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Abstract: The support vector machine (SVM) has been combined with the intuitionistic fuzzy set to
suppress the negative impact of noises and outliers in classification. However, it has some inherent
defects, resulting in the inaccurate prior distribution estimation for datasets, especially the imbalanced
datasets with non-normally distributed data, further reducing the performance of the classification
model for imbalance learning. To solve these problems, we propose a novel relative density-based
intuitionistic fuzzy support vector machine (RIFSVM) algorithm for imbalanced learning in the
presence of noise and outliers. In our proposed algorithm, the relative density, which is estimated
by adopting the k-nearest-neighbor distances, is used to calculate the intuitionistic fuzzy numbers.
The fuzzy values of the majority class instances are designed by multiplying the score function of the
intuitionistic fuzzy number by the imbalance ratio, and the fuzzy values of minority class instances
are assigned the intuitionistic fuzzy membership degree. With the help of the strong capture ability
of the relative density to prior information and the strong recognition ability of the intuitionistic
fuzzy score function to noises and outliers, the proposed RIFSVM not only reduces the influence
of class imbalance but also suppresses the impact of noises and outliers, and further improves the
classification performance. Experiments on the synthetic and public imbalanced datasets show that
our approach has better performance in terms of G-Means, F-Measures, and AUC than the other class
imbalance classification algorithms.

Keywords: fuzzy support vector machine (FSVM); class imbalance learning; intuitionistic fuzzy
number (IFN); relative density

1. Introduction

The class imbalance learning problem in binary classification occurs when the number
of one category is significantly greater than that of the other category [1,2]. The imbalance
datasets exist in various application domains, such as biological recognition [3,4], medical
diagnosis [5,6], fault diagnosis [7], credit card fraud detection [8,9], and text categoriza-
tion [10,11], etc. When tackling imbalanced datasets, due to the main role of the majority
class, the traditional classification methods designed for balanced datasets may not always
achieve good classification performance for the minority class. Therefore, many improved
classical algorithms and novel algorithms [12] have emerged to deal with imbalanced
classification. As one of the most classic classification algorithms, SVM [13–15] shows
relatively more robustness than other methods in imbalanced classification problems, but it
is still unsatisfactory. Since the traditional SVM considers all instances equally and ignores
the difference between the majority and minority classes, thus the decision surface may
be biased toward the majority class instances when handling imbalanced datasets [16,17],
especially when there exist noises and outliers.

On the one hand, the fuzzy support vector machine (FSVM) was originally designed
to deal with the problem of outliers and noises [18]. The FSVM algorithm uses fuzzy
membership functions to assign different fuzzy membership values (MVs) for each instance
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and redefines the SVM. It allows different instances to make different contributions to
the generation of the separated hyperplane. Strategies for calculating fuzzy MVs are very
important for the performance of an FSVM method. Currently, the more commonly used
method is to give fuzzy value to instances only according to their membership degree of a
certain class not the relationship between classes. It results in inaccurate sample distribution
information. Based on the intuitionistic fuzzy set [19], Ha and Wang [20] proposed an
intuitionistic fuzzy support vector machine (IFSVM), the fuzzy value of which is calculated
based on the membership and non-membership degrees determined by the distribution
information of the instances. Then, based on intuitionistic fuzzy sets and kernel functions,
Ha et al. proposed a new fuzzy support vector machine [21], which is superior in dealing
with outliers and noise. Salim et al. [22] introduced the intuitionistic fuzzy number into
the twin support vector machine, which evaluated the contribution of instances to the
separated hyperplane according to the score function of instances, thus improving the
disadvantage that the support vector far from the center of the class is given a lower fuzzy
value. However, we know that the contribution of a sample to the classification hyperplane
cannot be accurately described only by its distance from the sample center. Moreover, class
centers are obtained based on all instances, so outliers may cause class center offset. In
addition, the non-membership degree of sparse instances will also be inaccurate due to
improper parameter selection.

Many previous works have shown that FSVMs outperform standard SVM in terms of
accuracy and robustness, but they are still affected by the imbalanced data distribution. The
state-of-the-art techniques to develop the performance of imbalanced data classification
are generally called class imbalance learning [23,24] techniques. These techniques can be
broadly classified as external and internal. The external techniques deal with the data
sets before training a classifier, and the internal techniques create or modify the SVM.
We will focus on the latter in this paper. To address the problem of imbalanced datasets
classification disturbed by outlier and noise. Batuwita and Palade [24] combine FSVM
with cost-sensitive learning to obtain the FSVM-CIL serial algorithms. The six membership
functions of it are obtained by combining three different methods with two kinds of
decaying functions. Most of them calculate the importance of each instance by Euclidean
distance, so the membership functions using this metric are sensitive to the dimension
of the data distribution in feature space. Liu [25] modified the distance measure and
proposed the Gaussian fuzzy support vector machine (GFSVM), which is an extension
of the FSVM-CIL. Experimental results indicated that this improved approach has better
performance in class imbalanced learning. Based on the principle of space consistency,
Tao et al. presented affinity and class probability-based FSVM (ACFSVM) [26], which can
suppress the impact of noises and outliers in the majority class instances on the model.
Deep et al. [27] presented an entropy-based entropy-based fuzzy twin support vector
machine (EFTWSVM) for imbalanced datasets, which uses the information entropy of
instances to determine the membership degree of each instance in the fuzzy twin support
vector machine. Richhariya et al. [28] presented a robust fuzzy least squares twin SVM
(RFLSTSVM), which employs the 2-norm of the slack variables to make the optimization
problem strongly convex and uses the imbalance ratio of instances in calculating the
membership degree of samples. Based on the relative density which is a more robust prior
information extraction method, Yu et al. [29] presented two fuzzy SVM algorithms to tackle
the problem of class imbalance learning, one is the fuzzy SVM algorithm based on the
within-class relative density information (FSVM-WD), and the other is fuzzy SVM based
on between-class relative density information (FSVM-WD). These two methods overcome
the inherent defect that traditional methods are not accurate in the estimation of prior data
distribution. Most of these methods set the fuzzy value of minority class instances to 1
to highlight their importance, but these do not consider the distribution characteristics of
minority class instance.

In this paper, we propose a new relative density-based intuitionistic FSVM termed
RIFSVM to deal with both the problem of class imbalance and noise/outlier. In our
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proposed model, the relative density obtained by the K-nearest neighbors-based probability
density estimation (KNN-PDE) method [30,31] is utilized to calculate the membership
degree and non-membership degree of instances. Because the relative density is adaptive
for different data distribution types, and can well reflect the prior distribution information
of data, it is more robust than the Euclidean distance-based measure. In addition, this
method does not need to obtain the density information of all sample points, but only needs
to calculate the distance between k neighbors of each sample and estimate its probability
density distribution in feature space. Then, for instances of the majority class, we calculate
the score function according to their membership degree and non-membership degree,
and then set the product of the score function and the imbalance ratio as the final fuzzy
value. For the instances of minority classes, the membership degree is directly set to the
fuzzy value, which avoids the situation that the non-membership of minority classes is too
high due to sparsity, so some points are misjudged as noise. Comprehensive experimental
results on the synthetic and benchmark imbalanced datasets demonstrate the superiority
of the RIFSVM to the existing and state-of-the-art class imbalance classification algorithms.

