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Abstract: All-cause mortality is a very coarse grain, albeit very reliable, index to check the health
implications of lifestyle determinants, systemic threats and socio-demographic factors. In this work,
we adopt a statistical-mechanics approach to the analysis of temporal fluctuations of all-cause
mortality, focusing on the correlation structure of this index across different regions of Italy. The
correlation network among the 20 Italian regions was reconstructed using temperature oscillations
and traveller flux (as a function of distance and region’s attractiveness, based on GDP), allowing
for a separation between infective and non-infective death causes. The proposed approach allows
monitoring of emerging systemic threats in terms of anomalies of correlation network structure.

Keywords: complex networks; dynamical systems; epidemiology; time series

1. Introduction

The monthly-based all-cause death rate fluctuations of the 20 Italian regions are
highly correlated in time. This happens even in the absence of recognisable macroscopic
parameters, such as massive epidemics. In this work, we tried and built a phenomenological
model of the observed between-region correlations based on the traveller flux among the
network having, as nodes, the regions and, as edges, the mutual traveller fluxes estimated
by a simple exponential model having the distance between regions and Gross Domestic
Product (GDP) as major determinants. The above model was complemented by the well-
known biphasic effect of temperature on all-cause mortality [1–5]. The problem can be
interpreted as the reconstruction of a network wiring in which the between nodes (regions)
edge strength corresponds to the observed temporal correlation of the relative death rate
fluctuations in time (Y-network) by the network wiring generated by the combination of
between nodes fluxes and temperature effects (X-network).

The strategy of analysis was as follows: the (extremely high) between-region correla-
tion was normalised by what was expected by the observed (well-known) biphasic effect
of seasonality. The crude effect of seasonality (when partially out) had, as a consequence,
the effect of lowering correlations, but we still have a very high residual correlation for a
more refined model.

The biphasic effect (high mortality in winter and summer) on all-cause mortality
was hypothesised as derived from an infective component prevailing in winter and a
non-infective component prevailing in summer. This interpretation stems from the higher
diffusion of viral infections in winter and cardiovascular (often from older people’s dehy-
dration) in summer. The winter (infectious) component was modelled using the between
regions travellers flux (exponentially decaying with distance) complemented by the ‘attrac-
tiveness’ of each region proportional to its GDP. Thus we generated a ‘between-region flux
network’ using a SIR-like model. The summer (non-infectious) model was formalised using
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a linear function of the month-specific average temperature of each region. This allows us
to take into consideration the effect of local heat waves.

A model encompassing the above-sketched elements (X-network) was fitted to the
observed death rates, producing the correlation network (Y-network). This minimalistic
model was able to reconstruct the death rate oscillation in time and the observed between-
region correlation network with high fidelity (corr = 0.993 and corr = 0.841, respectively).

In this work, we demonstrate that weighted edge correlation networks are a very
powerful method in epidemiological studies, allowing the tracing of the dynamics of
mortality (morbidity) patterns and potentially discovering anomalies relevant to public
health. Taking into account the most general definition of a system as ‘...a set of interacting
units with relationships among them’ [6], we can safely state that Italy, as for death-rate
fluctuations, due to the high temporal correlation among its regions, is a proper system.
This allows for the sensible use of second-order statistics (such as correlations), adding
unique information content to environmental and epidemiological studies that, in the great
majority of cases, rely on the exploitation of a single variable (e.g., death rate fluctuations
in a given area) in terms of a set of covariates (e.g., pollution, age structure, etc.).

2. Materials and Methods

In order to model the possible order parameters shaping the observed (and par-
tially unexpected) very dense among regions correlation structure of the monthly-based
2011–2019 time series of all-cause mortality, we tried to keep to a minimum both the a priori
hypotheses and the number of fitted parameters. This modelling choice was dictated by
both the lack of any strong theory on all-cause mortality and to avoid overfitting problems.

Thus we limit ourselves to inserting, as ‘explanatory variables’, the two-phase effect of
temperature and an index derived by commuter flux among different regions modulated
by the GDP of each region (considered a proxy of region attractiveness).

In the following, we will call nim the number of deaths recorded in region i during the
m-th month of recording; accordingly, we will denote Tim as the average temperature in the
same region during the same month.

