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Abstract: Aimed at the objective of anti-disturbance and reducing data transmission, this article
discusses a novel dynamic neural network (DNN) modeling-based anti-disturbance control for a
system under the framework of an event trigger. In order to describe dynamical characteristics of
irregular disturbances, exogenous DNN disturbance models with different excitation functions are
firstly introduced. A novel disturbance observer-based adaptive regulation (DOBAR) method is then
proposed, which can capture the dynamics of unknown disturbance. By integrating the augmented
triggering condition and the convex optimization method, an effective anti-disturbance controller is
then found to guarantee the system stability and the convergence of the output. Meanwhile, both the
augmented state and the system output are constrained within given regions. Moreover, the Zeno
phenomenon existing in event-triggered mechanisms is also successfully avoided. Simulation results
for the A4D aircraft models are shown to verify the availability of the algorithm.

Keywords: dynamic neural networks (DNNs); event-triggered control; anti-disturbance control;
adaptive control; saturation constraint; output constraint

1. Introduction

As is well-known, many real-world controlled systems are often subjected to unknown
external disturbances [1–5]. Currently, there are various recognized anti-disturbance con-
trol algorithms that can be used to eliminate the effects caused by unknown disturbances,
such as adaptive theory, robust control and sliding mode control [6–8]. However, the
motivation of these methods is to suppress disturbances in the form of feedback rather than
feed-forward compensation, which usually makes the reaction time linger and reduces the
accuracy [1,2,9]. In order to overcome these limitations, an active feed-forward method of
rejecting disturbances based on the disturbance estimation technique is proposed. This
method is usually called a disturbance-observer-based control (DOBC) and can proactively
offset those unknown disturbances [1,2,4,10–17]. Due to its fast reaction and good com-
patibility, the DOBC method has been successfully applied to many classical controlled
systems, such as permanent magnet synchronous motor (PMSM) systems [11], vehicle
control systems [12], Markov jump systems [13], multi-agent systems [15], non-Gaussian
distribution systems [16] and so on. However, in order to better estimate disturbances, the
DOBC method usually needs to acquire information on the frequency and amplitude of
unknown disturbances [1,2]. As a result, most of the DOBC results can only cope with linear
or regular disturbances, including constant and harmonic disturbances (see [1,2,14–16]
for details). When being affected by those irregular nonlinear disturbances—for example,
variable amplitude or frequency disturbances—how to realize the dynamic estimation is a
major motivation. In short, exploring more in-depth disturbance observation strategies is
one of the most important research objectives.
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In either practical systems or theoretical analysis, the problem of control constraints
is inevitable. As a typical input constraint phenomenon, actuator saturations frequently
occur in almost all control devices and can have a great negative impact on the system
performance [18]. Based on this, many researchers began to study effective saturation
control algorithms [19–27]. In [19], multiple auxiliary matrices and convex hull partitioning
methods were discussed to enlarge the ellipsoidal region of stability. By using bilinear
matrix inequalities (BLMIs) or linear matrix inequalities (LMIs) schemes, the polytopic tech-
nique was explored to drag the saturation constraint into a designed convex set [20–23]. In
order to obtain less conservative results, the sector bounding approach also became popular
for describing the saturation function [22]. Moreover, when coupling with other nonlinear
characteristics or typical controlled systems, corresponding anti-windup strategies and
performance analysis were also discussed in [22–27]. Parallel to the input constraint, both
the output and state-constrained controls are also attractive topics driven by both practical
and theoretical requirements [28,29]. Among the existing results, the symmetric barrier
Lyapunov function (BLF), asymmetric BLF and error transformation proved to be effective
in dealing with output constraints [28–31]. However, the aforementioned discussions are
only limited to the single-input single-output (SISO) systems or triangular multiple-input
multiple-output (MIMO) systems. It is urgent to explore new control methods to guar-
antee the state or output constraints of general MIMO nonlinear systems. Further, when
multiple constraints and unknown disturbances are coupled, how to design an effective
anti-disturbance constrained controller is another motivation of the work.

Generally, most controlled systems adopt a time-triggered mechanism (also called
periodic sampling mechanism), which is rather convenient for theoretical analysis and con-
ventional engineering applications. However, when the system performance has reached
the designed requirements in networked environments, data transmission and calcula-
tion do not stop immediately, which will inevitably cause a waste of bandwidths and
computing resources to a certain extent [32]. Due to this consideration, the idea of event
triggering is proposed by equipping event-triggered schedulers at sensor nodes [33,34].
In the event-triggered control (ETC) framework, control tasks are carried out only after
the well-designed triggering criteria are violated, which can availably decrease resource
utilization while achieving a satisfactory system performance [35]. Some exciting results
regarding ETC systems have successfully addressed traditional problems of robust control,
output feedback control, sliding mode control, adaptive control, and so on [34–40]. In prac-
tical applications, Ref. [41] proposed an effective decentralized event-triggered algorithm
to guarantee the dynamical performance of power systems. Based on the event-triggered
theory, the effective attitude tracking control was discussed for the surface vessels [42].

