical behavior in
digital chaotic systems. Each process of specific calculation shall be quantized; for instance,
y = x + z is quantified to an expression of the following form:

y = BS(BS(x) + BS(z)).

In order to present a digital chaotic system expression, we have left out some details and
the expression of system (6) is:

xn+1 = BS

t

a(α)

√
1
t

xn + m−
(

1
t

xn + m
)3
−m

. (17)

The expression of the disturbed system (15) is as following:

xn+1 = BS

(
t
(

a(BS(T2(vi+1)))

·

√
1
t

BS(T1(ui+1, xn)) + m−
(

1
t

BS(T1(ui+1, xn)) + m
)3
−m

))
. (18)



Entropy 2023, 25, 166 11 of 25

According to Equation (16), the digital compound chaotic system is as following:

yn+1 = BS(η|cos(n + 1)|)xn+1 + BS(1− η|cos(n + 1)|)BS(qn+1). (19)

3.2. Performance Evaluation of the Compound Chaotic System
3.2.1. Analysis under Finite Precision

For performance assessment, we have implemented the original chaotic system (17)
and the compound chaotic system in the simulation environment. The digital device is
assumed to be an S-bit machine, and the quantization function BS is expressed as Bs(x) =
[x∗2S]/2S, where [x] represents an integer less than or equal to x. Trajectories of different
chaotic systems are shown in Figure 7. According to Figure 7(2), with finite precision 8 bits,
trajectory of the digital Ecsys fall into periodic motion after several iterations. According to
Figure 7(3), for the digital compound chaotic system, periodic motion do not occur as 8 bits.
So, the improved system still maintains strong random characteristics and good chaotic
dynamics performance.
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Figure 7. Trajectories of different chaotic systems.

3.2.2. Time Series Complexity

Approximate Entropy is to evaluate the system complexity from sequence generated
by chaotic system [24]. For a sequence, the greater the approximate entropy, the higher
the complexity. In literature [24], parameters for approximate entropy calculation are rec-
ommended that: mode dimension (m = 2), similarity tolerance (r = 2). The approximate
entropy values of the sequence generated by the chaotic maps are calculated and shown in
Figure 8.
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From Figure 8, we can see that the approximate entropy values generated by the
digital compound chaotic system are the largest ones among the three maps in the cases of
different precisions of the digital device. In particular, low-precision digital device does not
affect the new system dynamics performance; so, there is no need for additional precision
compensation technology support in practical applications.

3.2.3. Histogram Analysis

Histogram is a significant feature in analysis to the sequence generated by chaotic
system. For a good chaotic system for encryption algorithm, the output chaotic sequence
distributes uniformly in the whole state space. For the digital chaotic system, the same
initial values are setup as different finite precisions, such as 8 bits and 64 bits. Sequence
with length of 2424 numbers is generated respectively, and the distribution of the sequence
is statistically analyzed. The statistical results are shown in Figure 9. It can be obtained
from Figure 9(1–3): The distributions of original Ecsys system and digital system are mainly
concentrated in the region (0.9, 1.0), uneven with 64 bits precision. From Figure 8, one
can see that the proposed system output distributes uniformly in the total region (0, 1)
with low precision. So, The proposed system and digital proposed system can both resist
statistical attack.
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Figure 9. Cont.
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Figure 9. Histograms of the sequences generated by the digital chaotic system.

3.2.4. Autocorrelation Analysis

Autocorrelation is used to measure the relation between current value and past values
of the same element. For sequence generated by a chaotic system, it is measuring value
between own and its own shifted. It determines the presence of any repetitive patterns
of bits.