The remainder of this paper is structured as follows: Fuzzy-type support vector ma-
chines and fuzzy membership functions summarised in Section 2. Our proposed algorithm
is detailedly described in Section 3. The experimental results and analysis to validate the
validity of the algorithm are reported in Section 4. Finally, we conclude this paper and
indicate future work in Section 5.

2. Fuzzy-Type Support Vector Machines and Fuzzy Membership Functions
2.1. Fuzzy-Type Support Vector Machines (FSVMs)

Unlike standard SVM, FSVM [18,32] assigns the corresponding membership degree
to each instance according to the specified membership function. Assume that we have
a binary classification problem with the dataset T = {(xi, yi) | i = 1, 2, · · · , N}, where
xi ∈ Rd represents an d-dimensional input vector, and yi ∈ {1,−1} refers to the corre-
sponding class label. Then, for the given Ts = {(xi, yi, si) | i = 1, 2, · · · , N}, where si
denotes the fuzzy membership value of the i-th instance, which indicates the significance
of the associated instance, the goal of FSVM is to learn parameters (w, b) of a hypothesis
h(x) = 〈w, ϕ(xi)〉+ b from the optimization problem:

min
w,b

1
2‖w‖

2 + C
N
∑

i=1
siξi

s.t.yi(wT ϕ(xi) + b) + ξi ≥ 1, ξi ≥ 0, i = 1, 2, . . . , N,
(1)

where w ∈ H, b ∈ R, tradeoff parameters C > 0, 0 ≤ si ≤ 1 and ϕ is a feature mapping
that maps the instance space into a high feature space. The slack variable ξi denotes the
measured error of the instance xi in FSVM, and the membership si of a data point xi is
incorporated into the objective function in the FSVM optimization problem (1), which is
the only difference between the original SVM optimization problem and it.

The above optimization problem can be solved by solving the quadratic programming
of the following dual form:

max
α

N
∑

i=1
αi − 1

2

N
∑

i=1

N
∑

j=1
αiαjyiyjK(xi, xj)

s.t.
N
∑

i=1
yiαi = 0, 0 ≤ αi ≤ siC, i = 1, . . . , N,

(2)

where α = [α1, α2, ...αN ] is the vector of Lagrange multipliers, and K(xi, xj) being a ker-
nel function, i.e., the inner product of the feature vectors xi and xj in the feature space〈

ϕ(xi), ϕ(xj)
〉
. It is observed that the upper bound on the value of αi differs between the

dual optimization problems for the standard SVM and FSVM.
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The optimal values α∗ can be obtained by solving the optimization (2), and the optimal
weight vector w∗ and b∗ can be expressed as [13]:

w∗ =
N

∑
i=1

α∗
i yi ϕ(xi) (3)

and

b∗ = yi −
N

∑
i=1

α∗
i yiK(xi, xj) (4)

respectively. Then the decision function can be expressed as:

h(x) = sign(
N

∑
i=1

α∗
i yiK(xi, x) + b∗). (5)

The fuzzy value si represents the weight of parameter ξi in the objective function,
reflecting the importance of the corresponding instance to the classification hyperplane.
Then, the classification hyperplane can be made more reasonable by giving small fuzzy MVs
for the noises and outliers. Obviously, FSVM can effectively handle outliers and noise with
the help of well-defined membership functions. Therefore, defining an appropriate fuzzy
membership function (MF) becomes a key issue to improve the generalization performance
of FSVM.

2.2. Common Fuzzy MFs and Their Limitations for Class Imbalance Learning

Here, we briefly discuss some classical and new informative heuristic membership
functions for general purposes, such as linear and exponential fuzzy functions [24], and the
Gaussian fuzzy [33] function:

µlin(xi) = 1− di
max(di) + ∆

; (6)

µexp(xi) =
2

1 + exp(βdi)
, β ∈ [0, 1]; (7)

µgau(xi) = exp(−‖di − µ‖2

2σ2 ), (8)

where di indicates the Euclidean distance between the instance xi and the reference objects,
∆ is a small positive value and β is a parameter that determines the degree of the decay,
and µ and σ being the separate mean and standard deviations to be tuned during the
training process.

The popular three distance reference objects contain within-class centroid, real sepa-
rating hyperplane, and estimated sphere centroid. Relevant experiments in [29] show that
when the datasets are approximatively subject to the standardized normal distribution, the
within-class centroid reference is reliable. However, it is not a reliable reference anymore
for the datasets with non-normal distribution, e.g., the datasets with small disjunctions or
manifold distribution. The estimated sphere centroid reference has the same drawbacks,
especially on the highly imbalanced datasets. The real separating hyperplane reference is
significantly better than the two reference object. However, it is still sensitive to the degree
of imbalance due to the initial separation hyperplane would be biased towards the minority
class. That is, the classification model obtained by is still biased toward one of the classes.

The fuzzy value of these methods are based on the MVs of instances to their own
classes, ignoring the uncertainty of instances. However, only assigning fuzzy values to
instances according to the membership degree of a certain class of sample points cannot
accurately describe the distribution information of instances. Therefore, we are interested
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in intuitionistic fuzzy sets proposed by Ha et al. [21], which considers both the membership
and the non-membership degrees of instances.

2.3. Intuitionistic Fuzzy MF and Its Limitation for Class Imbalance Learning

Definition 1. Let X be a nonempty set, then an intuitionistic fuzzy set in a universe X, denoted A,
is defined as:

A = {(x, µA(x), νA(x))|x ∈ X}, (9)

where µA : X → [0, 1] and νA : X → [0, 1] are the degrees of membership and nonmembership
functions of x ∈ X respectively, and 0 ≤ µA(x) + νA(x) ≤ 1.

The score function of x ∈ X can be determined as follows:

H(x) =
1− νA(x)

2− µA(x)− νA(x)
, (10)

The score function calculates the score values of instances based on their membership and
non-membership values. These values can be used to compare the levels of membership
among several examples of the same class.

For a binary classification problem, consider intuitionistic fuzzy sets. The instances
can be converted into an intuitionistic fuzzy number (IFN) as: T = {(xi, yi, µi, νi) | i =
1, 2, · · · , N}, where µi and νi represent the degrees of membership function and nonmem-
bership functions of xi respectively. Next, the membership and nonmembership functions
for each instance are defined as follows.

