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Abstract: The healthy function of the vestibular system (VS) is of vital importance for individuals to
carry out their daily activities independently and safely. This study carries out Tsallis entropy (TE)-
based analysis on insole force sensor data in order to extract features to differentiate between healthy
and VS-diseased individuals. Using a specifically developed algorithm, we detrend the acquired data
to examine the fluctuation around the trend curve in order to consider the individual’s walking habit
and thus increase the accuracy in diagnosis. It is observed that the TE value increases for diseased
people as an indicator of the problem of maintaining balance. As one of the main contributions of this
study, in contrast to studies in the literature that focus on gait dynamics requiring extensive walking
time, we directly process the instantaneous pressure values, enabling a significant reduction in the
data acquisition period. The extracted feature set is then inputted into fundamental classification
algorithms, with support vector machine (SVM) demonstrating the highest performance, achieving
an average accuracy of 95%. This study constitutes a significant step in a larger project aiming to
identify the specific VS disease together with its stage. The performance achieved in this study
provides a strong motivation to further explore this topic.

Keywords: vestibular disorders; insole force sensors; gait analysis; Tsallis entropy; detrending;
feature extraction; classification

1. Introduction

The vestibular system (VS) is a perceptual system responsible for providing the brain
with information regarding spatial orientation, head position, and motion. Additionally, it
plays a crucial role in maintaining balance and stability [1]. Despite numerous studies in
various medical fields, the detection of vestibular disorders is an area that has not received
sufficient attention yet. This study aims to fill this gap by utilizing Tsallis entropy (TE) as a
tool to identify VS-related diseases.

Various methods are employed in the literature to identify the specific VS problem but
the most popular clinical method is still computerized dynamic posturography (CDP) [2].
The state-of-the-art methods are based on utilizing classification techniques following a
machine learning step where the features are extracted from gait data. Gait data refer
to the collection of information about an individual’s walking patterns and habits. They
capture various aspects of walking, such as force, rhythm, speed, and variability in different
components of the gait cycle. The gait cycle is a complex activity consisting of two main
phases: the stance phase, in which the foot remains on the ground, and the swing phase,
in which the foot moves forward. By analyzing gait data, we can detect irregularities
and deviations that differ from what is considered a ‘normal’ gait. These deviations
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can be indicative of a variety of health conditions, from musculoskeletal problems to
neurological disorders.

The gait data are especially used to give information about balance disorders related
to different diseases. Within this context, gait analysis has emerged as a valuable tool in the
diagnosis and monitoring of neurodegenerative diseases, providing objective measures
to assess motor impairments associated with these conditions. It has been extensively uti-
lized in the evaluation of diseases such as Parkinson’s disease (PD), Huntington’s disease
(HD), amyotrophic lateral sclerosis (ALS), and other related disorders. Numerous studies
have demonstrated the effectiveness of gait analysis in identifying disease-specific gait
abnormalities and distinguishing between different neurodegenerative conditions. As an
example, Nir Giladi et al. proposed a new clinical classification scheme for gait and posture
and discussed the use of gait analysis in identifying disease-specific gait abnormalities [3].
Bovonsunthonchai et al. investigated the use of spatiotemporal gait variables in distinguish-
ing between three cognitive status groups and discussed the potential of gait analysis as a
tool for early detection of neurodegenerative conditions [4]. Guo Yao et al. summarized the
research on the effectiveness and accuracy of different gait analysis systems and machine
learning algorithms in detecting Parkinson’s disease based on gait analysis [5].

As an example of the use of gait data to evaluate balance disorders associated with
dysfunction in the VS, A. R. Wagner et al. discussed how gait analysis can be used to assess
vestibular-related impairments in older adults, and how these impairments can impact
balance control [6]. In [7], Ikizoğlu and Heyderov search for significant features from IMU-
sensor-based data to diagnose VS disorders. In [8], Agrawal et al. utilize wireless pressure
sensors embedded in insoles along with machine learning models to predict fall risks,
achieving promising results. In [9], Schmidheiny et al. focus on the discriminant validity
and test–retest reproducibility of a gait assessment in patients with vestibular dysfunction.