If a sequence {y1, y2, · · · , yN}, the autocorrelation function for lag k is as following:

rk =
1
N ∑N−k

i=1 (yi − µ)(yi+k − µ)

σ2 , (20)

where µ, σ are the mean and the standard deviation of the sequence. The autocorrelation of
sequence generated by different chaotic systems is calculated for 2500 shifts in left and is
plotted in Figure 10. It can be seen from Figure 10 that autocorrelation value of the original
system is in the range of (−0.1, 0.1), while the digital compound chaotic system with finite
precision is in the range of (−0.05, 0.05). Therefore, it can be concluded that the proposed
compond chaotic system has lower autocorrelation and better correlation analysis attacks.
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Figure 10. Autocorrelation analysis.
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4. Design and Performance Analysis of Pseudo Random Number Generator

It is a requirement for cryptographic applications to construct pseudorandom number
generator based on chaotic system [25]. However, due to the lack of strict security analysis,
the PRNG based on the original chaos often has some security vulnerabilities [14,26]. If the
algorithm for PRNG is reasonably designed or the PRNG is designed based on the proposed
system with more chaotic behavior, resistance against the finite precision effect, and larger
key space, the PRNG should have good random characteristics, security and effectiveness.

4.1. Design of PRNG Based on the Proposed Compond Chaotic System

A PRNG can be used for any application if the PRNG has some properties such as
good statistical properties, long cycle length, larger key space, etc. In order to achieve a
fast throughput and make easier hardware or soft implementation, mechanism with p bit
accuracy is adopted. The steps of algorithm for generating pseudo-random numbers are as
following:

1. Import the keys: initialize (u0, v0), k14 and x0, which are the control parameters and
initial conditions as shown in Figure 6.

2. Iterate the proposed compound chaotic map 1000 times and the output yi is discarded,
where i end at 999.

3. Generate and output the random number zn using the following equation from the
yn:

zn = [yn × 10m − f loor(yn × 10m)]× 2p,

where p is the length of the corresponding binary random number and n start at 1000.
The expression yn× 10m− f loor(yn × 10m) excludes m most effective numbers, which
makes it more complex and uniform. The value of m is determined by p, and the
proposed values are listed in Table 1.

Table 1. The suggested values of p and m.

p 1 4 8 16 32

m ≥3 ≥2 ≥2 ≥2 ≥1

4.2. Analysis and Test of Security for the Proposed PRNG

It’s essential for a random number generator to perform all necessary analyses and
tests. There are several fundamental analysis and tests to verify the randomness, security
and availability of proposed algorithm. The pseudorandomness of sequence generated
by RNG is mainly through recurrence plots analysis, information entropy, and random
evaluation software to test, etc. The following excerpt is that under p = 2 and m = 2
conditions, some security characteristics of the PRNG are comprehensively analyzed or
tested and the test results with the fine-grained trace are carried out.

4.2.1. Key Space Analysis

Random number generator is mainly used to generate key and from an encryption
point of view, the size of the key should not be less than 2128 to provide a high level of
security [27]. We select (u0, v0, k14, x0) as the key set. These parameters should be selected
from the control parameters and initial conditions of the chaotic region, which depends on
the system bifurcation diagram. Because bifurcation diagram is used to describe mutations
in system dynamics. Thus, a set of keys are given based on the bifurcation diagram of
system (4), including: u0 ∈ [−0.9, 0.3], v0 ∈ [−0.4, 1.2], k14 ∈ [1.47, 1.57] and x0(0.0, 1.0). If
the computational accuracy of the actual system applied is 1016, the range of the secret key
space can be roughly calculated as following:(

6× 1015
)(

8× 1015
)(

1015
)(

1016
)
= 4.8× 1062 ' 2208.
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It can be concluded that the size of the key space is sufficient to resist all kinds of violent at-
tacks.

4.2.2. Correlation Analysis

For a PRNG, the correlation coefficients between sequences produced with nearby
keys are computed according to the method in [28]. For two sequences S1 = [x1, x2, · · · , xN ]
and S2 = [y1, y2, · · · , yN ], coefficients are calculated as following:

Cor(S1, S2) =
∑N

i=1(xi − x̄) · (yi − ȳ)[
∑N

i=1(xi − x̄)2
]1/2[

∑N
i=1(yi − ȳ)2

]1/2 , (21)

where x̄ and ȳ are the mean values of x and y respectively. Correlation is strong between two
sequences for Cor(S1, S2) ' 1 and no or very small correlation corresponds to Cor(S1, S2) ' 0.