On the basis of the analysis above, this paper explores a novel event-based anti-
disturbance constraint control problem for general MIMO systems subject to unknown
disturbances and multiple constraints. The proposed scheme has the following charac-
teristics. Firstly, a DNN disturbance model was employed to identify those indescribable
irregular disturbances, which further enriches the varieties of disturbances when compared
with most existing anti-disturbance results [1,2,11,13–15]. By designing the adaptive law
for adjustable parameters of DNNs, an active disturbance-observer-based adaptive control
(DOBAC) algorithm was designed to successfully realize the dynamical estimation and
rejection of unknown disturbances. Secondly, in order to avoid the waste of resources and
achieve favorable dynamical tracking, an event-triggered mechanism with the designed
augmented triggering condition was introduced into the controlled system. Further, a
composite event-triggered anti-disturbance controller can be smoothly implemented after
decoupling the saturated input with the disturbances. Thirdly, unlike many previous
non-convex results [20,22], the improved convex optimization algorithm was constructed
to simultaneously satisfy the multi-objective control requirements, including the stability of
the augmented system, dynamical tracking performance, state constraint, output constraint
and non-Zeno phenomenon. It also represents a major expansion with respect to those
single-constraint control or dynamical tracking problems. By introducing two kinds of
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different disturbances, the simulation examples of the A4D model are presented to reflect
the significance of the algorithm.

2. Problem Description

Considering the MIMO system with external disturbances and an input constraint as{
ẋ(t) = Ax(t) + Bsat(u(t) + g(t))

z(t) = Cx(t)
(1)

where u(t) ∈ Rm, z(t) ∈ Rp, x(t) ∈ Rn and g(t) ∈ Rm are, respectively, the control input,
the system output, the state vector and the unknown disturbance. A ∈ Rn×n, B ∈ Rn×m

and C ∈ Rp×n are the coefficient matrices. sat(∗) stands for the saturation constraint,
which is expanded as sat(∗) = [sat1(∗), . . . , satm(∗)]T , where sati(∗) = sign(∗)min(∗, 1)
stands for the signum function.

To better estimate unknown disturbances, g(t) is described by an external model with
adjustable parameters as {

σ̇(t) = Wσ(t) + M∗Φ(σ(t))

g(t) = Vσ(t)
(2)

where σ(t) ∈ Rn1 represents the middle state of the DNN model, and W and V are
corresponding coefficient matrices. In addition, M∗ ∈ Rn1×n1 represents the optimal
model parameter matrix, and Φ(∗) can be seen as the activation function of DNNs
with Φ(∗) = [φ1(∗), . . . , φn1(∗)]T . Due to the powerful identification capacity of DNNs
(see [43,44]), DNN models ought to be useful identifiers to depict different types of distur-
bances by selecting different activation functions.

For the purpose of achieving a favorable dynamic tracking performance, an augmented
state is defined as

x̄(t) =
[

xT(t),
∫ t

0
eT(τ)dτ

]T
(3)

where the error is defined by e(t) := z(t)− zd with zd standing for the expected system
output, and zd is a nonzero vector. According to (1) as well as (3), the extended system can
be expressed by {

˙̄x(t) = Āx̄(t) + B̄sat(u(t) + g(t)) + Ḡzd

z(t) = C̄x̄(t)
(4)

with

Ā =

[
A 0
C 0

]
, B̄ =

[
B
0

]
, Ḡ =

[
0
−I

]
, C̄ =

[
CT

0

]T

Moreover, the polyhedron boundary skill is employed to identify the function with
saturation. By selecting a matrix P1, the ellipsoid is constructed as

Λ(P1, 1) =
{

x̄(t) ∈ Rn+p : x̄T P1 x̄ ≤ 1
}

(5)

Based on this, a polyhedron is structured as

L(H) =
{

x̄(t) ∈ Rn+p :
∣∣∣Hl x̄

∣∣∣ ≤ 1, l ∈ Qm

}
(6)

where Qm = {1, 2, · · ·, m},Hl stands for the lth row of H. Further, the lemma is imported.

Lemma 1 ([18–20]). Let K, H ∈ Rm×(n+p). For every ζ ∈ Rn+p, if ζ ∈ L(H), then

sat(Kζ) = co
{

DiKζ + D−i Hζ, i ∈ Q
}

(7)
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where co(∗) stands for the convex hull representation, and Q = {1, · · · , 2m}. In addition, Di is a
diagonal matrix, in which each element is 0 or 1, and it satisfies Di + D−i = I.

3. Event-Triggered PI Controller Design

For reducing the waste of resources in networked environments, an event-trigger-
based proportional-integral (PI) controller is designed in this part.

