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Abstract: Social recommender systems are expected to improve recommendation quality by in-
corporating social information when there is little user–item interaction data. Therefore, how to
effectively fuse interaction information and social information becomes a hot research topic in social
recommendation, and how to mine and exploit the heterogeneous information in the interaction
and social space becomes the key to improving recommendation performance. In this paper, we
propose a social recommendation model based on basic spatial mapping and bilateral generative
adversarial networks (MBSGAN). First, we propose to map the base space to the interaction and
social space, respectively, in order to overcome the issue of heterogeneous information fusion in
two spaces. Then, we construct bilateral generative adversarial networks in both interaction space
and social space. Specifically, two generators are used to select candidate samples that are most
similar to user feature vectors, and two discriminators are adopted to distinguish candidate samples
from high-quality positive and negative examples obtained from popularity sampling, so as to learn
complex information in the two spaces. Finally, the effectiveness of the proposed MBSGAN model is
verified by comparing it with both eight social recommendation models and six models based on
generative adversarial networks on four public datasets, Douban, FilmTrust, Ciao, and Epinions.

Keywords: recommendation algorithm; social recommendation; generative adversarial network;
nonlinear mapping

1. Introduction

With the development and popularity of the internet, people are facing an increasingly
serious problem of information overload [1]. As an important information filtering tech-
nology, recommendation algorithms can provide users with personalized information that
meets their interests and needs, saving their time and improving the efficiency of informa-
tion utilization. Recommendation algorithms have been used widely in many fields [2,3],
for example, e-commerce platforms and music and video streaming services. The emer-
gence of social platforms has sparked some analysis regarding social networks [4]. At the
same time, the rise of social networking platforms provides a large amount of user-related
data for social recommendation, which can effectively improve recommendation quality
and user satisfaction by using social relationships and extracting potential user interest fea-
tures from them. Therefore, social recommendation technology has become an important
research direction and research hotspot in the field of recommendation systems [5,6].

Currently, social recommendation models are mainly based on the assumption of
homogeneity, users with social relationships have similar interests [7]. However, this
assumption is not realistic. In reality, the social behavior of users in the social space and
the interaction behavior of users in the interaction space are both diverse and contingent.
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Therefore, it is believed that the heterogeneous information in the two spaces: the social
space and the interaction space, shall not be directly fused [8].

Among them, the fusion of heterogeneous information refers to the process of combin-
ing and harmonizing data from different sources or formats, such as text, images, videos,
and user profiles. For example, in a recommender system, integrating information from
various sources like product descriptions, user reviews, and social media data to provide
personalized recommendations. For example, a user follows and comments on content
related to high-calorie food in the social space, while he or she often searches for and buys
sports-related goods in the interaction space. Although these two behaviors may not seem
to be directly related, the common feature behind them is the user’s pursuit of healthy
living. If the information in the interaction space and social space is directly fused, it may
recommend high-calorie food to users and ignore their pursuit of healthy life; thus affecting
their user experience. Therefore, directly utilizing users’ social behavior to recommend
products can introduce a lot of noise, and how to effectively fuse heterogeneous information
has become a fundamental problem in the field of social recommendation. At the same time,
how to further capture the common features hidden behind heterogeneous information
on the basis of effective fusion of heterogeneous information is a problem that needs to
be solved.

Apart from the fusion of heterogeneous information, social recommendation models
also focus on how to better mine the data information in the social and interaction spaces
to improve recommendation quality. There are a lot of traditional data information mining
strategies such as classification, clustering, generative adversarial network (GAN), and
regression. Among these, generative adversarial networks [9] are a powerful deep learning
model that can generate data with high similarity and have been used widely in areas such
as deep learning [10–12]. Among them, the mining of data information involves extracting
valuable insights and patterns from a large volume of data. It includes techniques such
as data preprocessing, feature extraction, and data analysis. For instance, in the field of
customer relationship management, mining customer data to identify patterns of customer
behavior and preferences for targeted marketing campaigns. In recent years, more and more
researchers have started to explore how GAN can be applied to social recommendation to
improve recommendation accuracy. The challenge of generative adversarial networks is
the design of adversarial ideas, constructing more effective generators and discriminators,
so as to use the generative power of generative adversarial networks. In the scope of
social recommendations, GAN can be used to generate candidate items [13] or candidate
friends [14], in order to facilitate more accurate recommendations. However, most GAN-
based approaches only consider either the social space or the interaction space, failing to
capture the bilateral information at the same time.

The organizational structure is as follows: Section 2 introduces the relevant work;
Section 3 introduces the specific implementation process and details of the MBSGAN model;
in Section 4, the effectiveness of the model was verified through two sets of comparative
experiments; finally, the conclusions, limitations, and potential research directions of this
study were summarized.

2. Related Work

In this section, two lines of related work are presented, namely, the social relationship-
based recommendation model and the generative adversarial network-based recommenda-
tion model.

The user’s social relationship information, as an important factor influencing the
user’s decision making, has been widely incorporated into social relationship-based recom-
mendation models to improve the accuracy and performance of recommendation models.
SBPR [15] transforms social relations into a kind of weight, which is used to strengthen
interaction between users, so as to combine social information and interactive information.
Sorec [16] is based on probabilistic matrix decomposition, which decomposes the user–item
interaction matrix into two low-dimensional matrices and the authors improved the accu-
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racy and performance of the recommendation model by introducing a social network factor
matrix between these two matrices to effectively fuse the social and interaction information.
DSCF [17] is based on collaborative filtering, in which an attention layer is adopted to fuse
interaction and social information. DiffNet++ [18], as a neural network based approach,
aggregates higher-order neighbors in the social network and interaction network to obtain
user expressions separately and uses a graph attention mechanism to fuse the two user
expressions. All of the social recommendation models mentioned above make recommen-
dations by sharing a unified user expression, which achieves the fusion of the two types
of information. The advantage of these models is that sharing user expressions can fill in
missing data and improve recommendation effectiveness by integrating information from
multiple spaces, especially in situations with sparse data. However, these studies overlook
the fact that users typically interact with different goals in the interaction space and social
space, and the underlying motivations and influencing factors are different, leading to
heterogeneity in interaction and social behavior [19]. To solve the above heterogeneity
problem, in some social recommendation models, researchers attempt to learn user feature
vectors in the interaction space and social space separately, and use these learned user
feature vectors to make recommendations. DASO [20] is based on generative adversarial
networks, which fuse interaction information and social information by mapping them
to each other’s space. DcRec [21] is a graph neural network-based social recommenda-
tion model that separates user information in the social space and item space by contrast
learning, and then the user feature vectors in the two spaces are fused for recommendation
tasks using an attention-based fusion mechanism. Although the above methods solve the
problem of heterogeneity by learning users separately, these two models do not take into
account that the interaction and social behavior of users are influenced by their own values
and personality characteristics, and the two behaviors also share common characteristics,
which cannot completely erase the similarity between them [22]. Continuing with the ex-
ample in the introduction, considering only the user’s interest in high-calorie food content
and their social relationship with fitness influencers separately, without considering the
underlying features that connect them, can still lead to incorrect judgments, assuming that
users both enjoy eating high-calorie food and following fitness influencers. Therefore, they
did not fully utilize the common features behind user interaction and social behavior [23].