Let p = 32 and m = 2; the correlation coefficients test are performed as following:

1. x01 = 0.205001025, u01 = 0.102772828 and v01 = 0.118667888, a sequence with 106 num-
bers is generated. If the initial condition changes small (x02 = x01 + 0.000000000000001)
and the others remain unchanged, a new sequence will be generated.

2. Let the initial condition u is changed (u02 = u01 + 0.000000000000001) and the others
remain unchanged, a new sequence with the same length will be generated.

3. Let the initial condition v is changed (v02 = v01 + 0.000000000000001) and the others
remain unchanged, a new sequence with the same length will be generated.

Correlation coefficients data are calculated by formula (21) and listed in Table 2.
By analyzing the data in Table 2, the following conclusions can be drawn: there is no
correlation between the generated sequences produced the proposed PRNG is sensitive to
small changes in all initial conditions.

Table 2. Correlation coefficients of three pairs of pseudo random sequences.

Cor

x01 = 0.205001025 x02 = 0.205001025000001 −0.00290
u01 = 0.102772828 u02 = 0.205001025000001 −0.00230
v01 = 0.102772828 v02 = 0.205001025000001 −0.00016

4.2.3. Recurrence Plots Analysis

A powerful tool is given in [29] for visualization and analysis of recurrence, called
recurrence plot (RP). As analyzing nonlinear time series by RP, phase space reconstruction
is the first step. The phase space reconstruction is carried out by selecting appropriate time
delay τ and embedding dimension m. For a time sequence {xn, n = 1, 2, · · · , N}, a set of m
dimensional vectors is obtained after phase space reconstruction:

X(n) = (x(n), x(n + τ), · · · , x(n + (m− 1)τ)),
n = 1, 2, · · · , N − (m− 1)τ.

(22)

The distance between m-dimensional vector X(i) and X(j) at two moments is rij, that is:

rij = ‖X(i)− X(j)‖.

It can be defined as the following recursive matrix form:

Rij(ξ) = θ
(
ξ − rij

)
, i, j = 1, 2, · · · , N − (m− 1)τ,
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where θ is Heaviside function and ξ is threshold. Heaviside function is expressed as
following:

θ(x) =
{

1, x = ξ > rij > 0,
0, x = ξ 6 rij < 0.

For the recursive matrix, it means that the states at time i and time j are obviously different
(obviously similar) when Rij = 0 (Rij = 1). The corresponding RP can be drawn according
to the recursive matrix. RP can intuitively reflect the movement rule and trend of time
sequences. In the actual calculation, the threshold ξ is 0.1 times of the standard deviation
of the time series [30].

RP can directly show the motion rule of dynamical systems. However, RP cannot
quantify the system characteristics because of the small-scale structure [31]. Recurrence
quantification analysis (RQA) precisely quantifies these characteristics. RQA is proposed
by Webber and Zbilut in the literature [32]. RQA is a quantitative analysis of the se-
quence by extracting structural feature quantities by analyzing the detailed structure of
the RP. The main feature quantities are recursive rate (RR), a measure for determinism
(DET), layered degrees (LAM), trapping time (TT) and the average diagonal line length (L).
Small values of feature quantities for dynamical system represent a processe with weakly
correlated and chaotic behaviors.

The recursion rate represents the proportion of adjacent vectors in RP and it is the
percentage of recursion points in the total number of points:

RR =
1

N2

N

∑
i,j=1

Ri,j(ξ),

where N is the number of points on the abscissa of the RP. The histogram DLS(ξ, l) of the
diagonal with length l in RP is as following:

DLS(ξ, l) =
N

∑
i,j=1

(
1− Ri−1,j−1(ξ)

)(
1− Ri+l,j+l(ξ)

) l−1

∏
k=0

Ri+k,j+k(ξ).