(1) Membership Function:

µ(xi) =

{
1− ‖ϕ(xi)−c+‖

R++δ , yi = +1,

1− ‖ϕ(xi)−c−‖
R−+δ , yi = −1,

(11)

where δ > 0 is an adjustable parameter, and the c+ (c−) indicates the center of the positive
(negative) class. The R+ (R−) indicates the radius of the positive (negative) class. The ϕ is
a feature mapping that maps the instance space into some feature space. The ‖ϕ(xi)− c±‖
represents the distance from input instance to the corresponding class center. The centers
of two class can be written as:

c± =
1

N±
∑

yi=±1
ϕ(xi), (12)

where N+ and N− represent the number of positive and negative instances respectively.
The radius of two classes can be measured by

R± = max
yi=±1

‖ϕ(xi)− c±‖, (13)

where

‖ϕ(xi)− c+‖ =
√
‖ϕ(xi)− c+‖2 (14)

=

√
K(xi, xi) +

(
1

N+
∑yi=+1 ϕ(xi)

)2
− 2ϕ(xi)

1
N+

∑yi=+1 ϕ(xi) (15)

=

√
K(xi, xi) +

1
N2
+

∑ym=+1 ∑yn=+1 K(xm, xn)−
2

N+
∑yj=+1 K(xi, xj). (16)

(2) Nonmembership Function:

The non-membership function is defined as:

ν(xi) = (1− µ(xi))ρ(xi), (17)
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where 0 ≤ µ(xi) + ν(xi) ≤ 1, and ρ(xi) is written as:

ρ(xi) =
|{xj|

∥∥ϕ(xi)− ϕ(xj)
∥∥ ≤ β1, yj 6= yi}|

|{xj|
∥∥ϕ(xi)− ϕ(xj)

∥∥ ≤ β1}|
, (18)

where β1 > 0 is a parameter, and the distance between two instances in the inner product
space can be expressed as

∥∥ϕ(x)− ϕ(x′)
∥∥ =

√
K(x, x) + K(x′, x′)− 2K(x, x′). (19)

We define the score function for a given IFN as:

H(xi) =


µ(xi), ν(xi) = 0,
0, µ(xi) < ν(xi),

1−ν(xi)
2−µ(xi)−ν(xi)

, others.
(20)

As we know, the data distribution is generally supposed to obey a Gaussian distri-
bution. The centroid of standardized normal distribution data always approximates the
mean of the distribution. Therefore, taking the centroid as a reference can well estimate
the importance of each instance. However, the distribution of data in many real-world
applications is often complicated, such as the dataset of Figure 1, which follows small
disjunctions or manifold distribution. This led to the within-class centroid no longer being
a reliable reference, because it could neither describe the manifold structure nor catch the
small subclusters well.

(a) Data1
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Figure 1. The fuzzy membership values of some positive instances of Data1 and Data2 calculated
by IF.

In Figure 1a, the instances of group i satisfy xi ∼ N (µi, σ), where µ1 = (0.4, 0.4),
µ2 = (0.15, 0.15), µ3 = (0.7, 0.7) and σ = [0.1, 0; 0, 0.1]. The numbers of these three groups
are 800, 50, and 150 respectively. The instances of these three groups are divided into
two classes, where the instances of group 1 are set to negative class and the instances of
group 2 and group 3 are set to the positive class. So we obtain an imbalanced dataset with
an imbalanced ratio of 1:4. In Figure 1b, the centroid of rings is (0, 0), the width of the ring
equals 0.2, and the inner radius of negative and positive classes is 0.6, and 0.3 respectively,
we obtain an imbalanced dataset with an imbalanced ratio of 1:5.

In Figure 1, we use IF to assign fuzzy values to some instances of Data1 and Data2.
From Figure 1a, we can find that the fuzzy values of instances of small clusters of positive
instances are generally low because the class center of positive instances is biased toward
large clusters. Moreover, the fuzzy values of the instances that are closer to the class center
in the small cluster are much smaller than that of the instances that are farther from the
class center in the large cluster, and some instances in the small cluster are treated as noise.
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It can be seen that the fuzzy value obtained by the IF algorithm is unreasonable when the
data hold small disjunctions. From Figure 1b, we can find that the fuzzy values of positive
instances are generally low because the within-class centroid cannot describe the manifold
structure well. Moreover, some important positive instances that are close to negative
instances are judged as noise. This is because the instances are surrounded by negative
instances, leading to many negative instances in the k-nearest neighbor, so the obtained
non-membership degree will be greater than the membership degree, and such instances
will be judged as noise.

As we all know, the centroid of data obeying the Gaussian distribution always approx-
imates the mean of the distribution. Therefore, taking the centroid as a reference can well
estimate the importance of each instance. However, for the data (especially imbalanced
data) obeying non-Gaussian distribution, it is unreasonable to calculate the membership
degree based on the class center. Meanwhile, as for the normal SVM, FSVMs are also
impacted by class imbalance. Meanwhile, in most cases, to highlight the importance of the
minority class, most FSVM series algorithms for class imbalance learning generally set the
MVs of the minority class instances to 1, so ignore the distribution characteristics of the
minority class itself.

To solve the problem discussed above, our work is based on the following two motivations:

• To provide a more reliable measure to estimate the importance of each instance.
• To propose a more preferable fuzzy MF to ensure the fairness of the classification

method.

3. Relative Density-Based Intuitionistic Fuzzy Support Vector Machines (RIFSVM)

The relative density-based intuitionistic fuzzy membership approach is proposed
first. Then, the relative density-based intuitionistic fuzzy SVM is proposed by using the
density-based intuitionistic fuzzy membership for class imbalance learning.

3.1. Relative Density Estimate Based on a k-Nearest-Neighbor Distances

Based on the above analysis, it can be seen that, for some imbalanced datasets with
special distribution, it is unreasonable to calculate the degree of membership and non-
membership of the instance based on the within-class centroid criterion and calculate the
fuzzy value of the instance according to the intuitionistic fuzzy value as well. Therefore,
we should take advantage of the prior information of the instances, instead of giving the
fuzzy values to instances by assuming that the instance conform to a certain distribution.

It is obvious that it will be easier to discriminate between regular instances and
outliers/noise if we can accurately estimate the probability density of each case. However, it
is incredibly challenging to quantify the probability density accurately in high dimensional
feature space. Instead of precisely measuring the probability density of each instance,
previous works [29] have proposed an alternative scheme in which we can determine
the proportional relation of the probability densities between any two instances. The
information that reflects the proportional relation is called relative density [34]. Here, we
estimated the relative density using the K-nearest neighbors-based probability density
estimation (KNN-PDE) [30,31] method. The KNN-PDE estimates the probability density
distribution of the instances in the multi-dimensional continuous space according to the
K-nearest neighbor distance of each instance. The KNN-PDE result can approximately
converge to the real probability density distribution when the number of instances reaches
infinity [35].

Suppose a dataset includes N+ positive instances and N− negative instances, and
N+ + N− = N. In this paper, the positive class stands for the minority class and the
negative class stands for the majority class. Then for each instance, we find its K-th nearest
neighbor and denote the distance between them as dk

i . It is not difficult to see that the
larger dk

i , the sparser the distribution of instance, that is, the smaller the density. As we
know, noise and outliers are often in the low-density region, thereby we can estimate the
importance of each instance by dk

i . We define 1/dk
i as the relative density. Obviously, it
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assigns greater values to instances of high density and lower values to instances of low
density, such as noise and outliers. We can also obtain the proportionality of the relative
density of any two instances as follows:

1/dk
i

1/dk
j
=

dk
j

dk
i

. (21)

This proportional relation equals the inverse of the ratio of the k-nearest neighbor distances
between these two instances. Choosing an appropriate parameter k may be quite important
for the relative density. If the k is too large, some normal instances may be misjudged as
noise. If the k is too small, some noise and outliers would not be identified. In this paper,
we set k =

√
N by experience, where N is the number of instances.

Next, we introduce the two relative densities: within-class relative density and
between-class relative density.