2.1. Bi-Phasic Effect of Temperature

To account for temperature effects, we assume that nim is Poisson distributed with
〈nim〉 = λi(Tim):

λ
biphasic
i (T) = e−ac,i T+bc,i + eah,i T+bh,i , (1)

where ac,i > 0 and ah,i > 0 (c and h stand for ‘cold’ and ‘hot’, respectively). This is a convex
function with a minimum at:

Tmin,i =
bc,i − bh,i + log(ac,i/ah,i)

ac,i + ah,i
. (2)

The four parameters (ac,i, bc,i, ah,i and bh,i) are fitted, for each region i, by max-
imising the log-likelihood (through the scipy.optimize.minimize function, with TNC
method [7,8]):

LL = ∑
m

nim log
(
λ

biphasic
i (Tim)

)
− λ

biphasic
i (Tim). (3)

The temperature Tim is computed by associating the main administrative centre of
each region with the three closest weather stations for which we have temperature readings.
Tim is then taken, for each month, as the weighted average of the three stations, with the
weight proportional to the inverse of the distance between each station and the main
administrative centre.

2.2. Analysis of Commuter Flux

We denote cij as the number of daily commuters from region j to region i; and dij
(The inter-region distance, dij, we used is the distance between the main administrative
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centres—“capoluogo”—of each region.) as the distance between the same two regions; note
that cij, unlike dij, is not symmetric. We hypothesise an exponentially decaying relationship
between the flux and the distance:

cdist
ij (d) = κ

(
e−

d
d0 + b0

)
(4)

where the parameters (κ, d0 and b0) are fitted by maximising the log-likelihood (through
the scipy.optimize.minimize function, with the TNC method; the zeros—no commuters
from region j to region i—are not included in the fit):

LL = − ∑
i, j|cij>0

(
log
(
cij
)
− log

(
cdist

ij (dij)
))2

. (5)

Here we are assuming a log-normal distribution for cij around the expected value cdist
ij .

Defining ci: ≡ ∑j cij—the number of commuters to region i, and calling GDPi the GDP
of region i, we hypothesise the existence of a linear relationship:

cgdp
i: (GDP) = κ GDP (6)

whose slope κ is fitted by maximising the log-likelihood (through the scipy.optimize.
minimize function, with the TNC method):

LL = −∑
i

(
log
(
ci:
)
− log

(
cgdp

i: (GDPi)
))2

. (7)

We are assuming that ci: follows a log-normal distribution around the expected value
cgdp

i: . This is in contrast with the assumption of log-normality for cij, since the sum of
log-normal variables is not itself log-normal. Yet, in many cases, this is a good approxima-
tion [9].

Finally, we performed a fit that considers the two effects together: the exponential
decay with distance and the linear dependence on the GDP of the region of destination;
indicating with popj the population of region j, we have:

cfit
ij = κ popj GDPi e−

dij
d0 . (8)

As above, the fit procedure finds the best parameters κ and d0 by maximising the
log-normal log-likelihood (through the scipy.optimize.minimize function, with the TNC
method; the zeros—no commuters from region j to region i—are not included in the fit).

2.3. Total Flux

We hypothesise that the total flux of persons fij comprises, beyond the daily com-
muters cij, an ‘episodic’ component eij of more irregular movements:

fij = cij + eij. (9)

Starting from the results for cij, we make the assumption that eij is an exponentially
decaying function of the distance between regions and a linear function of the GDP of the
region of arrival i and of the population of the region of departure:

eij = κe popj GDPi e−dij/de
0 . (10)

With respect to Equation (8), we expect de
0 > d0, since episodic travels, in contrast with

frequent ones, are likely less affected by the distance to travel.



Entropy 2023, 25, 21 4 of 13

2.4. Sir Network Model

The full flux-temperature model includes two different effects. The first one is related
to the non-infective component of mortality:

λflux
im = popi

(
eah Tim+bh + ρ0i

)
+ . . . , (11)

where λflux
im is the model expectation for the number of deaths in region i at month m;

and ρ0i is a baseline mortality rate for region i. Note that this effect is akin to the warm-
season component of Equation (1), but here in the flux-temperature model, for the sake of
parsimony, we lose the individualised behaviour of each region i, and all regions respond
to high temperatures in the same way.