DET is the ratio of recurrence points that form diagonal structures and it is given by

DET =
∑N

l=lmin
l · DLS(ξ, l)

∑N
l=1 l · DLS(ξ, l)

,

where lmin is the minimum length requirement (length threshold) and value is generally 2.
In the RP and during l time steps, a diagonal line with length L means that a segment of
system trajectory is close to another at different moments. The average diagonal length is
the average time that two segments are close to each other, which can be interpreted as the
average prediction time

L =
∑N

l=lmin
l · DLS(ξ, l)

∑N
l=lmin

DLS(ξ, l)
.

For calculating the number of vertical line segments VLS(v) with length v, a method is as
following:

VLS(v) =
N

∑
i,j=1

(
1− Ri,j(ξ)

)(
1− Ri,j+v(ξ)

) v−1

∏
k=0

Ri,j+k(ξ).

Laminar degree (LAM) is the ratio between the recurrence points forming the vertical
structures and the entire set of recurrence points, and it can be computed,

LAM =
∑N

v=vmin
v ·VLS(v)

∑N
v=1 v ·VLS(v)

,
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where vmin is the threshold of vertical line length (generally 2). Capture time (TT) is the
average length of the vertical line segment in RP, and it is expressed as following:

TT =
∑N

v=vmin
v ·VLS(v)

∑N
v=vmin

VLS(v)
.

Capture time (TT) is used to estimate the average duration of a system in a particular state.
Figure 11 shows RQA measures as parameter k14 is changed, the threshold ξ = 0.1σ

(σ as the standard deviation of the sequence), lmin = vmin = 2, and the initial conditions
(x0 = 0.205001025, u0 = 0.102772828, v0 = 0.118667888). Processes with uncorrelated or
weakly correlated and stochastic or chaotic behaviors cause none or short diagonals,
whereas deterministic processes cause longer diagonals and less single, isolated recur-
rence points [18]. It can be seen from Figure 11 that RR typical measurement value is 0.5,
DET value is 0.65, LAM value is 0.03 and TT value is 3. Obviously, these values are small
and the proposed PRNG has good randomness.
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Figure 11. RQA measures for the proposed PRNG.

4.2.4. Information Entropy

One of the most important concepts in information theory is entropy, which is first
introduced by Shannon [33]. It reflects the uncertainty and randomness of each information
system. Entropy measures the unpredictability of a sequence generated by a PRNG. For a
sequence S = {x1, x2, · · · , xn}, the definition of information entropy H(S) is as follows:

H(S) =
N

∑
i=1

p(ai)log2
1

p(ai)
, (23)

where number ai has the probability of p(ai) to occur in sequence S. In actual calculation,
a corresponding character sequence is generated for every 8 bits by original binary sequence.
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The information entropy is calculated according to Formula (23). For a sequence of bytes,
the ideal value of information entropy is 8.

Sequences of varying lengths and the different initial conditions are generated by the
proposed PRNG, and their entropy values are shown in Table 3. The values of the different
initial conditions with k14 = 1.55 are: S1 (x0 = 0.105001025, u0 = 0.201772828, v0 =
0.218667888), S2 (x0 = 0.105001025, u0 = 0.201772828, v0 = 0.218667888) and S3 (x0 =
0.505001025, u0 = 0.251772828, v0 = 0.418667088). Sequences with lengths of 5000, 10000,
20000, 100000 and 107 are generated. Table 3 shows that each information entropy value is
close to the ideal value 8.

Table 3. Information entropy.