In this study, our aim was to utilize contemporary classification methods to extract
pertinent characteristics from gait data for the purpose of diagnosing VS-dysfunction-based
balance disorders. To accomplish this objective, we employed an innovative approach that
involved TE values as the feature. TE offers a framework for characterizing the statistical
properties of complex systems and thus it is capable of defining non-extensive systems.
TE has proven to be effective in diverse domains such as physics, information theory, and
economics, enabling a more comprehensive analysis and understanding of systems with
long-range correlations and heavy-tailed distributions [10]. As an example of the applica-
tion of TE in the field of biomedical engineering, Zhang et al. investigated the dependency
of the TE of EEG data on the burst signals after cardiac arrest [11]. Similarly, Tong et al.
used the TE of EEG signals as a measure of brain injury in their study [12]. Considering
the human gait to exhibit non-extensive behavior with long range correlations [13–16],
we expected TE to be rather helpful in analyzing the balance performance of individuals.
Thus, by applying TE to gait data, our objective was to capture vital information concern-
ing the behavior and dynamics of the VS, which can contribute to the identification of
related diseases.

This study is an important step within a larger project which we are conducting
together with the audiologists at The Medical School Cerrahpaşa-Istanbul. We aim to
develop a diagnosing system to identify the specific disease that is the source of the VS
dysfunction causing imbalance. We also aim to determine the stage of the problem. The
first step in this process is the classification of the individual as healthy or suffering. For
this classification, we are searching for primary discriminative features. We collect various
features which will then enter a feature reduction/selection process. According to the
experience of the audiologists, these primary features are expected to be obtained from
relatively short data acquisition periods, in order to not put the patient in stress, and thus
increase the accuracy of the whole system. In [7], we discussed the effectiveness of features
obtained from IMU sensor data, such as average step length, average speed, step symmetry,
knee bending angle, lateral/posterior waist swing, etc., where we achieved an accuracy
around 90%. In [17], we presented a feature based on insole pressure sensor data called
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fractal spectrum width that had an accuracy around 98% in distinguishing between the
classes in the first step of the entire process. This study is also based on the same data
as that one, but it looks for new features based on Tsallis entropy that would be effective
in the feature selection/reduction process. We set our accuracy threshold as 90% for any
individual feature to advance to the reduction stage.

We can briefly summarize the contributions we have brought with this study as
follows: Most studies have focused on features related to gait analysis, such as stride time,
stance time, etc., which require a relatively long walking time. This study aims to shorten
the data acquisition period by capturing features from short walks. Pressure data collected
from wearable insole sensors are used for feature extraction. This approach allows data to
be obtained in daily life, helping the patient avoid the stress of the clinical environment and
potentially improving the accuracy of the diagnosis [18,19]. We detrend the normalized
raw data, allowing the identification of individual specific fluctuations around the trend,
thereby increasing the accuracy. As one of our basic contributions, we propose a specific
algorithm to determine the trend curve in each walking step. This process leads to a better
ability to distinguish temporary imbalance from unusual walking habits.

After feature extraction, the extracted features were used to train models using classi-
fication methods. The main classification categories included decision trees (DT), discrimi-
nant analysis, logistic regression, naïve Bayes, support vector machine (SVM), k-nearest
neighbors (KNN), kernel approximation, ensemble, and neural networks.

Considering the flow of the study, the rest of this article is structured as follows:
The Materials and Methods section provides comprehensive details on TE. Subsequently,
in the Data Acquisition Process section, a thorough explanation is given regarding the
data collection process. In the Data Processing section, the step-by-step procedures for
transforming the raw data into distinct features are elaborated upon. The outcomes of the
subsequent experiments are presented comparatively within the Results section. Lastly, in
the Discussion section, the results are analyzed, inferences are drawn, and future prospects
regarding the utilization of the outcomes within the broader project are mentioned.