The second effect takes into account the infective component of mortality. We make the
simplifying assumption that, in each month, a new infectious disease starts spreading; at the
end of the month, a fraction µ of the people ‘recovered’ from the disease dies; the following
month, the process starts afresh. The spreading of the disease follows a SIR (Susceptible,
Infected, Recovered) model [10] on the flux network. Defining the two matrices:

φij =


fij

popj
for i 6= j

1− ∑k fkj
popj

for i = j
(12)

φ̂ij =
( φij

∑k φik

)ᵀ
(13)

the dynamics of the model reads:

Ṡi = −∑
l

φ̂il

[
β

popl

(
∑

j
φl j Sj

) (
∑

j
φl j Ij

)]
(14)

İi = ∑
l

φ̂il

[
β

popl

(
∑

j
φl j Sj

) (
∑

j
φl j Ij

)]
−γ Ii (15)

Ṙi = γ Ii, (16)

where Si, Ii and Ri are the number, respectively, of susceptible, infected and recovered
individuals in region i; β measures the rate at which susceptible individuals get infected
(S→ I); and γ is the rate of recovery, I → R. The model, therefore, consists of 60 coupled
differential equations.

The reasoning behind the model is as follows. The term ∑j φij Sj represents the number
of susceptible individuals in region i, at a given instant in time, due to the flux from other
regions (minus the flux out of region i itself—the diagonal elements φii); for the infected, it
is ∑j φij Ij. In a classical SIR model, the number of newly infected individuals dI is given
by β S I

pop ; in our case:

dIl =
β

popl

(
∑

j
φl j Sj

) (
∑

j
φl j Ij

)
. (17)

At the end of the day, the reverse flux f ji (people moving back from region i to region j)
will redistribute the newly infected in proportion to the fraction of susceptible individuals
contributed by each region j; this is given by:

dIi = ∑
l

φ̂ildIl , (18)

that, together with Equation (17), gives the infinitesimal increment of infected people
entering Equation (15) (first term on the left).

The initial conditions are always in the form of one ‘patient zero’ in region i0 at time
t = 0, so that Si(t = 0) = popi for i 6= i0, and Si0(t = 0) = popi0 − 1; accordingly,
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Ii(t = 0) = 0 for i 6= i0, and Ii0(t = 0) = 1. Since i0 is not known, we assume it to be a
random variable distributed such that:

p(i0 = i) ∝ GDPi; (19)

this amounts to assuming that the external flux to region i (people coming to region i from
outside Italy) is proportional to the GDP of the region itself.

For each month, we evolve Equations (14)–(16) for 30 days (t ∈ [0, 30]); the equations
are integrated using the Euler method, with step size dt = 1 day. Finally, this infective
component of mortality is incorporated into the model:

λflux
imi0 = popi

(
eah Tim+bh + ρ0i

)
+ µ Ri0

im(t = 30), (20)

where with Ri0
im(t = 30) we designate the total number of recovered individuals for region

i at the end of month m, when the patient zero was located in region i0 (all months are
assumed, for simplicity, to have 30 days).

To also incorporate seasonal effects in the infective dynamics, we make β a function of
the temperature:

βim = e−aβ Tim+bβ , (21)

with aβ > 0; with the additional constraint that β < 1
dt (the condition β = 1

dt amounts to
having all the population infected in a single dt; larger values lead, in the Euler approxima-
tion, to unphysical solutions).

Considering Equations (9) and (11) (parameters ah, bh and ρ0i), Equation (10) (κe

and de
0), Equation (20) (µ), Equation (21) (aβ and bβ), alongside Equations (14)–(16) (γ),

the model comprises 28 parameters; of which 20 (the ρ0i) are simply used to offset the
different mortality rates in different regions (due, for example, to distinct age structures).
These parameters are fitted to the data by maximising the Poisson log-likelihood:

LL =
1

Ncounts
∑
i0

p(i0)
[
∑
i, m

nim log
(
λflux

imi0

)
− λflux

imi0

]
, (22)

where Ncounts is the number of terms in the sum ∑i, m (if we consider nbatch different months,
having 20 regions, Ncounts = 20 · nbatch), and p(i0) is given by Equation (19).

To this likelihood, we added two prior likelihoods to constrain the parameters of
the model. The first is a soft flat prior, not-null in the range [0, 0.2] for the quantity ∑k fki

popi
(see Equation (9)); the log-prior becomes quadratic outside the allowed (flat probability)
range; the factor in front of the quadratic term is chosen large enough to practically prevent
leaving the allowed range. This constrains the fraction of the population leaving a region
every day to less than 20%. The second log-prior is quadratic in de

0 (Equation (10)):

log
(

p(de
0)
)
= −9.74 · 10−7 (de

0
)2

+ const, (23)

to penalise very high spatial decay constants de
0 for the episodic component of the flux.