Generative adversarial networks have been widely used to learn the distribution of
user–item interaction data. Liu et al. [24] proposed solution generates reasonable user–
item pairs by the relevance score function and the discriminator discriminates between
real user–item pairs and the generator-generated user–item pairs. In CFGAN [25], the
generator generates reasonable user purchase vectors, and the discriminator discriminates
between the real user purchase vectors and the generator-generated user purchase vec-
tors. GCGAN [26] uses convolutional neural networks to generate user purchase vectors
based on CFGAN. RSGAN [13] is a social recommendation model based on generative
adversarial networks, in which the generator samples the items that friends of the user
frequently interact with, the user’s preferred items, and the discriminator is responsible
for distinguishing the items sampled by the generator from the real interaction items, so
that the items generated by the generator become closer to the user’s preferences through
adversarial training. ESRF [14] is also a social recommendation model based on GAN, in
which the generator samples a fixed number of friends, and the discriminator is responsible
for distinguishing between the ratings of the items sampled by the generator and the user’s
own preferences, and the ratings of the items by the average opinions of the sampled
friends. By doing this, the friends generated by the generator become more and more
reliable through adversarial training, and the recommendations are assisted by the opinions
of the friends. GANRec [27] proposes a negative sampling model based on the generative
adversarial network, which improves the accuracy of the recommendation system by using
GAN to generate negative samples. However, the above recommendation model only
considers the use of the bilateral generative adversarial networks in the interaction space.
Therefore, in this paper, we build a bilateral generative adversarial network, and use the
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generative adversarial network in each space to learn user feature vectors in the social space
and interaction space at the same time, so as to improve the accuracy of recommendation
algorithms.

3. MBSGAN Model

Users’ values and personality traits developed over time directly influence their inter-
action and social behavior. The way of fully extracting common features between these
two spaces will have a great influence on the social recommendation. Therefore, this
paper introduces a base feature space to fuse interaction and social information, which
contains common user characteristics behind user interaction and social behavior, such as
user values, personality, family background, and education. In addition, we constructed
a bilateral generative adversarial network in both spaces in order to deeply explore and
learn the complex data information in both spaces. While solving the problem of hetero-
geneity effectively, this better captures the common features behind the two spaces and
utilizes bilateral generative adversarial networks to learn information from both spaces
simultaneously.

3.1. Overview of the Model Framework

In this paper, we propose a social recommendation model based on basic spatial
mapping and bilateral generative adversarial networks (MBSGAN), called MBSGAN, based
on spatial mapping and bilateral generative adversarial networks to utilize the underlying
feature space to capture the common features behind user interaction and social behavior.
Among them, adversarial learning in the interaction space obtains candidate recommended
items by learning the interaction information between users and items, while in the social
space, candidate friends are obtained by learning the social information between users and
their friends. Both modules are adversarial models, but they are based in different data
spaces and have different goals. These two adversarial networks are the core content of
bilateral adversarial training in this paper. In MBSGAN, the fusion of interaction and social
information through spatial mapping and bilateral generative adversarial networks can
help deeply explore the interaction information in their respective spaces, so as to improve
the accuracy of recommendations.

The model framework is shown in Figure 1, and the model consists of three modules:
a “User Vector Mapping” module, an “Interaction Space Adversarial Learning” module
and a “Social Space Adversarial Learning” module.
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Figure 1. An overview of the proposed MBSGAN framework. 𝑢B, 𝑢I, 𝑢S represent vector representa-
tions of users in the basic feature space, interaction space, and social space, respectively. 𝑣ூ, 𝑓ௌ, Figure 1. An overview of the proposed MBSGAN framework. uB, uI, uS represent vector represen-
tations of users in the basic feature space, interaction space, and social space, respectively. vI , f S,
respectively, represent the item expression and user friend expression. cI , cS represent the candidate
items and friends selected by the generator; pI , eI , pS, eS represent high-quality positive and negative
examples selected from interactive and social data (please refer to Sections 3.3.2 and 3.4.2 for detailed
interpretation).
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The “User Vector Mapping” module contains the user’s basic feature vector uB and
two mapping functions MB−I and MB−S. First, the user’s base feature vector uB is mapped
through the mapping function MB−I to the interaction space, to obtain the user vector in
the interaction space uI. At the same time, the user base feature vector uB is mapped to the
social space by the mapping function MB−S to the social space, to obtain the user expression
in the social space uS. Finally, the uI and uS are input to the “Interaction Space Adversarial
Learning” module and the “Social Space Adversarial Learning” module, respectively, for
adversarial training.