2. Materials and Methods
2.1. Entropy, Tsallis Entropy—Brief Background

Entropy is a property that is mostly used as a measure to describe the chaotic level
of a dynamic system. The well-known Shannon entropy (SE) based on Boltzmann–Gibbs
statistical mechanics and formulated as

SE = −∑N
i=1 piln(p i), (1)

is capable of describing the structure of extensive systems with short-term microscopic
correlations [20,21]. In (1), the Boltzmann constant is taken as k = 1, N is the number of
microstates, and pi stands for the probability of the i-th microstate.

For systems with long-term interactions, however, or systems presenting long-term
memory effect, the effectiveness of applying SE for the abovementioned purpose de-
creases [22]. At this point, forming the generalized structure of Boltzmann–Gibbs statistics,
the Tsallis entropy (TE) within the non-extensive statistics contributes significantly to
finding the hidden information in the time series [23].

TE has found applications in various fields, including biomedical research. In the
context of biomedicine, TE has proven to be a valuable tool for analyzing complex systems
and understanding the dynamics of biological processes, with its main advantage being
the ability to capture the non-linear and long-range dependencies present in biological
systems [12,17].

The Tsallis entropy with k = 1 is defined as

TE =
1

q− 1

(
1−∑N

i=1 pq
i

)
, (2)
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where q (qεR) is a parameter to indicate the degree of non-additivity [24]. This is because,
for two independent systems X and Y, we have

TE(X + Y) = TE(X) + TE(Y) + (1− q)TE(X)TE(Y), (3)

where (1 − q) is a measure of deviation from additivity. q > 1 and q < 1 correspond
to sub-extensive and super-extensive statistics, respectively [12,25]. For q = 1 we have
TE = SE, corresponding to extensive statistics. In (2), N is the number of possible states
and pi represents the probability of the i-th state. The determination of the value of the
parameter q does not have specific criteria, but rather depends on the specific characteristics
of the analyzed dataset [26]. By adjusting the value of q, the entropy metric can be tailored
to capture particular features inherent in the analyzed dataset.

2.2. Data Collection

We recall that the data used in this study are the same as in our previous study [17].
When the gait analysis studies in the literature are examined, it is seen that the

distribution of weight is concentrated especially at four main points on the soles of the
feet, as depicted in Figure 1a [27–31]. Also in this study, these four points were chosen for
the placement of the sensors in line with the opinions of several academics in the field of
audiology, who are acknowledged in the Acknowledgments section.
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Figure 1. (a) Sensor placement on the insole; (b) numbering of the sensors S0 to S7 (top view) [17].

To ensure data collection without disturbing the natural walking patterns of the
participants, 5 pairs of insoles with different sizes (36, 38, 40, 42, 44—according to European
standards) were manufactured. Prior to the commencement of the experiment, the correctly
sized insoles were inserted into the subjects’ shoes. For the production of the insoles, a
durable and soft plastic material commonly employed in the manufacturing of orthopedic
products was utilized.

Force-sensitive resistors (FSR) were chosen as pressure sensors, as they are widely used
in gait analysis applications and offer several advantages [32]. Considering the physical
dimensions and the acceptable repeatability feature, the FSR402-short tail model from
Interlink was selected [33]. The characteristics of the sensor can be found in Table 1. The
sensors on the insoles were numbered S0 to S7, as seen in Figure 1b.

Some explanatory information about the characteristics in Table 1 can be given as
follows: Repeatability is a measure of the scattering of results for multiple measurements
under the same conditions. For our sensor, the maximum deviation of the results of
successive measurements of the same measurand from the mean is given as ±2%. Idle
resistance is the resistance of the resistive force sensor when no force is applied to it.
Hysteresis is a measure of how far the system output is different depending on whether a
specific input value was reached by increasing vs. decreasing the input. Rise time is the
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time it takes for the system/sensor output to change from 10% to 90% of its final value.
This time, given in Table 1 as less than 3 microseconds, shows that the sensor responds
rapidly to the force/change in force applied to it.

Table 1. Characteristics of the FSR402-short tail sensors.