LenSeq 5000 10000 20000 105 107

H(S1) 7.9904252203 7.9953919349 7.9975813926 7.9994779223 7.9999951973
H(S2) 7.9899963471 7.9949233070 7.9974845070 7.9994868500 7.9999952355
H(S3) 7.9895789685 7.9947618385 7.9970912252 7.9995475969 7.9999954916

4.2.5. Statistical Complexity Measure

Complexity is a measure of off-equilibrium ‘order’ [18]. Statistical complexity measure
(SCM) is proposed as quantifiers of the degree of physical structure in a signal [34]. SCM
can be used to study the complex structure hidden in chaotic system. In literature [35],
the statistical complexity of the presented algorithm is calculated. The probability distribu-
tion P is associated with the time series generated by the dynamical system. The intensive
SCM (Cj[P]) can be considered as a quantity that characterizes the probability distribution
P which not only quantifies the randomness but also presents the structure. Cj[P] is defined
based on information entropy as following:

Cj[P] = Qj[P, Pe] · HS[P], (24)

where HS[P] is the entropic measure and QJ is “disequilibrium”. HS[P] and QJ are defined
in [36]. QJ is given by

Qj[P, Pe] = Q0 · {H[(P + Pe)/2]− H[P]/2− H[Pe]/2},

where Q0 is a normalization constant that reads

Q0 = −2
{(

N + 1
N

)
ln(N + 1)− 2 ln(2N) + ln N

}−1
.

HS[P] is defined as following:

HS[P] = H[P]/Hmax, (25)

where H(P) is the Shannon entropy. For an extremely good PRNG based on chaotic system,
it can be expected that “no attractor” will be reconstructed. It will be quite reasonable to
obtain a homogeneity cloud of points with a tendency to fill the d-dimensional space [35].
Consequently, the associated permutation probability distribution will be P ' Pe [9]. So,
in the case of a PRNG, the “ideal” values are HS[P] ' 1 andCJ [P] ' 0.

If entropy HS and the intensive statistical complexity CJ are as functions of the number
of 8 bits-words, then Hmax = 8, N = 256 and Pe = {1/N, 1/N, · · · , 1/N}. Based on
the calculations mentioned above, the normalized entropy Hs and the intensive statistical
complexity Cj as functions of the number of 8 bits are shown in Figure 12. It can be obtained
from the Figure 12 that Cj and Hs tend to 0 and 1, respectively. So, the proposed PRNG is
successfully verified by the statistical complexity and the normalized Shannon entropy.
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Figure 12. Normalized Shannon entropyHs and intensive SCMCj for the proposed PRNG.

4.2.6. Degree of Non-Periodicity

Wavelet analysis is a valuable tool for the study of dynamic systems. The Scale index
technique and the windowed Scale index are based on the continuous wavelet transform
and the wavelet multi-resolution analysis [37,38]. The tools are designed to measure the
degree of non-periodicity through its wavelet scalogram, allowing to quantify how much
chaotic a signal is [38].

In order to detect and study nonperiodicity in sequences generated by PRNG, we can
regard the PRNG as a continuous function f ∈ L2(R), where f defines the time interval
at a finite time interval I = [a, b] and I is large enough [18]. The Continuous Wavelet
Transform (CWT) of f at time u and scale s is defined as following:

W f (u, s) := 〈 f , ψu,s〉 =
∫ +∞

−∞
f (t)ψ∗u,s(t)dt,

and it provides the frequency details of the function corresponding to scale s and time
location u. The scalogram of f at a given scale s is given by

S(s) = ‖W f (u, s)‖ =
(∫ +∞

−∞
|W f (u, s)|2du

) 1
2
.

S(s) is the energy of the CWT of f at scale s. The scalogram is a useful tool for studying a
signal because it can detect the most representative scales or frequencies. The innerscalo-
gram of f at a scale s can be defined by:

S inner(s) = ‖W f (u, s)‖J(s) =

(∫ d(s)

c(s)
|W f (u, s)|2du

) 1
2

,

where J(s) = [c(s), d(s)] ⊆ I is the maximal subinterval in I for which the support of ψu,s
is included in I for all u ∈ J(s). Let l be the length of ψu,sand b − a � sl must also be
satisfied. Since the length of J(s) depends on the scale s, the values of the inner scalogram
do not be compared at different scales. In order to avoid this problem, the inner scalogram
should be normalized as follows:

S inner
(s) =

S inner(s)

(d(s)− c(s))
1
2

.