(1) The within-class relative density refers to the relative density of an instance in its own
class. For example, the within-class relative density of positive instance xi is 1/dk+

i , the
dk+

i is the distance between xi and the k+-th nearest neighbor in the positive instances,
where k+ =

√
N+. The larger the value of dk+

i , the lower the relative density of the
instance, then the lower the probability that the instance belongs to this class.

(2) The between-class relative density refers to the relative density of an instance in another
class. The between-class relative density of positive instance xi, for instance, is 1/dk−

i ,
the dk−

i is the distance between xi and the k−-th nearest neighbor in the negative
instances, where k− =

√
N−. The larger the value of dk−

i , the lower the relative density
of the instance, then the farther x+i is from the negative instances, that is the lower the
probability that the instance belongs to the negative class.

3.2. Relative Density-Based Intuitionistic MFs for Class Imbalance Learning

Based on the fact above, we proposed a combined formulation of MFs based on relative
density-based intuitionistic, which provides the membership values for instances to satisfy
two goals:

• to lessen the impact of class imbalance;
• to reduce the negative impact of noise and outliers.

(1) Determination of fuzzy value of majority class

For the instance of the majority class, the MV is calculated by the within-class relative
density. Here, the exponential function is used to give the MVs of the instances. Instances
with a larger dk−

i have a smaller relative density, so they should be given lower MVs. The
specific calculation process is given as follows.

First, we calculate the MVs of instances according to the following membership degree
function:

µ−(xi) =
2

1 + exp
(

dk−
i

max{dk−
1 ,dk−

2 ··· ,dk−
N−}

) . (22)

Then, we calculate the non-membership values of instances according to the following
non-membership degree function:

ν−(xi) =
(
1− µ−(xi)

)
ρ(xi), (23)

where the ρ(xi) is defined as:

ρ(xi) =
2

1 + exp
(

dk+
i

max{dk+
1 ,dk+

2 ··· ,dk+
N+}

) . (24)
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Note that the ρ(xi) is calculated by the between-class relative density of instance.
Then, according to the MVs and non-MVs of the instances, we define the score func-

tion as:

H(xi) =

{
0, µ−(xi) < ν−(xi),

1−ν−(xi)
2−µ−(xi)−ν−(xi)

, others.
(25)

It can easily distinguish normal instance from noises and outliers [21]. Finally, to lessen the
influence of class imbalance, the fuzzy values of negative instances can be defined as:

si = IR·H(xi), (26)

where IR is the minority-to-majority class ratio.

(2) Determination of fuzzy value of minority class

As is well known, there are few instances in the minority class. If the above method
is used to calculate the fuzzy value, a large non-membership degree will be obtained,
which will make the instance misjudged as noise. It can be seen that it is unreasonable to
calculate the fuzzy value of the minority class using the majority class’s fuzzy value. It is
also unreasonable to set the fuzzy value of the minority class to 1 directly like FSVM-CIL
series algorithms.

Therefore, we directly set the membership degree of minority class instances as the
fuzzy value. In this way, we not only give high fuzzy values to minority class instances but
also fully utilize the prior information of instances.

µ+(xi) =
2

1 + exp
(

dk+
i

max{dk+
1 ,dk+

2 ··· ,dk+
N+}

) , (27)

si = µ+(xi). (28)

Since the fuzzy values of both majority and minoriy instances are calculated based on
relative density, the above algorithm for calculating fuzzy values is denoted as RIF.

As we can see, the fuzzy values of the majority class instances are designed by incor-
porating the relative density measure into the intuitionistic fuzzy numbers. In this way,
with the help of the strong capture ability of the relative density to prior information and
the strong recognition ability of the intuitionistic fuzzy score function to outliers and noises,
the fuzzy function can be adopted to identify possible noises and outliers existing in the
majority class. Additionally, the participation of imbalance ratio reduces the effect of class
imbalance. For the minority instances, to lessen disadvantage of being misjudged as noise
points because the instances are too sparse, the fuzzy values of minority class instances is
directly assigned as the MVs calculated by relative density without the non-MVS.

In order to explore the rationality of RIF, we compute the fuzzy value of Data1 and
Data2 using the proposed RIF method and mark the fuzzy values of 20 instances which
are the same as those in Figure 1, and the results are displayed in Figure 2. In Figure 2a, it
is obvious that the fuzzy values of the small clusters instances are not too small as shown
in Figure 1a, so they are not misjudged as noise. Instead, it follows the distribution char-
acteristics of instances, assigning smaller fuzzy values to sparsely distributed points and
larger fuzzy values to densely distributed sample points. Instead, it follows the distribution
characteristics of instances, assigning smaller fuzzy values to sparsely distributed points
and larger fuzzy values to densely distributed instances. From the Figure 2b, we can find
that the instance on the edge is not misjudged as noise, and given a reasonable fuzzy value.
It can be seen that for such imbalanced datasets with non-normal distribution, our RIF
method is relatively reasonable.
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Figure 2. Fuzzy membership values of some positive (minority) class instances calculated by RIF.
(a) Fuzzy membership values of Data1; (b) Fuzzy membership values of Data1.

3.3. Relative Density-Based Intuitionistic Fuzzy Support Vector Machines

By integrating the relative density-based intuitionistic MVs into FSVM, we propose a
novel relative density-based intuitionistic fuzzy support vector machine for imbalanced
learning with noise and outliers. The corresponding optimization problem can be ex-
pressed as:

min
w,b

1
2‖w‖

2 + C
N
∑

i=1
siξi

s.t.yi(wT ϕ(xi) + b) + ξi ≥ 1, ξi ≥ 0, i = 1, 2, . . . , N,
(29)

where si =

{
µ+(xi), yi = 1,

IR · H(xi), yi = −1,
and the µ−(xi), ν−(xi), µ+(xi), and H(xi) are shown

in (22), (23), (27) and (25) respectively.
At the same time, when C−1/C+1=IR and C+ = C, we can also write the objective

function of the above optimization problem in the following cost-sensitive form:

f (w, b, ξ) =
1
2
‖w‖2 + C+ ∑

yi=+1
siξi + C− ∑

yi=−1
siξi, (30)

where si =

{
µ+(xi), yi = 1,
H(xi), yi = −1.

To solve the optimization problem of RIFSVM in (29), the dual form of it can be
written as:

max
α

N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjK(xi, xj)

s.t.0 ≤ αi ≤ siC,
N

∑
i=1

yiαi = 0, i = 1, 2, . . . , N

(31)

where α = [α1, . . . , αN ]
T is the Lagrange multiplier. K(xi, xj) = ϕ(xi)

T ϕ(xj) is the kernel
function satisfying Mercer’s theorem.

The optimal values α∗ can be obtained by solving the optimization (31), and the
decision function of a RIFSVM can be expressed as:

h(x) = sign(
N

∑
i=1

α∗
i yiK(xi, x) + b∗), (32)

where w∗ and b∗ are shown in (3) and (4).
The above training process is summarized as Algorithm 1.
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Algorithm 1 RIFSVM algorithm

Input: Training dataset T = {(x1, y1) · · · (xN , yN)}, Penalty parameter C, kernel spread
parameters h > 0.