Parameter Value

operation range 0.2 N–20 N
physical dimensions φpad 18.3 mm, φsens 12.7 mm

thickness 0.46 mm
repeatability ±2%

idle resistance >10 MΩ
hysteresis 10% max.
rising time <3 µs

Data collection was carried out in the clinical setting of the Audiology Department
at Cerrahpaşa Medical School, Istanbul University—Istanbul, Türkiye. The process was
conducted in compliance with the principles outlined in the Helsinki Declaration. Before
starting the process, approval was obtained from the Istanbul University Ethics Committee
(Approval number: A-57/07.07.2015). In addition, informed consent was obtained from
all subjects before participation in the study. For individuals with VS problems, their
conditions had already been diagnosed by the audiologists using conventional systems
(computerized dynamic posturography-CDP).

Data were collected on weekends to minimize the subjects’ stress and avoid inter-
ference from other nearby devices. The subjects were asked to walk the 12 m long path
twice. The first walk aimed to help them become familiar with the environment and
reduce any possible stress, while the data from the second walk were used for analysis
in general. In some cases, subjects walked a third time when needed as a result of the
audiologists’ observations.

The pressure sensor data collected with the Arduino Mega device placed on the
subjects were transferred to the laptop wirelessly via an HC-06 Bluetooth unit. Sampling
was performed from all sensors simultaneously at a rate of 20 samples per second. In order
to convert the force to voltage, a 1 kΩ resistor in series with the FSR served as a voltage
divider. As the next step, we calibrated this structure in the lab since the FSR has a highly
non-linear characteristic curve. Supplying the structure with 5 V DC voltage presented an
average function as

w = e
vo+0.2245

0.9265 , (4)

where w (N) is the weight applied onto the sensor and vo (V) is the output voltage. A 10%
deviation from the values obtained by Equation (4) was taken as the criterion that would
disqualify the relevant sensor from being used in the experiments.

Informative data about the participants are listed in Table 2.

Table 2. Information about the subjects.

Healthy (30) Diseased (30)
Male (15) Female (15) Male (13) Female (17)

age 54.3 ± 8.5 55.1 ± 7.9 54.5 ± 8.5 56.8 ± 7.2
mass (kg) 66.6 ± 9.8 65.1 ± 8.8 65.9 ± 10.2 64.9 ± 7.9

height (cm) 169.2 ± 10.0 164.0 ± 6.2 170.3 ± 8.8 163.4 ± 5.7

The distribution of the subjects whose specific disease was detected by CDP by audiol-
ogists is given in Table 3.
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Table 3. The distribution of diseased subjects.

Male Female

BPPV * 6 8
UVW * 3 4
Meniere 3 3

Vestibular Neuritis 1 2
(*) BPPV—benign paroxysmal positional vertigo, UVW—unilateral vestibular weakness.

To ensure the confidentiality and privacy of all participants, their identities have been
anonymized for publication of this article.

2.3. Data Processing

In order to interpret the results more accurately on the basis of the subject, the obtained
data were preprocessed before feature extraction. Thus, the feature extraction process was
carried out in six stages.

Stage 1—Framing useful data

We framed the useful part of the whole walk, and data corresponding to the first and
last steps were extracted from the overall data. Thus, data on steps with missing dynamic
behavior were excluded from the evaluation.

Stage 2—Determining the intervals when the foot is actively touching the ground

Of all the gait data, only those corresponding to the time intervals during which the
foot is actively touching the ground provide useful information. These intervals were
determined for each foot as follows:

• All the sensor data were normalized to the range 0–1 as

Xnorm =
X− Xmin

Xmax − Xmin
, (5)

where X is the original/raw data and Xmin and Xmax represent the minimum and maximum
values, respectively.

• The maximum of all sensor data (Smax) was determined. As an example, for the right
foot, these data were obtained as SRmax = max(S0, S1, S2, S3).

• A threshold was set so that the foot was interpreted as being in the air for the time
interval where Smax remained below this threshold value.