First, the novel augmented event triggering condition is defined as

tk+1 = inf
{

t > tk : (x̄(t)− x̄(tk))
TΨ(x̄(t)− x̄(tk)) > δ2 x̄T(t)Ψx̄(t)

}
(8)

where tk represents the moment at which the event is triggered in kth, and x̄(t) and x̄(tk)
are the augmented states at the current sampling time and the latest triggered time. The
scalar δ satisfies 0 ≤ δ < 1, and Ψ > 0 represents a designed positive definite matrix.

Define

ek(t) =
[

e1k
e2k

]
, t ∈ [tk, tk+1) (9)

with 
e1k(t) = x(t)− x(tk)

e2k(t) =
∫ t

0
e(τ)dτ −

∫ tk

0
e(τ)dτ =

∫ t

tk

e(τ)dτ
(10)

Then, we can derive from (9) and (10) that

ėk(t) =
[

ẋ(t)
e(t)

]
=

[
ẋ(t)

Cx(t)− zd

]
(11)

In the event-triggered mechanism, the event trigger monitors whether the events
occur. Once the triggering condition eT

k (t)Ψek(t) ≤ δ2 x̄T(t)Ψx̄(t) + δ1e−ςt is not met, a new
event will occur. The event detector then sends the updated data x̄(t) to the control port.
Otherwise, the current updated data will be put away.

Based on this, the event-triggered PI state feedback controller is expressed by the form

u(t) = −ĝ(t) + Kx̄(tk), K = [KP, KI ], t ∈ [tk, tk+1) (12)

where KP and KI stand for the control gains to be sought.

4. Event-Triggered DOBAC Algorithm Design

For the sake of estimating unknown disturbance g(t) accurately, an adaptive observer
with adjustable weight is built. The specific expression of the adaptive DO is described as

ṙ(t) = M̂(t)Φ(σ̂(t))− L(−Āx̄(t)− Ḡzd − B̄u(t)) + (W+LB̄V)(−Lx̄(t) + r(t))
σ̂(t) = −Lx̄(t) + r(t)

ĝ(t) = Vσ̂(t)

(13)

where L is the gain to be devised later, r(t) represents the instrumental variable and M̂(t)
is the adjustable dynamical weight, and its adaptive law is defined as

˙̂M(t) = −‖σ̂(t)‖M̂(t) + γP2σ̂(t)ΦT(σ̂(t)) (14)

where γ > 0 is a given parameter and P2 > 0 will be solved in the next section.
The following theorem gives the boundedness proof of the adjustable parameter M̂(t).



Entropy 2023, 25, 43 5 of 19

Theorem 1. If the adaptive parameter M̂(t) is updated by (14) and the initial condition satisfies
M̂(0) ∈ ΘM̂, then M̂(t) ∈ ΘM̂ will be guaranteed for all t ≥ 0, where

ΘM̂ =
{

M̂(t) | ‖M̂‖F ≤ γ
√

n1‖P2‖
}

is a known compact set.

Proof. Design the function as

Γ(t) =
1
2

tr
{

M̂T(t)γ−1M̂(t)
}

. (15)

According to the above Formula (14), we have

Γ̇ = −γ−1‖σ̂(t)‖‖M̂(t)‖2
F +

∥∥∥σ̂T(t)P2M̂(t)Φ(σ̂(t))
∥∥∥ (16)

The excitation function is chosen as

Φ(σ(t)) =
[
1/
(
e−κσ1 + 1

)
, · · · , 1/

(
e−κσn1−1 + 1

)
, 1
]T

where κ is a positive constant. The boundary condition ‖Φ(σ̂(t))‖ ≤ √n1 can easily be
achieved. Further, (16) is rewritten as

Γ̇ = ‖σ̂(t)‖‖M̂‖F

(
γ−1‖M̂‖F −

√
n1‖P2‖

)
(17)

which certifies that Γ̇(t) ≤ 0 once the inequality ‖M̂(t)‖F > γ
√

n1‖P2‖ holds. Hence, if the
initial condition satisfies M̂(0) ∈ ΘM̂, then holds M̂(t) ∈ ΘM̂ holds.

The following discussion is concerned with the decoupling problem of a nonlinear
saturated input under the event-triggered framework. According to Lemma 1, by choosing
H = [H1,−V] to satisfy η(t) ∈ L(H), ∀t ∈ [tk, tk+1), one has

sat(u(t) + g(t)) =
2m

∑
i=1

χi(DiK + D−i H1)x̄(tk)−Veσ(t) (18)

where the scalars χi meet the condition 0 ≤ χi ≤ 1 and ∑2m

i=1 χi = 1. eσ(t) = σ̂(t)− σ(t),
η(t) =

[
x̄T(tk), eT

σ (t)
]T .