The maximisation has been carried out, in this case, through the Adam optimiser [11],
with default parameters (β1 = 0.9 and β2 = 0.99) and a learning rate decreasing at each
optimisation step according to:

lr(step) =
10−3

(1 + step
104 )0.75

. (24)

The training set consists of the monthly death counts for each of the 20 regions for
96 (out of 108) randomly chosen months in the period 2011–2019. We reserved 12 months
(12 + 96 = 108) as test data; these months were selected to have one exemplar of each
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calendar month—January to December; since the dataset spans only 9 years, 3 randomly-
selected years contributed two months (6 months apart, e.g., April–October) to the test data.

At each step, nbatch months (with month, we here denote one specific month in a
specific year; so, in the training set, we have 96 months) are randomly selected from the
training set (the same month can appear multiple times in the batch). For each month m,
a patient zero-region i0m is randomly extracted with a probability given by Equation (19).
The computed log-likelihood is then:

LLbatch =
1

20 · nbatch
∑

i, m, i0,m

nim log
(
λflux

imi0m

)
− λflux

imi0m
, (25)

a stochastic approximation of the total log-likelihood of Equation (22).
For the first 104 optimisation steps, nbatch = 10. From that step onwards, nbatch = 100;

and, to the log-likelihood, we added a ‘regularisation’ term:

LLcorr = −
υcorr

190 ∑
i>j

(
corrij − corr0

ij

)2
(26)

where corr0
ij is the actual correlation between the monthly deaths of region i and region j;

whereas corrij is the corresponding correlations produced by the model (on the specific
batch); factor 1

190 normalises the sum ∑i>j, which comprises 190 terms. We set υcorr =

8.76× 102.
We monitored the log-likelihood (Equation (22)) on the test data during the training;

since it never substantially decreased (that would suggest some level of over-fitting),
we interrupted the optimisation after 106 steps, when improvement on the training set
appeared extremely slow.

All the computations were performed with custom code written in Python; core
functions were just-in-time compiled, and their gradient was computed, where necessary,
through the Jax package (https://github.com/google/jax, accessed on 9 December 2022).
The complete code, reproducing all the reported results, can be found at https://github.
com/GuidoGigante/All-cause-mortality-fluctuation-across-Italian-regions, accessed on 9
December 2022.

3. Results

The course of monthly death rates, normalised to the mean over the entire period,
is strikingly similar for different regions. This can be appreciated in Figure 1a, where we
show three regions (chosen to be representative of the north—Lombardia, centre—Lazio,
and south—Sicilia, of Italy).

Such observations are made more quantitative in Figure 1b, which shows the between-
region correlation matrix of monthly death rate fluctuations (correlations computed on 108
data points) relative to the different regions. As evident from the figure, the between-region
correlations are extremely high (0.865 ± 0.063), with smaller and less densely populated
regions (i.e., Valle d’Aosta and Molise) endowed (as expected) by a lower (albeit very
significant) average correlation strength (0.739 and 0.805, respectively).

To check if the bi-phasic effect of temperature was sufficient to get rid of the observed
correlations (in the presence of a substantially similar age structure across the different
Italian regions), a quantitative model taking into account the temperature effect was fitted
to the different regions’ mortality data (see Section 2).

https://github.com/google/jax
https://github.com/GuidoGigante/All-cause-mortality-fluctuation-across-Italian-regions
https://github.com/GuidoGigante/All-cause-mortality-fluctuation-across-Italian-regions
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Figure 1. Death rates in different regions are extremely correlated. (a) Actual time series for three
regions, normalised to have an average value equal to one. The three lines present a strikingly
similar course. (b) Pairwise between-region correlations (regions are ordered—left to right and top
to bottom—according to decreasing GDP). A trend with GDP is appreciable, with smaller and less
densely populated regions (i.e., Valle d’Aosta and Molise) endowed with lower (albeit still high)
correlations.