The process is visualized for a sample subject in Figure 2; there, the individual sensor
data are marked in different colors, their maximum in black, and the foot-in-the-air position
is shown as zero amplitude.

Stage 3—Interpolation

As mentioned in the ‘Data Collection’ section, the sampling frequency for data ac-
quisition was 20 Hz. On the other hand, for meaningful entropy calculation, we need a
significant number of bins in the histogram of the relevant data, as well as a sufficient
number of samples in each bin. Therefore, we applied 20-fold interpolation to all the sensor
data. Prior to the interpolation process, the segments where the feet were not in contact
with the ground were removed from the data sequences. The process is illustrated in
Figure 3 for a sample subject. Linear interpolation was not preferred in order to maintain
accuracy without compromising the representation of the data. Instead, the cubic Hermite
interpolation method was chosen as the interpolation technique. This method provides a
smoother and more accurate representation of the data while preserving its integrity [34].
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Stage 4—Detrending

To classify an individual as healthy or diseased, we are concerned with the deviation
of the data from those corresponding to the person’s walking habit. Therefore, we first
determined the trend data related to the walking habit. The process illustrated in Figure 4
can be briefly explained as follows: For each step, the trend curve of the previous step
is scaled in the time axis using the ‘nearest-neighbor interpolation’ method based on the
length of the current step data; thus, we equate both the current and previous step data
lengths. A trend dataset is then generated for the current step i using Equation (6).

Ti = Fi f or i = 1

Ti = αFi + (1− α)Ťi−1 f or i = 2, 3, . . . , n.
(6)

Here, Ti is the current-step trend data, and Fi stands for the current step data. Ť
denotes the trend data whose length is scaled, and α is a coefficient indicating the degree to
which the previous trend curve is approximated to the current step data set. αmax represents
the maximum rate of change that each data point of the trend curve can exhibit from one
step to the next, for which the value 0.23 was statistically determined, considering data
from healthy subjects. We note that αmax serves as a parameter to achieve a balance between
flexibility in trend curve adaptation and avoiding overfitting, and although it has a role
in shaping the trend curve, the key features of our analysis remain relatively insensitive
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to its exact value. The process is terminated when the α value reaches αmax or the error
defined as ε = mean {|Ti − Fi|} falls below a threshold so that it is considered negligible.
The threshold level is set as 10−6.
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Stage 5—Tsallis Entropy Calculations

At this stage, the TE calculation was performed with the help of the histograms
generated from the detrended data. The process was performed for both the data for the
entire gait from each sensor and for all the step data within the gait cycle. For each sensor,
the data corresponding to the intervals in which the relevant sensor was not actively used
were extracted from the data set. These intervals are marked as black bars in Figure 6a for
a sample data set. Histograms were obtained from the absolute values of the detrended
dataset, where the maximum number of bins was determined as 25 in order to achieve an
acceptable granularity. Figure 6b illustrates the corresponding histograms for the data set
in Figure 6a.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 17 
 

 

  
(a) (b) 

Figure 6. For a sample diseased subject (no. 30): (a) absolute values of the detrended data in Figure 
5b and the step-by-step TE values (black bars indicate ranges in which the corresponding sensor is 
inactive); (b) histograms derived from the data for the entire gait (sensor-inactive intervals re-
moved). 

 
Figure 7. Dependency of the learning success on Tsallis parameter (𝑞) value. 

Stage 6—Feature Extraction 
As stated in the introduction, although human gait seems to have a regular pattern, 

a literature review reveals that fluctuations are observed in this pattern. For healthy peo-
ple, these fluctuations are long-range correlated. However, this correlation weakens for 
people with balance problems. Thus, the TE value could be a significant measure to clas-
sify individuals as healthy or diseased. In this study, we leveraged two TE-based possi-
bilities to identify VS-dysfunction-based problems. One was to consider the TE value of 
the entire gait cycle, and the other was to examine the change in TE value from step to 
step. For the second case, we decided to examine the deviation of the TE value from zero, 
because in the ideal case it is clear that the step-to-step change of entropy for a healthy 
person would be zero. Thus, for this case, the data set containing the step-by-step entropy 

Figure 6. For a sample diseased subject (no. 30): (a) absolute values of the detrended data in Figure 5b
and the step-by-step TE values (black bars indicate ranges in which the corresponding sensor is
inactive); (b) histograms derived from the data for the entire gait (sensor-inactive intervals removed).