Introducing the input (18) to the system (4) results in the form

˙̄x(t) =

(
Ā +

2m

∑
i=1

χi B̄(DiK + D−i H1)

)
x̄(t)−

2m

∑
i=1

χi B̄(DiK + D−i H1)ek(t)− B̄Veσ(t) + Ḡyd (19)

Defining M̃(t) = M∗ − M̂(t) and applying (2), (13) and (17), we arrive at

ėσ(t) = (W + LB̄V)eσ(t)−
2m

∑
i=1

χiLB̄D−i (H1 − K)x̄(t)− M̃(t)Φ(σ̂(t))

+
2m

∑
i=1

χiLB̄D−i (H1 − K)ek(t) + M∗(Φ(σ̂(t))−Φ(σ(t))) (20)

Further, by integrating the system (19) with the error dynamic system (20), we
can obtain

ξ̇(t) = Ãξ(t) + G̃yd + Ĩ
(

M∗(Φ(σ̂(t))−Φ(σ(t)))− M̃Φ(σ̂(t))
)

(21)
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where

ξ(t) =

 x̄(t)
eσ(t)
ek(t)

, G̃ =

 Ḡ
0
Ḡ

, Ĩ =

 0
I
0

, Ã =

 Ā + ∏11 −B̄V −∏11
−∏21 W + LB̄V ∏21

Ā + ∏11 −B̄V −∏11



∏
11

=
2m

∑
i=1

χi B̄(DiK + D−i H1), ∏
21

=
2m

∑
i=1

χiLB̄D−i (H1 − K)

In the next section, by importing the convex optimization method, the desirable
gains K and L will be given to meet the multi-objective control requirements of the
augmented system.

5. Analysis and Proof of Multi-Objective Tracking Control Performance

For the sake of ensuring the performance of the closed-loop system, some related
assumptions are necessary.

Assumption 1. The selected basis function Φ(∗) is assumed to satisfy the following Lipschitz
condition:

(Φ(σ)−Φ(σ̂))T(Φ(σ)−Φ(σ̂)) ≤ eT
σ (t)U

T
σ Uσeσ(t) (22)

where Uσ is a known positive definite matrix.

Assumption 2. The optimal parameter M∗ is usually an unknown bounded matrix, so there exists
a positive definite matrix M̄ satisfying the inequality M∗T M∗ ≤ M̄.

Assumption 3. The unknown disturbance g(t) is supposed to satisfy the condition gT(t)g(t) ≤ θg,
where θg is a constant. Further, because of gT(t)g(t) = σT(t)VTVσ(t) ≤ θg, another inequality

condition follows: σT(t)σ(t) ≤ θg
λmin(VTV)

.

In this section, the following four theorems will give the relevant proofs of dynamic
performances of the closed-loop system (19), including the stability, dynamical tracking,
output constraint and non-Zeno phenomenon.

Theorem 2. For given parameters µi > 0, i = 1, 2, δ > 0 and δ1 > 0, if there exist the matrices
Ψ̃ > 0, Q1 = P−1

1 > 0, P2 > 0 and Ri, i = 1, 2, 3, the following inequality is made:
σ11 σ12 σ13 Ḡ 0
∗ σ22 σ23 0 P2
∗ ∗ µ2Ψ−1 − 2µQ1 0 0
∗ ∗ ∗ −µ2

1 I 0
∗ ∗ ∗ ∗ −M̄−1

 < 0 (23)

where 

σ11 = sym

{
ĀQ1 +

2m

∑
i=1

χi B̄
(

DiR1 + D−i R2
)}

+ δ2Ψ̃ + Q1

σ12 = −B̄V −
(

2m

∑
i=1

χiR3B̄D−i (R2 − R1)

)T

σ13 = −
2m

∑
i=1

χi B̄(DiR1 + D−i R2)

σ22 = sym{P2W + R3B̄V}+ UT
σ Uσ + µ−2

2 I + P2

σ23 =
2m

∑
i=1

χiR3B̄D−i (R2 − R1)
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is solvable, and the adaptive law of M̂(t) is designed by (14); then, both the controlled system (19)
and the dynamical error system (20) will be stable and the augmented variable ξ(t) will retain a
small set Θξ(t), where

Θξ(t) =

{
ξ(t) | ‖ξ(t)‖ ≤

√(
µ2

1y2
d + κ

)
/λmin(P1)

}
.