Output: The decision function (5).
1: The training sample T is divided into T+ and T−, T+ is the set of minority instances,

and T− is majority instances. Calculate the numbers of minority and majority instances
and denote them as N+ and N− respectively;

2: Calculate the nearest neighbor parameter k+ =
√

N+, k− =
√

N−;
3: For the instance xi ∈ T−, calculate dk− and calculate the membership degree µ−(xi) of

the majority class instance according to (22);
4: For the instance xi ∈ T−, calculate dk+ in the minority class and calculate the nonmem-

bership degree v−(xi) of the instance according to (23);
5: According to the obtained µ−(xi) and ν−(xi) and (25), the final fuzzy value s(xi) of the

majority instances is calculated by using according to (26);
6: For the instance xi ∈ T+, calculate dk+ and calculate the fuzzy value s(xi) of the

minority instance according to (28);
7: Train NIFSVM model (29) to obtain the decision function.

4. Experiments and Analysis

In this section, we explore the performance and superiority of our proposed algorithms
using synthetic and benchmark datasets. The five-fold cross-validation technique [36] is
used in this paper to choose all of the parameters for these algorithms. The Gaussian kernel
function K(x1, x2) = exp(−h‖x1 − x2‖2) is used for all data sets, kernel spread parameters
h are roughly chosen within {2−5, 2−4 · · · ,24,25}. The tradeoff parameters C of our model
are selected from the set of {10−5, 10−4, · · · , 104, 105}. All the experiments are carried
out on a desktop PC with Intel(R) Xeon(R) CPU (3.30 GHz) and 32 GB RAM under the
MATLAB 2019a programming environment.

4.1. Evaluation Metrics for Imbalanced Classification

The accuracy-based evaluation metric is usually used to assess the performance of
the general classification method. However, it is no longer an appropriate metric for the
imbalanced classification method since the effect of minority class on accuracy is smaller
than that of majority class. In this paper, we use G-Mean, F-Measure, and AUC to evaluate
the performance of imbalanced dataset classification. The G-Mean, a comprehensive
measure of minority and majority class, denotes the geometric mean of sensitivity and
specificity [37]. A reasonably high value of both True Positive and True Negative ensures a
high G-Mean value. The F-Measure denotes the harmonic mean of Precision and Recall A
high value of F-Measure means that both sensitivity and Precision are high simultaneously,
and the AUC (the area under receiving operator characteristic curve) is another evaluation
measure of classification performance in imbalanced problems because the area under the
ROC graph is not sensitive to the distribution of two classes.

4.2. Experiments on the Synthetic Imbalanced Datasets

To intuitively show the effectiveness of the proposed model in dealing with class
imbalance learning, we classify the two synthetic datasets in Figure 1 using IFSVM and
RIFSVM, respectively. The experimental results are shown in Figure 3. In addition, for
these two datasets, we trained the model on 80% of the instances and tested the model on
the remaining 20%. The experiments are performed 10 times, and Table 1 lists the average
G-Means, F-Measures, and AUC values. The best results are denoted in boldface.
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Figure 3. Plots for comparing the classification boundaries of IFSVM and RIFSVM on the Data1 of
Figure 1.

Table 1. Classification results of IFSVM and RIFSVM on two synthetic datasets in Figure 1, the best
values are in bold.

Results (%) Se Sp G-M F-M AUC

Data 1 IFSVM 86.50 99.00 92.75 90.81 92.75
RIFSVM 92.50 99.13 95.75 94.39 95.81

Data 2 IFSVM 98.00 100.00 98.99 98.99 99.00
RIFSVM 100.00 100.00 100.00 100.00 100.00

From Figure 3a and Table 1, we can find that for Data1, the IFSVM has a higher
misclassification rate for small cluster instances of minority instances. This is because we
can see from Figure 1a that the instances of the small cluster are endowed with lower final
fuzzy values, especially some instances of the small cluster are judged as noise, resulting
in these important instances will no longer contribute to separating the hyperplane and
are likely to be misclassified. However, the classification result obtained by RIFSVM is
much better, and the misclassification rate for the instances of the small cluster is also
lower. From Figure 3b and Table 1, we can find that the misclassification rate of boundary
instances of minority class by IFSVM is higher than that by RIFSVM. This is because the
non-membership degree of these instances calculated by IFSVM is higher, which leads to
the smaller fuzzy value, and then these instances are misclassified. Similarly, the evaluation
measure G-mean, F-Measure, and AUC of RIFSVM are all higher than those of IFSVM. It
can be concluded that our method is effective when tackling imbalance datasets.

4.3. Experiments on Benchmark Datasets

In this section, we selected twenty datasets from the keel and UCI repositories in order
to assess the performance of the proposed RIFSVM in tackling class imbalance classification.
A complete description of each dataset is presented in Table 2. Some multi-classification
problems were converted into binary classification problems by a one-versus-others strategy.
In addition, we obtain some imbalanced datasets from the Yeast and Block datasets using
different class combinations in order to obtain datasets with various imbalance ratios. The
positive class and negative class columns in Table 2 contain a complete list of the class
combinations for these generated datasets. The IR varies from 1:1.38 to 1:42.72 and the the
number of attributes varies from 3 to 90. All attributes are normalized into the interval [0, 1].
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Table 2. Details of the imbalanced datasets.

Dataset Feature Instance Positive Negative Minority Class Majoritt Class IR

Liver 6 345 145 200 class 1 class 2 1:1.38
Seed 7 210 70 140 class 1 others 1:2.00
Wine 13 178 48 130 class 1 others 1:2.71

Haberman 3 306 81 225 class 2 class 1 1:2.78
Glass 4 150 50 100 class 0,1,2,3 class 4,5,6 1:3.19

Vehicle 18 846 199 647 ‘van’ others 1:3.25
Abalone 8 326 67 259 class 16 class 6 1:3.86

Ecoli 7 336 52 284 ‘pp’ others 1:5.46
Balance 4 625 49 576 ‘B’ others 1:11.76

Libra 90 360 24 336 class 15 others 1:14.00
Yeast 8 1484 429 1055 class 2 others 1:2.46

Yeast1 8 1484 163 1321 class 4 others 1:8.10
Yeast2 8 514 51 463 class 5 class 1 1:9.07
Yeast3 8 464 35 429 class 7 class 2 1:12.25
Yeast4 8 1484 44 1440 class 6 others 1:32.72
Yeast5 8 1484 35 1449 class 7 others 1:41.40
Block 10 5473 560 4913 others class 1 1:8.77
Block1 10 5473 329 5144 class 2 others 1:9.07
Block2 10 5144 231 4913 class 3,4,5 class 1 1:21.27
Block3 10 5028 115 4913 class 5 class 1 1:42.72

Note: The feature and instance indicate the number of features and instances respectively, and IR is the imbal-
ance ratio.

4.3.1. Experimental Procedure and Results

We performed experiments on all the datasets in Table 2 to further confirm the
effectiveness of the proposed method and compare it to IFSVM and other imbalance
learning approaches.

(1) IFSVM [20]: It uses the membership and non-membership calculated by the sample
distribution information to determine the fuzzy value of the instance. The parameter
δ = 10−4, and β1 = min(r)/5, where r = (max(Rn), max(Rp)).