As mentioned in Section 2.1, the selection of the q parameter value in TE calculation
does not have a predefined criterion, it rather depends on the specific characteristics of the
analyzed data set. The best q value that would achieve the highest accuracy for our data sets
and therefore maximize the discriminatory power of TE was determined to be 0.82 by an
iterative process. In the process of determining the q value, nine classification algorithms of
the learning models outlined in Stage 6 took part with a 10-fold cross-validation technique.
The ratios of the models attaining the highest success were employed as the benchmark.
The learning success rates vs. q values are depicted in Figure 7.
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Stage 6—Feature Extraction

As stated in the introduction, although human gait seems to have a regular pattern, a
literature review reveals that fluctuations are observed in this pattern. For healthy people,
these fluctuations are long-range correlated. However, this correlation weakens for people
with balance problems. Thus, the TE value could be a significant measure to classify
individuals as healthy or diseased. In this study, we leveraged two TE-based possibilities
to identify VS-dysfunction-based problems. One was to consider the TE value of the entire
gait cycle, and the other was to examine the change in TE value from step to step. For the
second case, we decided to examine the deviation of the TE value from zero, because in
the ideal case it is clear that the step-to-step change of entropy for a healthy person would
be zero. Thus, for this case, the data set containing the step-by-step entropy values was
expanded by adding the negatives of all data values, and the standard deviation of the
newly created data set (σ(E′)) was calculated as given by Equation (7).

E = {e1, e2, . . . , en} where ek ∈ R f or k ∈ Z+,
E′ = {e1, e2, . . . , en,−e1,−e2, . . . ,−en} = {x1, x2, . . . , xn, xn+1, xn+2, . . . , x2n}

σ(E′) =

√
1

2n ∗
2n

∑
i=1

(xi − µ)2
(7)

In Equation (7), ek is the TE value of the k-th step data, E denotes the set of step-by-step
TE values, and E′ represents the expanded set.

We had four sensors under each foot, so, eight sensors in total. Using both the TE
value of the entire gait cycle for each sensor as well as the stepwise variation in the TEs, we
had a total of 16 features that served for machine learning. For the classification process,
we used the Matlab R2021b Classification Learner Tool (on MSI GE75 Raider 10875H). A
10-fold cross-validation technique was applied, where approximately 25% of the total data
(from 15 subjects) was used for testing and the remainder (from 45 subjects) for training.

The process of classification training involved utilizing nine different model categories:
decision trees (DT), discriminant analysis, logistic regression, naïve Bayes, support vector
machine (SVM), k-nearest neighbors (KNN), kernel approximation, ensemble, and neural
networks. Considering the sub-models of these categories that were used, such as ‘Course:
4, Medium: 20, Fine: 100’ for the maximum number of splits in the decision tree category, a
total of thirty-two models were involved in the process.

Among all the classifiers examined, SVM (Gaussian), KNN (cosine, k = 10), and
logistic regression showed the three best performances. Regarding these classifiers, the
KNN algorithm determines the class membership of an object/vector by examining its k
nearest neighbors [35]. In this study, the k value yielding the best result was determined
to be 10. Logistic regression is a statistical model used to predict the probability of a
dependent variable belonging to two or more classes in a dataset [36]. SVM seeks to find
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an optimal hyperplane to separate data clusters [37]. These three algorithms are among the
most widely used in studies on biomedical signals in the literature [38–43].

3. Results

In this section, a comparative analysis is made based on data collected from both
healthy and VS-diseased individuals. The comparison commences from the detrending
stage of processing the sensor data, as described in the Data Processing section.