The “Interaction Space Adversarial Learning” module consists of a generator and a
discriminator. First, the user feature vector of the interaction space uI and item vectors
vI are both input into the score function GI

score (the definition of GI
score will be given in

Equation (4) of Section 3.3). The top k items with the highest scores are selected as candidate
items. Then, the user feature vector uI and the high quality positive items pI, high quality
negative items eI sampled by popularity and the candidate items cI generated by the
generator are input together into the score function DI

score (the definition of DI
score will be

given in Equation (6) of Section 3.3), and then we obtain the correlation scores of users with
high-quality positive and negative items yp

I, ye
I and the correlation scores between the user

and the candidate items yc
I. Finally, the loss function LI

Dϕ
(the definition of LI

Dϕ
will be

given in Equation (8) of Section 3.3) is used to make yc
I both away from yp

I and away from
ye

I as far as possible, thus distinguishing the candidate items.
The “Social Space Adversarial Learning” module also includes a generator and a

discriminator. First, the user feature vector of the social space uS and the friend vector
f S are both input into the score function GS

score (the definition of GS
score will be given in

Equation (11) of Section 3.4), the relevance scores of the user and all friends are obtained,
and the top k friends with the highest scores are selected as candidate friends. Then, the
user feature vector uS and the high-quality positive friends pS, high-quality negative friends
eS are sampled by popularity and the candidate friends cS generated by the generator are
input together into the score function GS

score to obtain the correlation score between the
user and the high-quality positive and negative friends yp

S, ye
S, and the correlation score

between the user and the candidate friends yc
S. Finally, the loss function LS

Dϕ
(the definition

of LS
Dϕ

will be given in Equation (14) of Section 3.4) is used as far as possible to make yc
S

both away from yp
S and away from ye

S, thus distinguishing the candidate friends.
After the above bilateral adversarial training process, the candidate items obtained

from the interaction space generator are recommended to the user as the items to be
recommended. In the following, we will introduce the “User Vector Mapping” module in
Section 3.2, the “Interaction Space Adversarial Learning” module and the “Social Space
Adversarial Learning” module in Sections 3.3 and 3.4. Finally, in Section 3.5, we describe
the entire adversarial training process of the model.

3.2. “User Vector Mapping” Module

The base feature space is a space that is deeper and more in line with the essence of
things than the interaction space and social space. The decisions made by users in any
scenario are influenced by their own values, which reflect a user’s orientation and thinking
or viewing anything and distinguishing right from wrong, and these values have a certain
degree of stability and persistence. Unlike the characteristic factors in social and shopping
scenarios, values will not undergo significant changes in a short period of time. Using the
base feature space to reflect users’ basic values, and the feature factors of the base feature
space can include users’ pursuit of a better life, freedom, and equality, etc. The social and
interactive behaviors of users in both social and shopping scenarios are influenced by their
own values. Therefore, we believe that the base feature space can be transformed into the
interaction space and social space through mapping functions.

We transfer user information from the base feature space (B: the basic space) to the
interaction space (I: the interaction space) and the social space (S: the social space) by a
nonlinear mapping operation. Specifically, the user’s representation in the base feature
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space ui
B is mapped to the interaction space and the social space by a mapping function,

and the user’s expression in the interaction space ui
I and the user’s expression in the social

space ui
S are obtained. As shown in Equation (1), the nonlinear mapping function from the

base feature space to the interaction space is defined as follows:

uI
i = Mp−I

(
uB

i

)
= W I

L·
(
· · · α

(
W I

2 ·α
(

W I
1 ·uB

i + bI
1

)
+ bI

2

)
· · ·
)
+ bI

L (1)

In the above equation, the WS
I and bS

I are the weights and biases of the L layer neural
network (the number of layers in this article is set to 2), respectively, and α is the nonlinear
activation function. Similarly, the nonlinear function from the underlying feature space to
the social space is shown in Equation (2):

uS
i = Mp−S

(
uB

i

)
= WS

L ·
(
· · · β

(
WS

2 · β
(

WS
1 · uB

i + bS
1

)
+ bS

2

)
· · ·
)
+ bS

L (2)

where the WS
S and bS

S are the weights and biases of the L layer neural network, respectively,
and β is the nonlinear activation function. Equations (1) and (2) represent two multilayer
perceptrons with L layers, respectively.

The user expression mapped through the base feature space will be used for ad-
versarial learning in the interaction space and adversarial learning in the social space,
respectively, which will be introduced below. Therefore, the base feature space and bilateral
generative adversarial networks are combined to jointly mine information and improve
recommendation performance.

3.3. “Interaction Space Adversarial Learning” Module

To better learn user and item representations, we use the generative adversarial
network in the interaction space because of its powerful ability to learn complex data
distributions to capture users’ preferences in selecting items. As shown in the lower left
part of Figure 1, the interaction space adversarial training module consists of two parts:
the generator attempts to select as many items that can best match the user’s interests
as candidates as possible; the discriminator’s goal is to try to override the candidates
generated by the generator.

3.3.1. The Generator in the Interaction Space

The goal of the generator is to approximate the potential true conditional distribution
Preal

I (vI|ui
I) and generate the most relevant candidate samples. First, we use gscore

I (ui
I, vj

I) to
denote the item’s vj

I click or purchase likelihood by the user ui
I, as shown in Equation (3):

gI
score

(
uI

i , vI
j

)
=
(

uI
i · vI

j

)
+ ϕI

g (3)

where ϕI
g is the bias. After normalizing the probabilities by using the softmax function, we

obtain the generator score function in the interaction space GI
score as shown in Equation (4):

GI
score =

exp
(

gI
score

(
uI

i , vI
j

))
∑vj∈V exp

(
gI

score

(
uI

i , vI
j

)) (4)

Second, we use this score function to obtain the user ui
I prediction scores for all items

y1
I, y2

I · · · ym
I and after sorting these items, we select the items with the top k items as

candidate items.

3.3.2. The Discriminator in the Interaction Space

After the generator generates the candidate items, the discriminator is responsible
for overriding the candidate items generated by the generator. The advantage of the
popularity sampling method over other common sampling methods lies in its simplicity
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and ability to handle cold-start problems. So the discriminator improves its discriminative
power by utilizing a two-part prevalence-based sampling strategy [28]. The prevalence-
based sampling strategy is used to accurately obtain positive and negative example items
for adversarial training. The discrimination between positive items, negative items and
candidate items is designed for the continuous game between generator G and discriminator
D to better learn the true data distribution in the training data.