In [38], the new Scale index of f in the scale interval [s0, s1] ⊆ I is given by the quotient

iscale =
S inner(smin)

S inner(smax)
,
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where smax ∈ [s0, s1] is the maximal scale such that S inner(smax) ≥ S inner(s) for all
s ∈ [s0, s1], and smin ∈ [smax, 2s1] is the smallest scale such that S inner(smin) ≤ S inner(s)
for all s ∈ [smax, 2s1]. From its definition, the scale index iscale is such that 0 ≤ iscale ≤ 1,
and it can be interpreted as a measure of the degree of nonperiodicity of the signal [37,38].

Let haar wavelet be mother wavelet function to calculate the Scale index iscale, where
∆s = ∆t = 0.05s, s0 = 1 ands1 = 20. Figure 13 shows the Scale index analysis of the
proposed PRNG, Henon map and the logistic map. It is apparent from comparison of
Figures 12 and 13, that the Scale index of the proposed PRNG is higher than other two
chaotic maps. Thus, the generated sequence of the proposed PRNG is highly nonperiodic.
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Figure 13. The Scale index of the Henon map, the logistic map and the proposed PRNG.

The windowed Scale index is appropriate for nonstationary time series whose charac-
teristics change over time [38]. It is based on the windowed scalogram and the scale index.
The windowed scalogram of a time series f is given by [39]:

WSτ(t, s) =
(∫ t+τ

t−τ
|W f (u, s)|2du

) 1
2
,

where f is centered at time t with radius τ. The windowed scale index of a time series f
centered is defined as

wiscale, τ(t) =
WSτ(t, smin)

WSτ(t, smax)
,

where smax is the smallest scale such that WSτ(t, smax) ≥ WSτ(t, s) for all s ∈ [s0, s1],
and smin is the smallest scale such thatWSτ(t, smin) ≤ WSτ(t, s) for all s ∈ [smax, 2s1].

In general, if [a, b] is the support of f , τ = (b− a)/20 is a good choice[38]. Figure 14
shows the windowed scale index analysis of the proposed PRNG (k14 = 1.55), Henon
map (b = 0.3, a = 1.155) and the logistic map (a = 3.88). As can be seen in Figure 14,
the windowed Scale index clearly shows the evolution over time. Through comparative
analysis, it can be obtained that window scale index of the sequence generated by the
proposed PRNG changes over time mainly above 0.75, which is much higher than the other
two classical chaos maps. Thus, the generated sequence of the proposed PRNG is highly
nonperiodic over time.
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Figure 14. Windowed Scale index of the Henon map, the logistic map and the proposed PRNG.

4.2.7. Differential Attack

Differential attack is that the effect of corresponding ciphertexts is analyzed as small
changes on the plaintext. For a PRNG, it is applied the same analysis on the initial seeds
which are at the same time keys because there is no plaintext. “Bit Change Rate (BCR)” is
carried out to ensure the resistance of the proposed PRNG against the differential attack.

Bit Change Rate (BCR) criterion is defined as

BCR(S1, S2) =
BitDi f f [S1, S2]

N
× 100%, (26)

where S1(S2) is the sequence generated on the initial seed “seed1” (“seed2” ) and N is the
generated sequence length and ‖seed1 − seed2‖ < ε, which represents the small change
between seed keys. BitDi f f [S1, S2] is the number of different bits in S1 and S2. If the
measure of BCR for the two sequences is close to 50, it indicates the two sequences are
almost completely different. The results of BCR for sequences with 107 bit lengths, is
displayed with small changes (10−15) on initial conditions in Table 4. From Table 4, it can
be clearly seen that the BCR values are close to 50 percent. Hence, the proposed PRNG is
sensitive to the change of seeds, and it can be concluded that the presented PRNG is highly
resistive against differential attack.

Table 4. Key sensitivity evaluation based on Bit Change Rate (BCR).