Figure 8 facilitates observation of discernible variations in the data from sensor S3
during walking for sample healthy and diseased individuals. Additionally, it visualizes the
detrended data, i.e., the difference between the step data and the trend curve.
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Figure 8. Sample interpolated S3 sensory data and the stepwise trend curves of (a) a healthy subject
and (c) a VS-diseased subject; detrended data from (b) a healthy subject and (d) a VS-diseased subject.

To see the effect of the proposed trending algorithm, trend curves were created using
2nd-, 3rd-, and 4th-degree curve-fitting polynomials and the results were compared. The
classification accuracies obtained with the different trending methods are listed in Table 4.

Table 4. Classification accuracies with different trend generation methods.

Classification Model Proposed Algorithm Second-Degree
Polynomial

Third-Degree
Polynomial

Fourth-Degree
Polynomial

SVM-Gaussian 95.0% 71.7% 76.3% 81.7%
Logistic regression (LR) 95.0% 63.3% 78.3% 76.3%

KNN-cosine 93.3% 66.7% 70.0% 78.3%

Model with highest
accuracy

95.0%
(with SVM-G and LR)

83.3%
(with Ensemble-Bagged

Trees)

83.3%
(with Decision

Trees-Fine/Med.)

86.7%
(with Ensemble Subsp.

Discr.)

Figure 9 shows graphs of the detrended data with absolute values taken from Figure 8b,d
and the histograms produced from these graphs. In Figure 9a,c, the black bars indicate
the inactive periods of the related sensor. For these sample subjects and sensor data, the
maximum step-by-step change in the TE value for the healthy subject was calculated as
0.63, whereas it was 0.99 for the VS-diseased person. The TE value for the entire gait cycle
was calculated as 1.243 for the healthy individual and 2.356 for the suffering subject. In
Table 5, the TE values are listed for these sample subjects for all sensor data. Figure 10
summarizes the entire-gait TE values for all participants.
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Figure 9. (a,c) Detrended data with absolute values taken from Figure 8b,d; (b,d) histograms pro-
duced from these graphs.

Table 5. TE values calculated from each sensor’s data for sample subjects.

Healthy Subject (no. 22) VS Subject (no. 30)
Sensor Entire Gait Stepwise Max Entire Gait Stepwise Max

S0 1.39 0.98 1.29 0.80
S1 2.15 0.83 2.10 1.02
S2 1.38 0.72 1.58 1.03
S3 1.24 0.63 2.36 0.99
S4 1.08 0.87 1.61 1.08
S5 1.38 0.79 1.96 0.67
S6 1.36 0.82 1.64 0.17
S7 1.54 0.86 1.98 1.56
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Figure 10. Box plot of the entire-gait TE values for all participants. S: sensor, H: healthy, VS: diseased.

As described in Data Processing section, thirty-two classifiers provided by the Clas-
sification Learner Tool in Matlab were trained using sixteen features with ten-fold cross-
validation. The average accuracies of the major classification algorithms are listed in
Tables 6 and 7 and Figure 11 display the confusion matrices and corresponding receiver
operating characteristic (ROC) curves for one of the ten training test set pairs of the top
three classifiers.
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Table 6. Accuracy of major classification algorithms.

Algorithm Accuracy (%)

SVM (Gaussian) 95.0
Logistic regression 95.0

KNN (cosine) 93.3
Neural network (wide) 93.3

Kernel (SVM) 91.7
Ensemble (bagged tree) 88.3

Naïve Bayes (kernel) 86.7
Quadratic discriminant 78.3

Decision tree (fine) 73.3

Table 7. Confusion matrices for one of the ten training test set pairs.