All regions showed very similar relations between death rate fluctuations and tem-
perature with the expected bi-phasic relation with two winter and summer peaks and a
minimum at intermediate temperature values (spring and autumn) (see Figure 2a reporting
three representative regions’ data; continuous lines: see Equation (1)).
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Figure 2. (a) Normalised death rates for three regions as a function of the temperature. The continuous
lines are the results of a fit (see Equations (1) and (3)). (b) Pairwise between-region correlations for
the time series of the deaths when the fitted effect of the temperature is subtracted from the raw
numbers. Correlations drastically decrease (colour scale as in Figure 1b) but remain large.
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By normalising the time series of death rate fluctuations by temperature effect, the
between-region correlation drastically decreases (0.63 ± 0.12), therefore, confirming the ex-
pected effect of temperature on mortality (Figure 2b; colour scale as in Figure 1b). Notwith-
standing that the residual entity correlation is still high, asking for some other relevant
factor to be taken into consideration.

We hypothesise that strong correlations among regions also arise for an infective
component, continually spreading from region to region at small time scales (less than a
month), driven by the movement of people from one region to another. First, we examined
the data about the flux of daily commuters between regions; such data show a clear
dependence both on spatial distance (exponential decay; see Figure 3a; the continuous
line is the result of a fit, see Equations (4) and (5)) and the GDP of the region of arrival,
having the role of an ‘attractiveness’ factor (linear dependence; see Figure 3b, where the
continuous line is the result of a fit; see Equations (6) and (7)).
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Figure 3. Determinants of the commuters flux. (a) The flux between two regions decays exponentially
with the distance to travel (continuous line, exponential fit; see Equation (4)). The points at the
bottom of the graph are zeros (not allowed in logarithmic scale and not considered in the fit). (b) The
flux increases linearly with the GDP of the region of destination (continuous line, linear fit; see
Equations (6) and (7)).

The two determinants (distance and GDP) are considered together in Figure 4, where
the actual number of commuters (from one region to another; the flux is not symmetric) is
compared to the result of the fitted model (see Equation (8)); the good agreement of the
reconstructed flux with the real one (the continuous line is the identity line) supports the
assumptions of the model.

Starting from these results, we make the hypothesis that the total flux of people
between regions is made of the commuters flux plus an ‘episodic’ flux, unknown but with
the same functional form (exponential decay with distance; linear dependence on GDP).
Then, we built, on the total-flux matrix, a SIR-like model [10] that takes into account the
exchange of infected people between regions. Temperature impacts the model in two ways.
The first increases with the temperature and is akin to the high-temperature (rightmost)
arm of the model of Figure 2a. The other modulates the contagiousness of the disease
(higher for lower temperatures).

In the model, each month a new disease starts spreading from a given region (chosen
according to a probability distribution); at the end of the month, a fraction of the ‘recovered’
people dies. Added to this effect are the high-temperature mortality and, finally, a generic,
temperature-independent, region-specific mortality.
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Figure 4. Actual commuters flux vs. the flux reconstructed by a fitted model that decays exponentially
with the distance and grows linearly with the GDP of the region of destination (see Equation (8)).
The continuous line is the identity line. Only non-zero entries of the commuters’ matrix are displayed
and considered in the fitting procedure.

We fitted the model’s parameters (see Material and Methods) to the data. Figure 5a
shows the death counts for all the regions and all the considered months against the death
counts generated by the model. The model can reproduce a large part of the observed
variability (corr = 0.993; the continuous line is the identity line). This can be appreciated,
as the deaths evolve over time, in Figure 5b, for three different regions (dashed lines: data;
continuous line: model). Note that the three time series are offset vertically to make the
comparison data vs. model clearer.
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Figure 5. (a) Actual deaths vs. the deaths expected by the model (corr = 0.993; the continuous
line is the identity). (b) Time-series of the deaths for three regions; dashed lines: data; continuous
lines: model.
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Finally, we compare, in Figure 6, the observed between-region correlations and the cor-
relations between the time series produced by the model for each region. To a large extent,
the model can capture the variability of the correlation among the regions (corr = 0.841; the
continuous line is the identity line).
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Figure 6. Between-region correlation: data vs. reconstructed from the model (corr = 0.841; the
continuous line is the identity line).

4. Discussion

We aptly reconstructed the strong correlation among temporal series of all-cause
monthly death rates relative to the 20 Italian regions by a model encompassing non-
infectious (mainly summer) and infectious (winter) components. This last component was
modelled in terms of a set of SIR equations taking into account both the across-regions
commuter exchange (daily flow) and the more irregular traveller flux (longer time flow).
The different mathematical treatments of summer and winter components allowed for a
neat increase in the reconstruction of both global death rates and among-regionscorrelation
strength concerning crude seasonality.