Moreover, the gain matrices K, H1, L and Ψ are, respectively, given by

K = R1Q−1
1 , H1 = R2Q−1

1 , L = P−1
2 R3, Ψ̃ = Q1ΨQ1

Proof. Select the Lyapunov functions as

V1(x̄(t), t) = x̄T(t)P1 x̄(t) (24)

and
V2(eσ(t), t) = eT

σ (t)P2eσ(t) + tr
{

M̃T(t)γ−1M̃(t)
}

(25)

Along the trajectory of (19), we have, from (24), that

V̇1 ≤ x̄T(t)sym

{
P1 Ā +

2m

∑
i=1

χiP1B̄
(

DiK + D−i H1
)}

x̄(t) + x̄T(t)
{

µ−2
1 P1ḠḠT P1 + δ2Ψ

}
x̄(t)

− 2x̄T(t)
2m

∑
i=1

χiP1B̄
(

DiK + D−i H1
)
ek(t)− 2x̄T P1B̄Veσ(t) + µ2

1z2
d − eT

k (t)Ψek(t) (26)

The derivative of V2 along (20) is deduced by

V̇2 ≤ eT
σ (t)

(
sym(P2W+P2LB̄V)+P2M̄P2+UT

σ Uσ

)
eσ(t)

− 2eT
σ (t)

2m

∑
i=1

χiP2LB̄D−i (H1 − K)x̄(t) + 2eT
σ (t)

2m

∑
i=1

χiP2LB̄D−i (H1 − K)ēk(t)

+ 2‖σ̂(t)‖‖M∗‖2
F +

√
2θgn1

λmin(VTV)
‖P2‖

(
γ
√

n1P2 +
√

tr(M̄)

)
(27)

Notice that

2‖σ̂(t)‖‖M∗‖2
F ≤ 2‖σ(t)‖‖M∗‖2

F + 2‖eσ(t)‖‖M∗‖2
F

≤ 2

√
θg

λmin(VTV)
tr(M̄) + µ2

2(tr(M̄))
2 + µ−2

2 eT
σ (t)eσ(t) (28)

Then, integrating (26) and (27) with (28) produces

V̇1 + V̇2 ≤ ξT(t)Ωξ(t) + µ2
1y2

d + κ (29)

where the parameter κ is expressed as

κ =

√
2θgn1

λmin(VTV)
‖P2‖

(
γ
√

n1P2 +
√

tr(M̄)

)
+ 2

√
θg

λmin(VTV)
tr(M̄) + µ2

2(tr(M̄))
2 (30)

and

Ω =

 v11 v12 v13
∗ v22 v23
∗ ∗ −Ψ

 (31)
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with 

v11 = sym

{
P1 Ā + P1

2m

∑
i=1

χi B̄(DiK + D−i H1)

}
+ µ−2

1 P1ḠḠT P1 + δ2Ψ

v12 = −P1B̄V −
(

P2

2m

∑
i=1

χiLB̄D−i (H1 − K)

)T

v13 = −P1

2m

∑
i=1

χi B̄(DiK + D−i H1)

v22 = sym{P2(W + LB̄V)}+ P2M̄P2 + UT
σ Uσ + µ−2

2 I

v23 = P2

2m

∑
i=1

χiLB̄D−i (H1 − K).

Based on the Lemma 2, by multiplying the matrix diag{P1, I, P1, I, I, I} to two sides
of (23), we have

(23)⇐⇒ Ω < diag{P1, P2, 0}

Then, (29) is expressible as

V̇1 + V̇2 ≤ −ξT(t)P̃ξ(t) + µ2
1z2

d + κ (32)

where P̃ = diag{P1, P2, αI}, with α being a proper positive constant. If

ξT(t)P̃ξ(t) > µ2
1z2

d + κ

then it is easy to arrive at
V̇1 + V̇2 < 0.

Thus, for any x̄(t), eσ(t) and ek(t), we have

ξT(t)P̃ξ(t) ≤ max
{

ξT(0)P̃ξ(0), µ2
1z2

d + κ
}
= π (33)

which implies that the controlled system (21) is stable with the original state ξ(0). Thus,
the state ξ(t) can be ensured to converge into Θξ(t). The proof is complete.

Theorem 3. For given positive parameters µi, i = 1, 2 and δ, if there exists P−1
1 = Q1 > 0,

P2 > 0, Ψ̃ > 0 and Ri, i = 1, 2, 3 satisfying (23) and the conditions[
Q1 Q1C̄T

i
∗

(
π−1z2

di
)

I

]
≥ 0, i = 1, 2, · · · , p (34) π−1 Rl

2 V l

∗ Q1 0
∗ ∗ P2

 ≥ 0, l = 1, 2, · · · , m (35)

where C̄i and zdi, respectively, represent the ith row of C̄ and the ith component of zd, Rl
2 and V l are,

respectively, the ith row of R2 and V and the adaptive regulation law of M̂(t) is designed by (14),
the augmented system (21) will be stable and the tracking error of the output will astringe to zero;
that is,

lim
t→∞

z(t) = zd

Moreover, the state saturation constraint η(t) ∈ L(H) will also be satisfied. In addition, the
gain matrices K, H1, L and Ψ are, respectively, given by

K = R1Q−1
1 , H1 = R2Q−1

1 , L = P−1
2 R3, Ψ̃ = Q1ΨQ1
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Proof. Similar to the above Theorem, the stability of the augmented system (21) will be
proved. From (34), it is not hard to deduce that

C̄T
i C̄i ≤ π−1z2

diP1.