Predicted Class
SVM (Gaussian) Logistic Regression KNN (Cosine)

H D H D H D

H 30 0 29 1 28 2
D 3 27 2 27 2 28
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Figure 11. ROC curves associated with (a) the support vector machine (SVM) model with Gaussian
kernel, (b) logistic regression, and (c) the k-nearest neighbors (KNN) algorithm using cosine similarity
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4. Discussion

This study was carried out in conjunction with a project where our ultimate goal is
to identify the specific diseases of individuals suffering from VS dysfunction, along with
the level of the problem. In the full version of the project, a machine learning process will
be conducted using distinctive features as input. For this purpose, features that will be
effective in defining the problem are being sought and all of them will be placed in the
candidate features basket, that is, they will be selected to take part in the feature reduction
stage. According to the experience of the audiologists with whom we conducted the
experiments, some important points need to be considered when collecting data from
patients in order to achieve a high level of accuracy in diagnosis. These are particularly
obtaining the data in a short time and collecting it under stress-free conditions. Having
taken these guidelines into account, and thus aiming to capture the features from a short
walk, we performed multifractal detrended fluctuation analysis (MFDFA) in our previous
study [17]. Our current study also used these same data as our previous work but it
provided additional features for the feature selection/reduction step.

In this study, we utilized TE-based methods for feature extraction from gait data
collected from insole pressure/force sensors. The reason for considering the TE was its
ability to capture the level of the fluctuations in the detrended data, providing insight into
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the complexity and irregularity of the gait pattern. Unlike other entropies, TE enables a
parameterized analysis, offering flexibility in quantifying uncertainty and capturing certain
characteristics of the data distribution.

Data from eight insole sensors, four under each foot, were first normalized and
then detrended to provide information about fluctuation around the trend curve of the
individual. With this process, we aimed to consider the gait habit of the person in order
not to misinterpret an unusual gait habit as identifying a balance disorder. As one of the
effective innovations brought by this study, we developed an algorithm that determines the
trend curve at each step. The efficiency of this algorithm can be seen when the results are
compared with other curve fitting methods. Using our algorithm, we achieved an average
accuracy of 95% in distinguishing VS patients from healthy subjects, while the best rate
was 86.7% even with a fourth-order curve-fitting polynomial. A total of sixteen features
were involved in the classification process, eight of which were derived from the TEs of
the entire gait cycle and the other eight from the step-by-step TE change for each sensor.
The TE value for the entire gait cycle and the step-by-step variation in the TE value were
observed to be greater in VS patients than in healthy individuals, which we explained by
the high data deviation around the trend curve for these individuals. The TE parameter q
was determined experimentally as 0.82. As we can see from Figure 10, of all the sensor data,
those from the under-the-heel sensors (S0 and S4) contributed the least to the classification
process, such that the differences in TE values for these data were the smallest. This is easy
to explain, as the sensors in question were placed at points where even a diseased person
does not show a significant fluctuation.

Regarding the data collection time, the subjects had to walk for around 10–15 s. As
we described in detail in [17], this time period is much shorter than most experiments in
the literature, meeting the expectations of the respected audiologists we consulted with
throughout the project. Despite such a short test time, high accuracy was achieved by
processing the instantaneous values of the gait data using appropriate methods rather than
dealing with step-based features such as stride time, stance time, etc.

The SVM with Gaussian kernel and logistic regression performed best in the clas-
sification process with 95%, followed by KNN (cosine) and neural network (wide) with
93.3%. At this point, we would like to emphasize that we had defined our criterion for
categorizing any feature as distinctive and labeling it as a candidate for feature reduction
as an individual accuracy level threshold of 90% [17]; thus, the TE-based features passed
this evaluation stage successfully. On the other hand, we believe that a more reliable result
will be achieved with an increase in the number of participants.

In addition to the numerical values presented in the Results section, we provide further
statistical data in Table 8, in order to provide a fuller picture of the results.

Table 8. Some statistical data about the top two classification algorithms.

Statistical Property SVM (Gaussian) Logistic Regression

accuracy (%) 95.0 95.0
sensitivity (%) 91.6 94.0
specificity (%) 97.9 95.1

F1 Score 0.945 0.943
MCC 0.899 0.891

Currently, we are conducting experiments for the binary classification phase of the
larger project so that an individual can be described as ‘suffering’ or ‘healthy’. As we stated
in [17], features that take into account the trends specific to an individual are expected to
be quite effective in determining the stage of the problem. So, we look forward to using
these features also for this future step of the whole project.
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