(2) ACFSVM [26]: It assigns the fuzzy value to the majority class instances based on the
affinity and class probability and assigns 1 as the fuzzy value of minority class in-
stances to highlight the importance of minority instances. The kernel nearest neighbor
parameter k is chosen from the set {3, 5, 7, 9, 11} and the parameter ρ is selected from
the set {0.1, 0.5, 1, 2, 3, 5, 7, 10, 20}.

(3) GFSVM [25]: It is the supplement and extension of FSVM-CIL, a new distance and a
new fuzzy value function, namely Gaussian fuzzy function, is proposed. The parame-
ters µ and σ in the Gaussian function are selected from sets {0.01, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.7} and {2−6, 2−5, ...., 25, 26}, respectively.

(4) EFTWSVM [27]: It uses the information entropy of instances to calculate fuzzy values
to minority instances, it fully utilizes the prior information of instances; it assigns 1 as
the fuzzy value of minority class instances. Then the fuzzy values obtained are used
in the improved TWSVM. The parameters β of EFTWSVM is taken as 0.05, the value
of K for K-NN is 10.

(5) RFLSTSVM [28]: It assigns a more robust fuzzy value to majority class instances
and assigns 1 as the fuzzy value of minority class instances, then trains the LSTSVM
model on this training set. The parameter k0 of RFLSTSVM is selected from the set
{0.5, 1, 1.5, 2, 2.5}.

(6) FSVM-WD and FSVM-BD [29]: They are all proposed based on relative density, and
the sum of fuzzy values of positive and negative class instances is set as 1 to ensure
the robustness of the model. The distinction is that while FSVM-WD is based on
information about within-class relative densities, FSVM-BD is based on the between-



Entropy 2023, 25, 34 14 of 21

class relative densities. These two methods use the same strategy to calculate the
fuzzy values of instances. The parameters of them are set as λ = 0.01/N, k =

√
N.

Note that several different algorithms are listed above. They adopt different strategies
when calculating the fuzzy values of minority and majority classes. In addition, for some
algorithms that set the fuzzy value of minority classes directly to 1, their classification mod-
els are also different. The effectiveness of the RIFSVM method is explored by comparing it
with different fuzzy value setting methods and different classification model algorithms.

The experiment consisted of two parts. In the first part, the accuracy of minority and
majority classes (Se and Sp) of eight algorithms on some datasets are compared. Then,
the classification performances of eight algorithms on 20 datasets are compared. All the
parameters are chosen by five-fold cross-validation based on G-Means.

First, to compare the accuracies of eight algorithms on positive and negative classes,
we performed the experiments on five datasets in Table 2, which contain Wine, Vehicle,
Abalone, Ecoli, and Libra. Their imbalance ratios are 1:2.71, 1:3.25, 1:3.86, 1:5.46, and
1:14, respectively. Except for the last Libra dataset, the IR of the other datasets have less
difference. The accuracy of positive and negative classes for the seven algorithms on these
five datasets is calculated, and the accuracy line chart is drawn in Figure 4a,b. In addition,
Yeast1-Yeast5 are selected to explore the relationship between accuracy and imbalance ratio,
the difference in imbalance ratio is significantly larger than in the previous five datasets.
Their imbalance ratios are 1:8.10, 1:9.07, 1:12.25, 1:32.72, and 1:41.40, respectively. The
corresponding experimental results are plotted in Figure 4c,d.
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Figure 4. (a,b) are the accuracies of minority and majority class of the eight algorithms on five
datasets with different imbalance ratios. (c,d) are the accuracies of minority and majority class of the
eight algorithms on the Yeast dataset with different imbalance ratios.

As shown in Figure 4a, the accuracy of these eight algorithms on the minority classes
gradually decreases as the imbalance ratio rises, when the imbalance ratio is 1:14, the
accuracy of minority classes of the seven algorithms decreases significantly. The accuracy
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of the proposed RIFSVM is slightly higher than that of other algorithms on the minority
classes. When the imbalance ratio becomes large, the accuracy of RIFSVM decreases less
than that of other algorithms. The results in Figure 4b show that the accuracy of these seven
algorithms on majority classes gradually increases as the imbalance ratio increases. When
the imbalance ratio is 1:5.46, the accuracy of majority classes of the seven algorithms is
relatively low, which may be related to the dataset. The RIFSVM algorithm still outperforms
other algorithms in the accuracy of most classes. From the results shown in Figure 4c, it can
be seen that the accuracy of seven algorithms on the minority classes showed a downward
trend as the imbalance ratio increased. When the imbalance ratio is 1:9.07, the accuracy of
the eight algorithms is relatively high, which may be data related. The accuracy of the our
algorithm is slightly better than the other seven algorithms for the minority classes because
the algorithm uses relative density to calculate the fuzzy value of the instances and makes
full use of the distribution characteristics of the instances. From the results of Figure 4d,
we can find that the accuracy of these seven algorithms on majority class increases slowly
as the imbalance ratio increases. When the imbalance ratio reaches the maximum, the
accuracy of the eight algorithms reaches the highest, indicating that when the imbalance is
relatively large, the classifier will still bias toward the majority class. In addition, it can be
seen that the accuracy of the FSVM-WD algorithm on the majority class is lower than that
of other algorithms. It may be because the algorithm only uses the within-class relative
density of instances, which results in inaccurate fuzzy values.

In the second part, we conducted experiments on each of datasets provided in Table 1
in comparison to the other six imbalanced classification algorithms above. Experiments are
repeated 10 times, and the G-Means, F-Measures, and AUC are recorded in Table 3. The
best values are highlighted in bold.

Table 3. Classification results obtained by eight algorithms on twenty datasets, the best values are
in bold.

Dataset Results
IF

SVM
ACF
SVM

GF
SVM

ETW
SVM

RFLST
SVM

FSVM
-BD

FSVM
-WD

RIF
SVM

Liver
Gm 67.82 60.10 64.48 66.52 65.85 67.47 64.33 69.48

F 62.08 67.30 58.00 61.55 60.41 61.54 58.18 64.00
AUC 69.90 66.21 65.96 68.47 68.88 68.84 65.09 71.34

Seed
Gm 89.21 93.62 92.44 93.65 93.33 87.04 91.05 94.63

F 85.71 91.20 89.40 89.42 89.53 84.62 88.89 92.86
AUC 89.29 93.89 92.50 93.39 93.75 87.50 91.01 94.64

Wine
Gm 88.19 96.17 93.24 91.35 88.19 94.28 87.71 98.06

F 87.50 93.55 91.58 88.50 87.50 94.12 75.00 94.71
AUC 88.89 96.24 93.80 91.79 88.89 94.44 88.46 98.08

haberman
Gm 57.01 62.43 61.57 63.65 67.96 65.83 62.36 69.13

F 42.86 47.24 46.43 48.45 52.72 53.33 50.00 54.12
AUC 62.08 62.88 63.23 64.10 68.10 68.33 66.32 69.17

Glass
Gm 79.96 77.17 79.95 69.30 69.82 81.65 80.14 81.65

F 60.95 40.61 62.67 32.22 33.67 80.00 72.30 80.00
AUC 81.28 77.82 81.28 70.64 71.82 83.33 80.13 83.33

Vehicle
Gm 96.64 94.98 98.14 96.63 96.64 97.94 98.71 98.71

F 94.87 90.82 96.85 95.45 94.91 96.20 98.70 98.70
AUC 96.66 94.99 98.14 96.68 96.66 97.94 98.72 98.72

Abalone
Gm 94.25 94.83 95.59 90.64 92.24 92.15 93.93 96.00

F 84.49 84.84 85.55 78.62 79.27 82.62 81.25 86.67
AUC 94.34 94.92 95.69 90.66 92.38 92.23 94.12 96.08
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Table 3. Cont.