The main process of the popularity-based sampling strategy is as follows. First, the
popularity of an item is expressed in terms of the number of users who have interacted
with nj. Second, a popularity mean (Mean) is calculated to reflect the average popularity
of all items. Items above the mean popularity value are defined as high-popularity items
and those below the mean popularity value are defined as low-popularity items. The mean
popularity value is calculated in Equation (5).

Mean =
1
J ∑ J

j=1nj (5)

where the nj is the first j the prevalence of the first item, and J is the total number of items.
According to the definition of popularity, we believe that among the positive examples

of items that users have interacted with, the low-popularity items represent the users’ true
interest preferences. Similarly, among the negative example items that the user has inter-
acted with, the high popularity items reflect the user’s true aversion tendency. Therefore,
the high-quality positive items, pI , will be obtained by intersecting the user’s positive items
with the low-popularity items, and similarly, the high-quality negative items, eI , will be
obtained by intersecting the user’s negative example items with the high popularity items,
as shown in Figure 2.

Entropy 2023, 25, x FOR PEER REVIEW 7 of 21 
 

 

3.3.2. The Discriminator in the Interaction Space 
After the generator generates the candidate items, the discriminator is responsible 

for overriding the candidate items generated by the generator. The advantage of the pop-
ularity sampling method over other common sampling methods lies in its simplicity and 
ability to handle cold-start problems. So the discriminator improves its discriminative 
power by utilizing a two-part prevalence-based sampling strategy [28].The prevalence-
based sampling strategy is used to accurately obtain positive and negative example items 
for adversarial training. The discrimination between positive items, negative items and 
candidate items is designed for the continuous game between generator G and discrimi-
nator D to better learn the true data distribution in the training data.  

The main process of the popularity-based sampling strategy is as follows. First, the 
popularity of an item is expressed in terms of the number of users who have interacted 
with 𝑛𝑗. Second, a popularity mean (Mean) is calculated to reflect the average popularity 
of all items. Items above the mean popularity value are defined as high-popularity items 
and those below the mean popularity value are defined as low-popularity items. The 
mean popularity value is calculated in Equation (5).  𝑀𝑒𝑎𝑛 = ଵ௃ ∑ 𝑛௝௃௝ୀଵ   (5)

where the 𝑛௝ is the first 𝑗 the prevalence of the first item, and 𝐽 is the total number of items.  
According to the definition of popularity, we believe that among the positive exam-

ples of items that users have interacted with, the low-popularity items represent the users’ 
true interest preferences. Similarly, among the negative example items that the user has 
interacted with, the high popularity items reflect the user’s true aversion tendency. There-
fore, the high-quality positive items, 𝑝ூ, will be obtained by intersecting the user’s positive 
items with the low-popularity items, and similarly, the high-quality negative items, 𝑒ூ, 
will be obtained by intersecting the user’s negative example items with the high popular-
ity items, as shown in Figure 2.  

 
Figure 2. Schematic diagram of prevalence sampling. 

The main idea of discriminating between positive and negative items and candidate 
items is that users’ preferences for predicted candidate items shall not be higher than the 
users’ preference for high-quality positive items; the users’ preference for predicted can-
didate items shall not be lower than the users’ preference for high-quality negative items.  

The score function of the discriminator in the interaction space 𝐷𝑠𝑐𝑜𝑟𝑒𝐼 is shown in 
Equation (6):  𝐷௦௖௢௥௘ூ =  ௘௫௣ (௙ೞ೎೚ೝ೐಺ (௨೔,௩ೕ))∑ ௘௫௣ (௙ೞ೎೚ೝ೐಺ (௨೔,௩ೕ))ೡೕ∈ೇ   (6)

𝑓௦௖௢௥௘ூ (𝑢௜, 𝑣௝) = ൫𝑢௜  ∙  𝑣௝൯ +  𝜑௙ூ  (7)

where 𝜑𝑓𝐼 is the bias. As in Equation (7), we can obtain the prediction score of each item 
in the discriminator.  

In the stage of training discriminator D, the user ratings of high-quality positive and 
negative example items, as well as candidate items, are fed into the discriminator D with 
the aim of overriding the candidate items generated by the generator. The discriminator 
loss function ℒ஽കூ  is trained to maximize the difference between users’ ratings of candidate 

  
Figure 2. Schematic diagram of prevalence sampling.

The main idea of discriminating between positive and negative items and candidate
items is that users’ preferences for predicted candidate items shall not be higher than
the users’ preference for high-quality positive items; the users’ preference for predicted
candidate items shall not be lower than the users’ preference for high-quality negative
items.

The score function of the discriminator in the interaction space Dscore
I is shown in

Equation (6):

DI
score =

exp
(

f I
score

(
ui, vj

))
∑vj∈V exp

(
f I
score

(
ui, vj

)) (6)

f I
score

(
ui, vj

)
=
(
ui · vj

)
+ ϕI

f (7)

where ϕf
I is the bias. As in Equation (7), we can obtain the prediction score of each item in

the discriminator.
In the stage of training discriminator D, the user ratings of high-quality positive and

negative example items, as well as candidate items, are fed into the discriminator D with the
aim of overriding the candidate items generated by the generator. The discriminator loss
function LI

Dϕ
is trained to maximize the difference between users’ ratings of candidate items

and users’ ratings of high-quality positive examples and maximize the difference between
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users’ ratings of candidate items and users’ ratings of high-quality negative examples. The
objective function of discriminator D is shown in Equation (8):

min
Dϕ

LI
Dϕ

= −E
[(

logσ
(

yI
p − yI

c

)
+ logσ

(
yI

c − yI
e

))]
(8)

where the yp
I, ye

I denote the user’s prediction scores for high-quality positive items and
high-quality negative items obtained by using the prevalence-based sampling strategy, and
yc

I denotes the user’s prediction scores for the candidate items generated by the generator.
In the stage of training the generator G, the user’s ratings of high-quality positive

example items and candidate items are fed into the generator G, with the aim of generating
candidate items that better match the user’s true preferences. The difference between the
user’s rating of candidate items and the user’s rating of high-quality positive examples
is minimized by training, i.e., maximizing the generator loss function LI

Gθ
. The objective

function of the generator G is shown in Equation (9):

max
Gθ

LI
Gθ

= −E
[
logσ

(
yI

p − yI
c

)]
(9)

where yc
I denotes the user’s the predicted rating of the candidate item, the yp

I denotes the
user’s prediction scores for the positive example items. The generator G is trained to fight
against the discriminator D, until the discriminator D cannot distinguish the candidate
items from the real data.