The reconstruction of the observed correlation network by our model (Figure 6),
excluding the hypothesis of contemporary arising ‘epidemic sources’ across all the regions
(that have near-zero probability), confirms the reliability of the proposed model. Overall,
we can consider Italy as a proper ‘integrated system’ that, thanks to both a rich exchange
flux among regions and the sharing of ‘heat waves’, reaches a general coherence in death
rate fluctuations. This coherent behaviour acts as a largely invariant ‘mean field’ governing
all-cause monthly (and thus unaffected by longer time fluctuations in age class distribution)
death rate fluctuations.

The existence of a very stable correlation network among Italian regions can be prof-
itably used as a tool for the epidemiological surveillance of the territory: the arising of an
anomalous value of the correlation degree of a region can be intended as the presence of
an emerging source of risk (of both infectious and/or environmental origin). Thanks to
the intrinsic redundancy of the correlation matrix, any (even transient) change reverberate
on the entire network, allowing for a more sensible detection of instabilities: one clear
example is the case of Recurrence Quantification Analysis (RQA, [12]). RQA relies upon
the construction of a distance (correlation in the case of angular metrics) matrix between
subsequent epochs of a time (or space [13])-dependent signal. When in the presence of
regime changes driven by a slowly varying control parameter, RQA metrics (at odds with
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usual statistical indexes) exactly determine the entity and time (spatial) location of regime
change [14,15]. Analogous considerations hold for correlation matrices and any other
network system [16] induced by external (e.g., epidemics) or internal (e.g., deterioration of
living conditions) driving forces [17].

The application of statistical-mechanics-inspired tools in public health is still in its
infancy [18,19] and/or confined to very specific issues [20,21]. In this work, relying upon a
very general consideration by Alexander Gorban and colleagues, ‘It is useful to analyse
correlation graphs’ [22], we demonstrate how a raw (albeit very reliable) indicator, all-
cause mortality, is amenable to a statistical mechanics approach opening new avenues to
epidemiological and environmental research.

5. Conclusions

All-cause mortality is considered a general indicator of the general health status of a
population in the context of a particular age structure. This is why many epidemiological
studies investigate both temporal and spatial fluctuation of all-cause mortality, looking for a
correlation with socioeconomic [23], environmental [24–26] and physiological/pathological
conditions [27].

Moreover, the reliability of all-cause mortality statistics, due to its coarse-grain charac-
ter, makes the analysis of its fluctuations a very important viewpoint to estimate the impact
of epidemic threats [28].

Our approach stems from the above considerations on all-cause mortality to explore
a still neglected dimension of this index: the relative weight of purely stochastic and
deterministic (coherent) components of spatio-temporal fluctuations of all-cause mortality.
The presence of external drivers increasing the correlation of such fluctuations was already
observed [24] in terms of departure from ‘optimal temperature’, here we highlight another
correlation source linked to the population fluxes among different areas modelled in terms
of both daily commuters and ‘relative attractiveness’ of different regions in terms of GDP.

This choice allowed us to get rid of a very dense correlation network among the
20 Italian regions for monthly-based fluctuation rates in the 2011–2019 period. The presence
of very high temporal correlations among different regions was partly unexpected and
constituted a very important result for monitoring the onset of emerging public health
threats in terms of alterations of such correlation structures.
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2011, can be downloaded from the site of the Italian Institute of Statistics (ISTAT), following this
link: https://www.istat.it/storage/dati_mortalita/Dataset-decessi-comunali-giornalieri_regioni%
28excel%29_5-21-ottobre-2021.zip (accessed on 24 June 2022). The geographical coordinates for each
comune can be found in the following GitHub project: https://github.com/MatteoHenryChinaski/
Comuni-Italiani-2018-Sql-Json-excel, notably the file italy_geo.xlsx (accessed on 24 June 2022). The
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https://www.istat.it/storage/cartografia/matrici_pendolarismo/matrici_pendolarismo_2011.zip
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the Wikipedia page https://it.wikipedia.org/wiki/Regioni_d%27Italia (GDP is ‘Prodotto interno
lordo’ or PIL, in Italian; accessed on 10 October 2022).
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