BCR

x01 = 0.105001025 x02 = 0.105001025000001 49.9994
u01 = 0.201772828 u02 = 0.201772828000001 50.0209
v01 = 0.218667888 v02 = 0.218667888000001 50.0014

4.2.8. Random Tests

To examine the randomness of sequence generated by presented PRNG, NIST SP800-
22 is carried out. The soft test suit includes 17 independent statistical tests, which focus
on a sort of different types of nonrandomness in sequence. This software mainly uses
performance indicator p-value which determined the random performance of the sequence.
If the p-value of sequence is higher than the threshold α (the significance level), it means
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that the sequences pass the test. In our tests, a bit sequence is generated, which had the
length of 100× 106 bits and the bit sequence was divided into 100 subsequences. α is 0.01,
which implies that the sequence can be inferred to be random with 99% probability if it
passes the test.

By this way, results from all statistical tests are given in Table 5. From Table 5, the re-
sults of sequence generated by proposed PRNG are all “success”. Hence, the proposed
PRNG successfully passed the NIST SP800-22 tests.

Table 5. Randomness test by NIST SP800-22 for the PRNG.

Test Name p-Value Pass Rate Results

Frequency 0.657933 98/100 Pass
Block Frequency (m = 128) 0.051942 100/100 Pass

Cumulative Sums (Forward) 0.224821 98/100 Pass
Cumulative Sums (Reverse) 0.455937 98/100 Pass

Runs 0.514124 100/100 Pass
Longest Run of Ones 0.262249 100/100 Pass

Rank 0.955835 98/100 Pass
FFT 0.883171 98/100 Pass

Non-Overlapping Templates 0.867692 100/100 Pass(m = 9, B = 000000001)
Overlapping Templates (m = 9) 0.574903 100/100 Pass

Universal 0.474986 99/100 Pass
Approximate Entropy (m = 10) 0.574903 100/100 Pass

Random-Excursions (data3) 0.422034 67/67 Pass
Random-Excursions Variant Serial (data5) 0.922036 67/67 Pass

Serial Test 1 (m = 16) 0.883171 99/100 Pass
Serial Test 2 (m = 16) 0.350485 100/100 Pass

Linear complexity (M = 500) 0.275709 99/100 Pass

4.2.9. Speed Performance Analysis

Speed of data generated by PRNG is an important factor for evaluating the perfor-
mance. For the proposed PRNG, the time cost is measured in the running environment:
Centos 7, Intel I5-6300U CPU, 4GB RAM and MATLAB 2018a software framework. We
measured the time cost in the running environment. We set the parameters and 100 bit
sequence are generated, each of which is 500,000 bits in length. Table 6 compares the
speed of the proposed PRNG in terms of the number of bits generated with other PRNG
schemes. Compared with other PRNG schemes, the proposed PRNG is fast enough for
practical application.

Table 6. Speed comparison

PRNG Mean Time Cost

Proposed PRNG 0.3514
Ref. [21] 3.8989
Ref. [40] 108.1568

Chebyshev map 0.8056
Ref. [41] 2.2114

LFSR with discrete chaotic map [42] 3.4530

5. Conclusions and Discussion

In a summary, we proposed a new scheme with perturbation and mixture together to
optimize the one-dimensional chaotic map self-constructed. We obtain a compound chaotic
system using this scheme and the new system is evaluated using some test methods such
as time series complexity, autocorrelation and distribution of output frequency. The test
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results showed that the new system has high randomicity and the system can operate well
in the environment of low precision equipment. Thus, it can be concluded that the new
scheme can be used to design a compound chaotic system with complex dynamic behavior.
When using the compound chaotic system in a PRNG, designer can easily achieve high
security and good quality of the random bit sequences.

A pseudorandom number generator (PRNG) is specifically designed based on the
new chaos. The PRNG merely relies on the equations used in compound chaotic map.
The algorithm is not complex, which does not impose high hard-ware requirement and
thus speed is fast. The proposed PRNG exhibits excellent security property in terms
of quantifiers based on information theory, recur rence plots, nonperiodity, correlation
anaysis, differential attack and NIST tests. By these test results, we conclude that our
PRNG is a reliable PRNG and it can generate highly available random numbers for various
applications in computer science.
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