3.4. “Social Space Adversarial Learning” Module

In order to better learn user expressions from a social perspective, we utilize another
generative adversarial network in social space for social information learning. Again,
adversarial learning in the social space contains two parts, a generator and a discriminator,
as shown in the lower right part of Figure 1. The generator tries to use the generator score
function to select friends that are as similar as possible to the mapped user expressions as
candidate friends; the discriminator aims to distinguish candidate friends from real friends
by the discriminator score function.

3.4.1. The Generator in the Social Space

The goal of the generator is to approach the underlying true conditional distribution
through adversarial training Preal

S (f S|ui
S) and let the user ui

S generate the most relevant
candidate friends. Similarly, we use gscore

S (ui
S, f j

S) to denote f j
S is the friend of the user

ui
S, as shown in Equation (10):

gS
score

(
ui, k j

)
=
(

uS
i · f S

j

)
+ ϕS

g (10)

where ϕg
S is the bias. After normalizing the probabilities by using the softmax function, we

obtain the score function of the generator in the social space Gscore
S as shown in Equation

(11):

GS
score =

exp
(

gS
score

(
uS

i , f S
j

))
∑kj∈K exp

(
gS

score

(
uS

i , f S
j

)) (11)

In the following, we use this score function to arrive at the user uS
i prediction scores

for all friends y1
S, y2

S · · · yn
S and after sorting, we select the top k friends as candidate

friends.

3.4.2. The Discriminator in the Social Space

The goal of the discriminator is to override the candidate friends generated by the
generator. The discriminator also consists of two parts: a sampling strategy based on
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popularity and a method for discriminating between positive and negative examples and
candidate friends.

Similarly, we use a popularity-based sampling strategy to select high-quality positive
friends and high-quality negative friends. The high-quality positive friends, pS, were ob-
tained by intersecting the user’s friends with the low-popularity friends, and similarly, the
high-quality negative friends, eS, will be obtained by intersecting the user’s negative friends
(friends who have no social relationship with the user) with the high popularity friends.

The main idea of discriminating between high-quality positive and negative example
friends, and candidate friends is that the similarity between the user and the predicted
candidate friend shall not be higher than the similarity between the user and the high-
quality positive example friend, and the similarity between the user and the predicted
candidate friend shall not be lower than the similarity between the user and the high quality
negative example friend.

The score function of the discriminator in social space Dscore
S is shown in Equation (12):

DS
score =

exp
(

f S
score

(
ui, k j

))
∑kj∈K exp

(
f S
score

(
ui, k j

)) (12)

f S
score

(
ui, k j

)
=
(
ui · k j

)
+ ϕS

f (13)

where ϕf
S is the bias. With Equation (13), we can obtain the predicted scores of the user

and each friend in the discriminator. Similarly, the objective function for the social space
discriminator D adversarial training is shown in Equation (14):

min
Dϕ

LS
Dϕ

= −E
[(

logσ
(

yS
p − yS

c

)
+ logσ

(
yS

c − yS
e

))]
(14)

where yp
S, ye

S denotes the user’s prediction scores for the high-quality positive and high-
quality negative friends obtained by using the popularity-based sampling strategy, and yc

S

denotes the user’s prediction scores for the candidate friends generated by the generator.
In the stage of training the optimized social space generator G, the users’ ratings of

positive examples and high-quality candidate friends are fed into the objective function of
the generator G, with the aim of generating candidate friends that better match the users’
true preferences. The objective function for generator G is shown in Equation (15):

max
Gθ

LS
Gθ

= −E
[
logσ

(
yS

p − yS
c

)]
(15)

where yc
S denotes the user’s predicted score of the candidate friend, the yp

S denotes the
user’s prediction scores for the positive friend. The generator G is trained to fight against
the discriminator D so that the discriminator D cannot distinguish the candidate friends
from the real data, and in order to make the candidate friends generated by the generator
closer to the real data, then the goal is to make the difference between yp

S and yc
S becomes

smaller and smaller. Thus, let LG
S

θ be maximized.

3.5. Adversarial Training Process of the Model

In order to show the training process of the MBSGAN model more clearly, we present
the adversarial training algorithm of the MBSGAN model in Algorithm 1. The training
of each cycle is mainly divided into three parts: base feature space mapping, adversarial
training in the social space and adversarial training in the interaction space, as shown
below.
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Algorithm 1: MBSGAN adversarial training algorithm.
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4. Experimental Study

To validate the effectiveness of the MBSGAN model’s performance, the effects of
spatial mapping and bilateral adversarial training on model performance are explored,
as well as the effects of parameter variations in the model on the results. In this section,
two sets of experiments are analyzed in Sections 4.2 and 4.3 to verify the effectiveness of
MBSGAN model performance by analyzing the social recommendation model and the
adversarial training recommendation model; model ablation experiments are compared
in Section 4.4 to verify the effects of vector mapping and bilateral adversarial training on
the model; finally, the selection of the number of candidate samples k values is analyzed
in Section 4.5 to verify the effects of model parameter variations on MBSGAN model
performance.

4.1. Dataset and Evaluation Metrics

In this work, four benchmark datasets, Douban, FilmTrust, Ciao, and Epinions, are
used to study the performance of the proposed MBSGAN. The Douban data comes from
Douban, which contains users’ ratings of movies and social information among users;
FilmTrust is a movie dataset from the FilmTrust website, which also contains users’ ratings
of movies and social information among users; Ciao comes from an online social platform,
which includes users’ ratings of purchased products and social information among users;
the Epinions dataset comes from an online social platform where people can review prod-
ucts, which includes users’ ratings of products and social information among users; The
specific statistics of the four public datasets are shown in Table 1.
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Table 1. Dataset statistics.