Thus, the inequality can be obtained by

z2
i (t) = x̄T(t)C̄T

i C̄i x̄(t) ≤ π−1z2
di x̄

T(t)P1 x̄(t) ≤ z2
di (36)

On one hand, it can be known that the term
∫ t

0 e(τ)dτ is a part of x̄(t). Therefore,
when t → +∞, it can be verified that the integral item must be bounded. Meanwhile,
due to the constraint condition of each component of the output (36), the sign of e(t) will
stay the same for all t ≥ 0. In general, it can be concluded that the tracking error satisfies
limt→∞ z(t) = zd.

On the other hand, according to the Theorem 1, the η(t) will stay in the defined
ellipsoid Ω(P̄, π), where P̄ = diag{P1, P2}. In addition, by multiplying left and right sides
of (35) with the matrix diag{I, Q−1

1 , I}, one has π−1 Hl
1 V l

∗ P1 0
∗ ∗ P2

 > 0 (37)

Applying the Schur formula into (37) yields(
Hlη(t)

)T(
Hlη(t)

)
≤ π−1ηT(t)P̄η(t) ≤ 1 (38)

Thus, it can be inferred that Ω(P̄, π) ⊂ L(H) can be met for all η(t). Therefore,
η(t) ∈ L(H) can be pledged for all η(t) ∈ Ω(P̄, π).

The next theorem is concerned with the problem of how to determine the minimum
triggering time interval.

Theorem 4. For the system (4), under the designed event-triggering format (8), the minimum
triggering interval can be given by

T̃ = min
k
{tk+1 − tk} =

1
a

ln
(

1 +
a
b

∆(t)
)
> 0 (39)

where

a =
∣∣λmax(Ā)

∣∣, b = a‖B̄‖‖x̄(tk)‖+ ‖Ḡ‖‖zd‖, ∆(t) = δ
λmax(Ψ)

λmin(Ψ)
‖x̄(t)‖ (40)

Proof. From (9), it is obtained that

ėk(t) = Āx̄(t) + B̄sat(u(t) + g(t)) + Ḡzd

Furthermore, for all t ∈ [tk, tk+1), one has

d
dt
‖ek(t)‖ ≤ |λmax(Ā)|‖ek(t)‖+ |λmax(Ā)|‖x̄(tk)‖+ ‖B̄‖+

∥∥Ḡ
∥∥‖zd‖ (41)

By defining a and b as given in (40), the inequality (41) is described as

d
dt
‖ek(t)‖ ≤ a‖ek(t)‖+ b (42)
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It is easy to deduce that ∥∥∥Ψ
1
2 ek(t)

∥∥∥ ≤ a
b

(
ea(t−tk) − 1

)
Based on the event-triggering condition, by solving ∆(t) = a

b

(
ea(t−tk) − 1

)
, we

can achieve
T̃ =

1
a

ln
(

1 +
a
b

∆(t)
)

which is the minimum triggering time interval. Based on the definition of x̄(t), ‖x(t)‖ 6= 0
is true. Thus, the minimum triggering time interval T̃ > 0 holds. In conclusion, the Zeno
phenomenon will not happen in the designed event-triggered algorithm.

Please note that (23) in Theorem 2 is not a standard LMI and is actually a BLMI.
Generally, the BLMI can be solved by fixing the matrix R3 or the matrices R1 and R2
beforehand. As such, the results in Theorem 2 really do not give a convex optimization
algorithm. Therefore, the next theorem intends to further improve the results of Theorem 2.

Theorem 5. Given parameters µi > 0, αi > 0, δ > 0 and δ1 > 0, if there are matrices P2 > 0,
Q1 = P−1

1 > 0, Ψ̃ > 0, R > 0 and Ri such that the conditions

ψ11 ψ12 ψ13 Ḡ 0 Q1 0
∗ ψ22 0 0 P2 0 0
∗ ∗ ψ33 0 0 0 Q1
∗ ∗ ∗ −µ2

1 I 0 0 0
∗ ∗ ∗ ∗ −M̄−1 0 0
∗ ∗ ∗ ∗ ∗ −α−1

1 I 0
∗ ∗ ∗ ∗ ∗ ∗ −α−1

3 I


< 0 (43)

with 

ψ11 = sym

{
ĀQ1 +

2m

∑
i=1

χi B̄
(

DiR1 + D−i R2
)}

+ δ2Ψ̃

ψ12 = B̄V

ψ13 = −
2m

∑
i=1

χi B̄(DiR1 + D−i R2)

ψ22 = sym{P2W + R3B̄V}+ UT
σ Uσ + µ−2

2 I + α2 I

ψ33 = µ2Ψ−1 − 2µQ1

and

ε < 2
√

α1α2α3

α1 + α2
(44)

are solvable, and the adaptive regulation law of M̂(t) is designed by (14), the augmented system (21)
will be stable. The gain matrices K, H1, L and Ψ are, respectively, given by

K = R1Q−1
1 , H1 = R2Q−1

1 , L = P−1
2 R3, Ψ̃ = Q1ΨQ1.