Dataset Results
IF

SVM
ACF
SVM

GF
SVM

ETW
SVM

RFLST
SVM

FSVM
-BD

FSVM
-WD

RIF
SVM

Ecoli
Gm 90.24 92.21 93.46 93.42 94.14 92.58 85.53 95.46

F 75.00 77.03 83.67 82.83 81.15 73.68 82.22 85.72
AUC 90.36 92.45 93.50 93.70 94.16 92.86 86.46 95.50

Balance
Gm 87.42 77.78 68.34 70.39 74.47 100.00 100.00 100.00

F 77.78 28.46 33.58 26.81 28.29 100.00 100.00 100.00
AUC 88.00 80.26 74.22 74.64 75.61 100.00 100.00 100.00

Libra
Gm 91.96 95.03 86.21 90.69 92.93 91.81 86.60 98.29

F 91.43 62.44 79.28 82.22 87.30 89.21 85.71 93.02
AUC 92.50 95.13 87.05 91.98 93.38 92.35 87.50 98.38

Yeast
Gm 60.95 70.11 68.42 54.89 69.74 60.45 60.89 65.51

F 49.31 57.43 52.82 42.57 57.29 46.81 49.65 53.75
AUC 65.30 70.14 67.28 62.04 70.00 62.87 65.61 67.71

Yeast1
Gm 71.44 84.83 83.16 80.68 83.04 77.81 78.83 84.95

F 59.52 67.53 70.77 70.86 56.82 67.83 57.49 72.73
AUC 73.82 85.03 84.04 82.11 83.19 79.99 80.82 85.61

Yeast2
Gm 84.95 89.43 88.80 88.96 88.75 89.57 90.38 93.83

F 72.73 80.72 82.81 84.21 70.50 75.00 70.77 85.71
AUC 85.61 89.81 89.28 89.46 88.95 89.73 90.43 93.91

Yeast3
Gm 91.93 84.02 84.02 80.65 81.02 89.44 89.56 93.31

F 78.56 76.92 76.92 75.24 63.81 88.89 88.89 81.82
AUC 92.04 85.13 85.13 82.51 82.28 90.00 90.00 93.37

Yeast4
Gm 83.01 81.54 81.76 83.06 82.09 78.78 78.78 83.30

F 66.67 63.55 69.17 58.96 59.69 66.67 66.67 75.00
AUC 83.95 83.09 83.37 83.24 83.17 80.89 80.89 84.15

Yeast5
Gm 49.73 68.07 65.04 64.92 60.27 61.14 53.27 68.76

F 33.33 34.21 44.00 40.80 39.23 41.88 36.36 46.15
AUC 61.96 70.31 70.77 70.60 67.91 68.53 63.94 70.91

Block
Gm 90.86 94.06 93.08 93.76 94.23 89.03 87.32 94.73

F 83.07 82.87 83.26 79.96 81.02 80.18 80.37 84.96
AUC 91.12 94.11 93.18 93.87 94.05 89.40 87.92 94.94

Block1
Gm 93.28 93.78 94.05 93.47 92.66 89.73 92.41 93.09

F 87.60 79.15 77.69 81.23 77.79 79.17 86.15 87.64
AUC 93.46 93.88 94.13 93.59 92.87 90.12 92.64 93.28

Block2
Gm 80.43 93.44 89.57 93.33 93.71 87.82 85.80 93.06

F 65.22 65.29 64.58 65.98 63.20 63.34 80.95 65.37
AUC 82.20 93.48 89.97 93.40 93.72 89.59 86.75 93.09

Block3
Gm 85.67 87.69 83.62 82.98 81.78 74.72 71.97 89.11

F 78.16 50.19 49.22 53.99 53.39 50.04 57.14 50.06
AUC 86.60 88.30 84.59 84.13 83.21 84.40 75.73 89.43

As shown in Table 3, ACFSVM achieve higher G-Mean and AUC values but obtains
lower F-Mean. In fact, a high F-Measure value means high classification accuracy of minor-
ity classes. It is evident that the performance of the ACFSVM for minority classification
is not high. This may be because the separation hyperplane obtained by the ACFSVM
algorithm is still skewed to minority classes, which contributes to the low classification
accuracy of minority classes. The performance of the GFSVM algorithm on all datasets
is mediocre, but its F-Mean is mostly higher than the ACFSVM. This may be because
GFSVM uses the same fuzzy function to calculate the fuzzy value of minority class and
majority class, and the difference between majority class and majority class only depends
on the imbalance ratio to constrain, which does not result in a significant deviation of the
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separation hyperplane, so the classification effect will not be greatly improved. EFTWSVM
and RFLSTSVM algorithms form a separate hyperplane in each class during training,
and their classification performance may be general since the classification accuracy of
EFTWSVM and RFLSTSVM is inferior to SVM. The FSVM-BD and FSVM-WD have poor
performance in G-Mean and AUC metrics, but their F-Mean is very high. It indicates that
the relative density can well reflect the distribution characteristics of minority classes so
that the separation hyperplane is no longer biased toward the majority class. In addition,
we also find that the classification performance of FSVM-BD, FSVM-WD, and RIFSVM on
the Balance dataset is significantly better than that of other methods because these three
algorithms all use the relative density of instances when calculating the fuzzy value. It
indicates that the relative density can well describe the distribution characteristics of the
Balance dataset. On most data sets, the classification performance of the FSVM-BD and
FSVM-WD is not good, which may be because the two algorithms use the normalization
method to make the sum of the fuzzy values of minority and majority categories equal
when calculating the fuzzy values. When the number of instances is large, the fuzzy value
of the instances will become small, which leads to poor classification performance.

Finally, the proposed RIFSVM performs well in the three performance indexes of
classification on most datasets. This is because RIFSVM not only uses the relative density to
give the distribution information of minority and majority class instances but also combines
the intuitionistic fuzzy set to give different fuzzy values of positive class sample instances.
Thus, the separation hyperplane is no longer skewed to the minority class.

4.3.2. Statistical Comparisons by Friedman Test

The Friedman tests [38] are used to provide a statistical comparison of the proposed
RIFSVM with the existing class imbalance learning algorithms. First, we determined
average ranks for the G-Mean, F-Measure, and AUC metrics of the seven methods across
all datasets. For these datasets, we set the average rank of the algorithm with the best
classification performance as 1 while the worst classification performance as 8.

From the results in Figure 5, we can find that the proposed RIFSVM ranks first with an
average score of 1.60, 1.70, and 1.85 in terms of G-Mean, F-Measure, and AUC, respectively.
It demonstrates that in the mean ranking of all evaluation measures, our proposed RIFSVM
performs better than other methods.