Data Items User Volume Item Volume Rating Amount Social Relationships

Douban 2848 39,586 894,887 35,770
FilmTrust 1508 2071 35,497 1853

Ciao 7375 105,114 284,086 111,781
Epinions 40,163 139,738 664,824 442,980

To evaluate the performance of the model, the evaluation metrics are Precision@ k,
Recall@ k, Normalized Cumulative Discount Gain@ k, Mean Absolute Error MAE (Mean
Absolute Error), and Root Mean Squared Error RMSE (Root Mean Squared Error). In the
top k recommendation task, k is taken as 10 to calculate the first three metrics, and the
evaluation metrics are shown below.

Precision: the proportion of all predicted positive samples that contain true positive
samples. The definition is as follows:

precision =
TP

TP + TN
(16)

where TP (True Positive) represents the number of positive samples predicted as positive
and FP (False Positive) represents the number of negative samples predicted as positive.

Recall (recall): the proportion of true positive samples that are predicted to be positive,
which is defined as follows.

Recall =
TP

TP + FN
(17)

where FN (False Negative) represents the number of negative samples predicted as negative.
Recall@ k represents the proportion of true positive samples that are predicted as positive
in the first k samples.

Normalized discounted cumulative gain (NDCG) is a composite assessment score that
evaluates the combined quality of relevance and ranking of items in the test set in the top k
recommendation list. Higher NDCG values indicate better ranking results.

NDCG =
DGG
IDGG

(18)

DCG = ∑ |REL|
i=1

2reli − 1
log2(i + 1)

(19)

where |REL| denotes the results are sorted in the order of relevance from largest to smallest
in the best way. reli denotes the relevance score of item i. DCG (discounted cumulative
gain) calculates the score of items in user u’s recommendation list by considering both
relevance and order factors, and IDCG (ideal discounted cumulative gain) is the result of
DCG normalization.

Mean absolute error (MAE): the mean value of the error between the model predicted
scores and the true scores, reflecting the degree of similarity between the predicted scores
and the true scores. The definition is as follows:

MAE =
∑(u,i)∈Rtest

∣∣rui − r′ui

∣∣
|Rtest|

(20)

where |Rtest| denotes the number of user ratings of items in the test set, the rui and r′ui are
the real ratings and the ratings predicted by the algorithm, respectively.
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Root mean squared error (RMSE) is the square root of the ratio of the square of the
predicted score to the true score error to the number of observations n, as defined below:

RMSE =

√√√√∑(u,i)∈Rtest

(
rui − r′ui

)2

|Rtest|
(21)

When precision, recall, and NDCG values are larger, it indicates better recommendation
performance. MAE and RMSE reflect the difference between predicted and true scores, and
smaller values indicate higher accuracy of recommendations.

4.2. Parameter Settings

The parameter settings in the experiment are shown in Table 2. k is the number of
candidate samples, d denotes the vector dimension, λ is the regularization coefficient, batch
is the batch size, and lr is the learning rate. In the experiment, the number of epochs for
Douban and FilmTrust was set to 30, and ciao was set to 40.

Table 2. Parameter Settings.

Dataset k D λ batch Lr

Douban 15 32 1 × 10−7 512 5 × 10−5

FilmTrust 15 32 1 × 10−6 512 5 × 10−5

Ciao 20 32 2 × 10−5 1024 5 × 10−4

Epinions 20 32 2 × 10−5 1024 5 × 10−4

4.3. Experimental Comparison of Social Recommendation Models

To demonstrate the advantages of the MBSGAN model proposed in this paper over
other social recommendation models, the experimental results of the MBSGAN model are
compared with eight baseline social recommendation models on four publicly available
datasets. Among them, SBPR and SoMA are Bayesian-based social recommendation models;
Diffnet++, Light_NGSR, and GNN-DSR are graph convolutional neural network-based
social recommendation models; RSGAN, DASO, and ESRF are social recommendation
models incorporating generative adversarial networks. Each of the eight baseline social
recommendation models is described as follows:

(1) SBPR [15] (2014): for the first time, social relationships were added to the Bayesian
personalized ranking algorithm (BPR), arguing that users are more biased towards
items preferred by their friends than items with negative feedback or no feedback.

(2) SoMA [29] (2022): a social recommendation model based on the Bayesian generative
model that exploits the displayed social relationships and implicit social structures
among users to mine their interests.

(3) DiffNet++ (2020): a social recommendation model using graph convolutional net-
works, by aggregating higher-order neighbors in the social relationship graph and
item interaction graph, respectively, and by distinguishing the influence of neighbors
on users with an attention mechanism.

(4) Light_NGSR [30] (2022): a social recommendation model based on the GNN frame-
work, which retains only the neighborhood aggregation component and drops the
feature transformation and nonlinear activation components. It aggregates higher-
order neighborhood information from user–item interaction graphs and social net-
work graphs.

(5) GNN-DSR [31] (2022): a social recommendation model using graph convolutional
networks, which considers dynamic and static representations of users and items and
combines their relational influences. It models the short-term dynamic and long-term
static interaction representations of user interest and item attractiveness, respectively.

(6) RSGAN (2019): a social recommendation model that uses GAN and social reconstruc-
tion, where generators generate items that friends interact with as items that users
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like, and discriminators are used to distinguish items that friends interact with from
items that users really like themselves.

(7) DASO (2019): a social recommendation model based on GAN that fuses heteroge-
neous information by mapping each other in interaction space and social space. The
generator picks samples that are likely to be of interest to users, and the discriminator
distinguishes between real samples and generated samples.

(8) ESRF (2020): a social recommendation model using generative adversarial networks
and social reconstruction, where the generator generates friends with similar pref-
erences to the user and the discriminator distinguishes between the user’s personal
preferences and the average preferences of friends.

To verify the effectiveness of MBSGAN combined with vector mapping and bilateral
generative adversarial networks, we separate the experimental results into two different
types according to the two main tasks of the recommender system: “Top-N recommenda-
tion” and “rating prediction”. Meanwhile, since the SoMA, Light_NGSR, and GNN-DSR
codes are not available, we only compare the MAE and RMSE metrics on the Ciao and
Epinions datasets, as shown in Table 3.