Proof. Similar to Theorem 2, by taking the derivative of the functions given in (24) and (25),
inequalities (26) and (27) can still be satisfied. As for the coupling term

eT
σ (t)

2m

∑
i=1

χiLB̄
(

DiK + D−i H1)x̄(tk
)
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in (34), we can conclude that, if the inequality (43) holds, then there must exist a parameter
ε > 0, depending on L, K and H1, such that

eT
σ (t)

2m

∑
i=1

χiLB̄
(

DiK + D−i H1)x̄(tk
)
≤ ε‖eσ(t)‖(‖x̄(t)‖+ ‖ek(t)‖) (45)

By means of (43), (27) is translated as

V̇2 ≤ eT
σ (t)

(
sym(P2W+P2LB̄V)+P2M̄P2+UT

σ Uσ

)
eσ(t) + ε‖eσ(t)‖(‖x̄(t)‖+ ‖ek(t)‖)

+

√
2θdn1

λmin(VTV)
‖P2‖

(
γ
√

n1P2 +
√

tr(M̄)

)
+ 2‖σ̂(t)‖‖M∗‖2

F (46)

Furthermore, by using (26) and (46), we can obtain

V̇1 + V̇2 ≤ ξT(t)Ω1ξ(t) + ε‖eσ(t)‖‖x̄(t)‖+ ε‖eσ(t)‖‖ek(t)‖+ µ2
1y2

d + κ (47)

where

Ω1 =

 v11 P1B̄V v13
∗ v22 0
∗ ∗ −Ψ

.

By using the Schur lemma, we can attain

(43)⇐⇒ Ω1 < diag{α1 I, α2 I, α3 I}.

Then, (47) is inferred as

V̇1 + V̇2 = −ξ̄T(t)Υξ̄(t) + µ2
1y2

d + κ (48)

where

ξ̄(t) = [‖x̄(t)‖, ‖eσ(t)‖, ‖ek(t)‖]T , Υ =

 α1 0 − ε
2

∗ α2 − ε
2

∗ ∗ α3

 (49)

It is noted that, if Υ is a positive real matrix, the stability of system (21) can be pledged.
Further, the characteristic polynomial of Υ is described by

4α3λ2
i − 4(α1α3 + α2α3)λi +

(
4α1α2α3 − α1ε2 − α2ε2

)
= 0 (50)

where λi are the eigenvalues of Υ. From (50), it is inferred that

λ1 + λ2 = α1 + α2 > 0

λ1λ2 =
4α1α2α3 − (α1 + α2)ε

2

4α3

If the condition (44) is met, then it is easy to conclude that λ1λ2 > 0. To sum up,
the matrix Υ is a positive real matrix and thus the augmented system (21) is proved to
be stable.

6. Simulation

Consider the A4D aircraft model as the controlled system. In a flight environment of
16,000 ft altitude and 0.9 Mach, the dynamics of the A4D system can be modeled by (1),
where x(t) ∈ R4 represents the state of the aircraft, x1(t) is the forward velocity

(
f t · s−1),

x2(t) is the attack angle (rad), and x3(t) and x4(t) are the velocity of pitch
(
rad · s−1) and

the angle of pitch (rad), respectively. u(t) is the elevator deflection (deg) and the output z(t)
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is selected as the forward velocity x1(t). Similar to [45,46], the dynamic model was modeled
by using the principle of system identification. Based on the idea of sparse identification,
the input and output data of A4D aircraft were identified by the generalized least squares
method, and then the state parameter matrices A, B and C of the system were obtained as

A =


−0.0605 32.38 0 32
−0.0015 −1.47 1 0
−0.0111 −34.72 −2.793 0

0 0 1 0

, B =


0

−0.1064
−33.8

0

, C =
[

1 0 0 0
]

Next, we considered the anti-disturbance control for two types of irregular distur-
bances by selecting different excitation functions.

First, in order to describe attenuated harmonic (AH) disturbances, the DNN parame-
ters of the disturbance model were selected as

W =

[
0 4
−4 0

]
, V =

[
0.7 0

]
, M∗ =

[
−0.3 −0.05
0.01 0.45

]
, Φ(t) =

[
arctan(t)
arctan(t)

]
Preselect the candidate value of R3 as

R3 =

[
0 −30.3493 −5.6140 0 0
0 50.1378 10.9620 0 0

]
.