G-Mean

IFSVM

ACFSVM

GFSVM

EFTWSVM

RFLSTSVM

FSVM-B
D

FSVM-W
D

RTFSVM

0

1

2

3

4

5

6

m
e
a
n

 R
a
k
in

g
 o

f 
a
ll
 t

e
s
t 

d
a
ta

s
e
ts

F-Measure

IFSVM

ACFSVM

GFSVM

EFTWSVM

RFLSTSVM

FSVM-B
D

FSVM-W
D

RTFSVM

0

1

2

3

4

5

6

m
e
a
n

 R
a
k
in

g
 o

f 
a
ll
 t

e
s
t 

d
a
ta

s
e
ts

AUC

IFSVM

ACFSVM

GFSVM

EFTWSVM

RFLSTSVM

FSVM-B
D

FSVM-W
D

RTFSVM

0

1

2

3

4

5

6

m
e
a
n

 R
a
k
in

g
 o

f 
a
ll
 t

e
s
t 

d
a
ta

s
e
ts

Figure 5. Mean ranking of all compared imbalanced classification algorithms on test datasets.

Then, the Friedman test is used to judge whether these algorithms all perform equally.
Obviously, k(=8) compared algorithms and n(=20) imbalance datasets are considered in this
experiments. The ri is the average rank of the j-th algorithms. Under the null hypothesis,
which states that all the algorithms are equivalent, and thus their ranks should be equal,
the Friedman statistic

Γχ2= 12N
k(k+1) (

k
∑

i=1
r2

i −
k(k+1)2

4 ) (33)
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is distributed according to χ2 with (k− 1) degrees of freedom, when n and k are reasonably
large. The Friedman τχ2 presents a pessimistic behavior, thus the statistic

τF =
(n−1)Γ

χ2

n(k−1)−Γ
χ2

(34)

is usually used, which is distributed according to the F-distribution with (k − 1) and
(k− 1)(n− 1) degrees of freedom. According to (34), the Friedman statistic τF of G-Mean,
F-Measure, and AUC are 7.50, 6.24, and 6.04 respectively, which at significance level
α = 0.05 rejects the null hypothesis of equal performance.

The Nemenyi test is then employed to further identify these eight algorithms. The sup-
position that “the two algorithms have the same performance” is rejected with correspond-
ing confidence if the difference between the average ranks of the two algorithms exceeds

the critical difference (CD). The critical range of average ranks difference CD = qα

√
k(k+1)

6n
is calculated as 2.3478, where critical values qα are based on the studentized range statistic.

The average rank of each comparing algorithms is indicated along the axis in Figure 6’s
CD diagrams of G-Mean, F-Measure, and AUC on the twenty benchmark datasets. The
axis has been rotated to place the highest ranks to the right. A red line connects groups
of approaches that, according to the Nemenyi test, are not significantly different from one
another. In each subfigure, the critical difference is also displayed above the axis.

(a) G-Means

(b) F-Measures

(c) AUC

Figure 6. CD diagrams of the eight comparison models on the twelve benchmark datasets with
three performance indexes of classification. It is clear that RIFSVM achieves statistically superior
performance on the datasets with different performance indexes of classification.

As can be seen from Figure 6b, our algorithm is optimal in F-Meansure, and it is
significantly superior and different from other algorithms. From Figure 6a,c, we can see
that our algorithm is optimal in G-Mean and AUC, and is significantly superior different
from other algorithms except for ACFSVM. The ACFSVM is only inferior to our method
while superior to the other six algorithms in terms of G-Mean and AUC, but it’s not doing
very well on the F-Measure. The FSVM-WD and FSVM-BD perform better on F-Measure
but are the worst on both G-Mean and AUC. The GFSVM performs generally well in all
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indicators, and IFSVM, RFLSTSVM and EFTWSVM are mediocre in terms of G-Mean,
F-Measure, and AUC. In general, our RIFSVM achieves statistically superior performance
on the whole twenty datasets.

4.3.3. Influences of Parameter k on the Performance

In order to evaluate the influence of the parameter k for relative density calcula-
tion on the classification performance of our proposed approach. It is selected from
the set {d

√
N/3e, d

√
N/2e, d

√
Ne, d2

√
Ne, d3

√
Ne}. The variation of the G-Means and

F-measures with the variation of parameter k on the five chosen datasets is then plotted in
Figure 7.
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Figure 7. Plots of G-Means and F-Measures obtained by RIFSVM with respect to different k of the
model on Abalone, Yeast, Balance, Block, and Seed datasets.

From the results, it can be seen that although there are some fluctuations, the perfor-
mance increases at the initial stage and decreases after reaching the peak with the increase
of k. That is, the performance of the proposed algorithms will deteriorate if k is too high
or too low. In fact, if the k is set at a value that is too low, outliers and noise points might
be assigned oversize weights. While the k is set at a value that is too high, the instances in
the same category might be assigned undersized weights. The results in Figure 7 provide
some reference, i.e., the performance of our method could be assured when k is between
d
√

N/2e and d2
√

Ne. This shows that setting the parameter k as d
√

Ne empirically in our
experiment is reasonable. In practical applications, we recommend that the user choose the
appropriate parameter k by themselves.

5. Conclusions

In this paper, the FSVM technique for class imbalance learning has been discussed.
First, the shortcomings of the settings of existing intuitionistic fuzzy value on some imbal-
anced datasets with specific distribution and limitations of traditional FSVM-CIL series
algorithms in dealing with imbalanced classification task has been analyzed. Then, the
importance of digging into the prior information of the instances and merging them into
the classification model has been emphasized. Inspired by the work above, a novel relative
density-based Intuitionistic FSVM (RIFSVM) has been presented for imbalanced learning
with outliers and noise. Specifically, the membership degree and non-membership degree
of instances are calculated based on relative density and exponential decay function. Ac-
cording to the above membership degree and non-membership degree, the fuzzy value
of majority instances is calculated by the specific score function, and the fuzzy value of
minority instances is set as the membership degree. With the help of the strong capture
ability of the relative density to prior information and the strong recognition ability of
the intuitionistic fuzzy score function to outliers and noises, the proposed RIFSVM not
only suppresses the influence of class imbalance but also reduces the impact of noises
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and outliers. Finally, we demonstrate the effectiveness and superiority of our proposed
algorithm on synthetic and benchmark imbalanced datasets. The experimental results on
the synthetic datasets show that the proposed RIFSVM can achieve a better classification
boundary than IFSVM and be flexible for various types of data distribution. The experi-
mental results on benchmark datasets demonstrate that the proposed algorithm achieves
better performance than the other state-of-the-art class imbalance learning algorithms in
terms of G-Means, F-Measures, and AUC with good robustness, and a statistical test is
applied to verify the performance significance of the proposed method. In addition, after
the influences of parameters k on the performance were discussed in this study, we found
that when k is between d

√
N/2e and d2

√
Ne, the performance of our algorithm could

be guaranteed.
In the future, it will be interesting to translate the proposed approach into an efficient

approach to multiple classes of problems. In addition, how to combine the relative den-
sity with other score functions to obtain reasonable fuzzy values for some other specific
classification problems would be investigated in the future, too.
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