Table 3. Experimental results of social recommendation model (Top-N recommendation).

Model
Douban FilmTrust Ciao

Precision@3 Recall@3 NDCG@3 Precision@3 Recall@3 NDCG@3 Precision@3 Recall@3 NDCG@3

SBPR 0.182 0.013 0.208 0.221 0.094 0.267 0.022 0.008 0.024
DiffNet++ 0.204 0.016 0.220 0.375 0.201 0.416 0.025 0.012 0.028
RSGAN 0.211 0.015 0.217 0.347 0.203 0.385 0.029 0.014 0.033
DASO 0.224 0.017 0.239 0.400 0.234 0.445 0.033 0.023 0.038
ESRF 0.223 0.017 0.238 0.380 0.232 0.392 0.032 0.016 0.037

MBSGAN 0.237 0.018 0.248 0.430 0.236 0.459 0.034 0.029 0.039

The MBSGAN model was compared with five social information-based recommenda-
tion models with the following results:

By observing the experimental results in Table 3, it can be seen that the MBSGAN pro-
posed in this paper obtains optimal values in terms of each metric in the Douban, FilmTrust,
and Ciao datasets compared to the baseline model. Further analysis of the experimental
results leads to the following conclusions: Diffnet++, RSGAN, DASO, ESRF, and MBSGAN
perform better compared to the traditional social recommendation method SBPR because
the four baseline models of the latter incorporate the network model in deep learning,
because deep learning models have multiple layers and nonlinear activation functions
that can capture complex nonlinear relationships between users and projects. Traditional
recommendation models often rely on linear or shallow models, which cannot effectively
capture the complex and nonlinear nature of user–item interactions. And compared with
SBPR, which only considers the first-order neighbors of users, the use of network models
can tap more information about user–item interactions and the association information in
social relationships to obtain a richer user representation. Compared with RSGAN and
ESRF using GAN, DASO and MBSGAN outperform these two models in all metrics, indi-
cating that RSGAN and ESRF share the same user representation in both interaction and
social spaces, which limits the learning of user representation, while DASO and MBSGAN
learn user representation in the social space and interaction space separately to learn more
fully the information in each space. This is because learning user expressions separately
can reduce irrelevant interference. Separating user representations in social spaces and
interaction spaces can avoid interference between spaces and improve the independence
and accuracy of the model for information in each space. The MBSGAN model performs
better than DASO, demonstrating the effectiveness of basic feature space mapping.

By observing the experimental results in Table 4, we can see that, compared with the
baseline model, the MBSGAN proposed in this paper obtains the better result in terms of
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MAE metrics of the Ciao dataset and on the MAE and RMSE metrics of Epinions. Further
analysis of the experimental results leads to the following conclusions: compared with
SoMA, Light_NGSR, and GNN-DSR, which use only social relationships, the experimental
results of MBSGAN on two real datasets almost outperform these baseline models, indicat-
ing that the application of generative adversarial networks in social recommendation is
beneficial to improving the accuracy of the models and reducing scoring errors.

Table 4. Experimental results of social recommendation model (rating prediction).

Model Ciao
MAE RMSE MAE Epinions

RMSE

SoMA 0.785 0.998 1.050 1.189
Light_NGSR 0.736 0.973 0.835 1.084
GNN-DSR 0.697 0.944 0.801 1.057
MBSGAN 0.704 0.807 0.765 0.931

4.4. Experimental Comparison of Pairwise Training Recommendation Models

To demonstrate the advantages of the MBSGAN model proposed in this paper over
other generative adversarial network-based recommendation models, the experimental
results of the MBSGAN model are compared with six baseline adversarial training recom-
mendation models on three publicly available datasets. Among them, CFGAN, GCGAN,
and GANRec [27] are collaborative filtering recommendation models based on generative
adversarial networks, and RSGAN, DASO, and ESRF are social recommendation models
based on generative adversarial networks. The other three baseline adversarial training rec-
ommendation models that are different from the social recommendation model experiments
are described as follows:

(1) CFGAN (2018): a collaborative filtering recommendation model based on generative
adversarial networks, where the generator generates the user’s purchase vector, and
the discriminator is responsible for distinguishing between the generator’s “fake”
purchase vector and the real user’s purchase vector.

(2) GCGAN (2021): Based on CFGAN, the discriminator captures the latent features of
users and items through a graph convolutional network to distinguish whether the
input is a “fake” purchase vector by the generator or a real user purchase vector.

(3) GANRec (2023): a collaborative filtering model based on generative adversarial net-
works, where the generator picks out items that the user may like as negative samples
and the discriminator distinguishes between real positive samples and generator-
generated negative samples.

In order to verify the effectiveness of MBSGAN combined with vector mapping and
bilateral generative adversarial networks, we divided the experimental results into two
different types according to the two major tasks of the recommendation systems: “Top-N
recommendation” and “rating prediction”, respectively. The results of comparing the
MBSGAN model with several generative adversarial network-based recommendation
models on the Top-N recommendation task were as follows.

By observing the experimental results in Tables 5 and 6, it is evident that the pro-
posed MBSGAN obtains optimal values for each metric in the Douban, FilmTrust, and
Ciao datasets compared to the six baseline models. Further analysis of the experimental
results leads to the following conclusions: compared with the three collaborative filtering
recommendation models CFGAN, GCGAN, and GANRec, RSGAN, DASO, and ESRF
perform better because the latter three models incorporate social information, indicating
that the proper use of social relationships can help alleviate the sparsity problem and lead
to more accurate recommendation results. A social relationship is a direct relationship
between people. The addition of social relationships provides more information and ba-
sis for recommendation algorithms, making the recommendation results more accurate.
Compared with RSGAN and ESRF, DASO and MBSGAN outperformed them on almost
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all three datasets, indicating that constructing bilateral generative adversarial networks in
both spaces can more fully exploit the information in the interaction and social spaces than
unilateral adversaries, thus improving the accuracy of the models and reducing scoring
errors. This is because the bilateral adversarial network not only mines the interaction
information in the interaction space, but also uses it to learn information in the social space,
alleviating the noise problem in both spaces and improving recommendation accuracy.