Meanwhile, by defining µ1 = µ2 = 1 and solving inequalities (23), (34), (35), we obtained

K =
[

0.0038 −0.6781 0.0339 0.7744 0.0008
]

L = 10−6 ∗
[

0 −0.1055 −0.0195 0 0
0 0.1743 0.0381 0 0

]
H1 =

[
0.0014 −0.1912 0.0115 0.233 0.0005

]
Assume that the initial conditions of the augmented states and the desired output are

selected as
x0 = [2,−2, 3,−2]T , σ0 = [4, 4]T , zd = 18

Suppose that Ψ is an identity matrix, δ = 0.01. Figure 1 reflects the triggered release
time and the corresponding interval. The dynamics of the states are plotted in Figure 2,
which can reflect the favorable stability. Both the attenuated harmonic disturbances and
the disturbance estimated value together with the estimated error are displayed in Figure 3.
Thus, the satisfactory capacities of disturbance modeling and estimation are fully embodied.
Figures 4 and 5 depict the dynamical trajectories of the input and output, respectively,
which verifies the favorable input constraint and dynamical tracking performance. The
dynamics of the DNN weight are exhibited in Figure 6.

Second, sawtooth wave (STW) signals usually appear in some circuit or electromag-
netism systems, and it is quite hard to monitor them using common epitaxial systems. For
modeling STW disturbances, the specific parameters of DNNs are considered as

W =

[
0 −6
2 −0.01

]
, V =

[
−0.01 −1

]
, M∗ =

[
0 0.02
−0.2 0.45

]

Φ(t) =


[

1
1+e−0.5t

1
1+e−0.5t

]
t ≥ 0[

−2.1
−2.1

]
t < 0
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Figure 1. The event-triggered release times and intervals in the case of AH disturbances.

Figure 2. The trajectories of the system states in the case of AH disturbances.

Figure 3. The disturbance estimates and estimation error in the case of AH disturbances.
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Figure 4. The dynamics of the saturated control input in the case of AH disturbances.

Figure 5. The trajectory of the system output in the case of AH disturbances.

Figure 6. The trajectory of the dynamical weights in the case of AH disturbances.

By solving inequalities (23), (34) and (35), the gains K, L and H1 can be found to be

K =
[

0.0231 0.2521 0.0184 0.9451 0.0431
]
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L = 10−6 ∗
[

0 −0.1441 −0.0266 0 0
0 0.0792 0.0173 0 0

]
H1 =

[
−0.1475 0.0062 0.0230 0.1648 0.0430

]
Suppose that the initial values are, respectively, given by

x0 = [2,−2, 3,−2]T , σ0 = [3, 3]T .

The desired output is defined as zd = 17. The triggered release time and corresponding
intervals are displayed in Figure 7. Figure 8 is the tracks of the states of the A4D system.
Figure 9 exhibits the dynamics of STW and its estimates. Figures 10 and 11, respectively,
present the saturated input and the system output. Figure 12 depicts the dynamics of the
designed DNN weight. Figures 8–12 demonstrate that the designed event-triggered PI
control input can obtain favorable control performances in the case of STW disturbances
while saving a considerable amount of resources (see Figure 7).

Figure 7. The event-triggered release times and intervals in the case of STW disturbances.

Figure 8. The trajectories of the system states in the case of STW disturbances.
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Figure 9. The disturbance estimates and estimation error in the case of STW disturbances.

Figure 10. The dynamics of the saturated control input in the case of STW disturbances.

Figure 11. The trajectory of the system output in the case of STW disturbances.
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Figure 12. The trajectory of the dynamical weights in the case of STW disturbances.

By effectively estimating for AH and STW disturbances, respectively, a satisfactory
anti-disturbance control frame can be embodied in the above simulation. Compared to
those results that rely on constant or harmonic disturbances, the main advantages of the
suggested method are reflected in wider anti-disturbance ranges, more objective control
tasks and less data transfer. Of course, some existing disadvantages—for example, more
conservative algorithms and higher real-time requirements—need to be fully considered in
the future work.

7. Conclusions

In this paper, a valid anti-disturbance event-triggered control probelm is discussed
for systems with multiple constraints under the frame of DNN disturbance modeling.
Different from the usual time-triggered problem, the whole algorithm design was made
with the event-triggered frame. After constructing the augmented event-triggering condi-
tion, a novel event-triggered DOBAC algorithm was designed by integrating the modified
adaptive regulation law with the DNN disturbance models. Meanwhile, a composite event-
triggered controller was successively designed with a polytopic description of the saturated
actuator. By using the convex optimization theory, the relevant proofs were given to verify
the stability of the closed-loop augmented system and to meet the multiple constraints
regarding the augmented states, as well as the system output. Moreover, the dynamics of
the tracking error can be displayed as converging to zero. Finally, the simulation results
illustrate that the proposed scheme is effective in terms of desired control performances
and significantly reduced resource utilization.
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