Table 5. Experimental results of the recommendation model based on adversarial training (Top-N
recommendation).

Model
Douban FilmTrust Ciao

Precision@3 Recall@3 NDCG@3 Precision@3 Recall@3 NDCG@3 Precision@3 Recall@3 NDCG@3

CFGAN 0.203 0.011 0.204 0.239 0.073 0.252 0.023 0.011 0.025
RSGAN 0.211 0.015 0.217 0.347 0.203 0.385 0.029 0.014 0.033
DASO 0.224 0.017 0.239 0.380 0.234 0.392 0.033 0.023 0.037
ESRF 0.223 0.017 0.238 0.400 0.232 0.445 0.032 0.016 0.038

GCGAN 0.190 0.014 0.218 0.212 0.229 0.229 0.021 0.010 0.022
GANRec 0.204 0.015 0.217 0.249 0.231 0.230 0.022 0.011 0.026
MBSGAN 0.237 0.018 0.248 0.436 0.268 0.473 0.034 0.029 0.039

Table 6. Experimental results of the recommendation model based on adversarial training (score
prediction).

Model
Douban FilmTrust Ciao

MAE RMSE MAE RMSE MAE RMSE

CFGAN 1.233 1.529 0.981 1.151 1.199 1.423
RSGAN 1.255 1.561 1.022 1.370 1.245 1.560
DASO 0.883 1.224 0.994 1.101 0.859 1.228
ESRF 0.900 1.256 1.683 1.849 1.701 1.869

GCGAN 0.898 1.253 0.956 1.005 0.889 1.255
GANRec 0.922 1.215 1.001 1.059 0.998 1.253
MBSGAN 0.820 1.187 0.895 0.946 0.704 0.807

4.5. Comparison of Ablation Experiments of Models

In order to verify the effectiveness of introducing spatial mapping and bilateral gener-
ative adversarial networks in the model, this paper compares the MBSGAN model with
the MBSGAN-P model with the vector mapping being removed, and with the MBSGAN-
SocGAN model with the social spatial adversarial learning being removed, through ablation
experiments. The comparison results are shown in Figures 3 and 4, respectively.

By analyzing the experimental results presented in Figure 3 as well as Figure 4, it can
be observed that, after removing the spatial vector mapping part of the base features or
bilateral generative adversarial networks, the experimental results of each metric become
worse on all three datasets, indicating that both of the above modules have a positive impact
on the model performance. The introduction of the spatial mapping part better explores
the common features behind different user interactions, which leads to more accurate user
expressions. The basic feature space mapping can help the model better discover and
extract the common features of users in different spaces. By integrating and mapping user
characteristics across different spaces, it is possible to model the similarities and correlations
between users in different spaces, thereby more accurately capturing user interests and
preferences. In addition, it can be seen that the model performance decreases if the bilateral
generative adversarial networks are not used, indicating that using generative adversarial
networks to learn users’ social information is helpful to obtaining more accurate user
expressions. The discriminator network in GAN can evaluate the difference between the
generated social information and the real social information. By continuously optimizing
the adversarial process between the generator and the discriminator, the generated social
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information can be made closer to the real social information, thereby improving the
accuracy and credibility of user expression.
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Figure 3. Comparison of ablation experimental results of MBSGAN model (Top-N recommendation).
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Figure 4. Comparison of ablation experimental results of MBSGAN model (score prediction).

4.6. Effect of the Number of Candidate Samples k Values

The k value is the number of candidate samples in interaction-space adversarial
learning as well as social-space adversarial learning, and is used to discriminate among
the three in the discriminator of the two spaces together with the high-quality positive and
negative examples obtained from sampling, thus enabling the generator to more accurately
select candidate samples for recommendation. In order to investigate the effect of the
number of candidate samples k value on the model performance, different k values are
selected to examine the performance of the proposed MBSGAN model in this paper on
three publicly available datasets, and then a reasonable k value is selected as the number
of candidate samples to be selected. The experimental results of the MBSGAN model
corresponding to different k values are shown in Figures 5–7.

In order to present the results of Precision@3, Recall@3, and NDCG@3 with the number
of candidate samples clearly in the same plot, the horizontal coordinates are set as k values
and the vertical coordinates are the evaluation values, here the vertical coordinates are used
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as the primary and secondary axes. The blue line represents Precision@3, the green line
represents NDCG@3, and the orange line represents Recall@3. In Figures 5–7, the values of
Precision@3 and NDCG @3 are based on the main axis on the left, and the Recall@3 values
are based on the secondary axis on the right.

Analyzing Figures 5–7, it can be observed that the experimental results of the MBSGAN
model are affected by the number of candidates k, which shows different trends on the
three datasets. The model works best when k = 15 on the Douban dataset, when k = 15 on
the FilmTrust dataset, and when k = 20 on the Ciao dataset. When the value of k chosen is
too small, fewer candidate samples, positive and negative examples are utilized and the
interaction information cannot be more fully utilized. And when the k value chosen is too
large, it leads to overfitting and makes the recommendation results inaccurate.
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Figure 6. Experimental performance of MBSGAN model with different k values (FilmTrust).
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Figure 7. Experimental performance of MBSGAN model with different k values (Ciao).

4.7. Convergence of the Model

To verify the convergence of the model, we conducted experiments on three datasets:
Douban, Ciao, and FilmTrust to obtain the learning curve of the MBSGAN model. Among
them, the principal axis represents precision@3 and NDCG@3. The secondary coordinate
axis represents recall@3 and the horizontal axis represents the number of epochs.

From Figure 8, it can be seen that the MBSGAN model has achieved convergence on all
three datasets. Among them, on the Douban and FilmTrust datasets, the model converges
when the number of epochs reaches 30, and on the Ciao dataset, the model converges when
the number of epochs reaches around 40.
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5. Conclusions

In this paper, we propose a recommendation model based on spatial mapping and
bilateral generative adversarial networks (MBSGAN). We first map the base feature space
to the interaction space and social space, respectively, to achieve the fusion of heteroge-
neous spaces and obtain more accurate user representations in both spaces. Then, bilateral
generative adversarial networks are constructed in the interaction space and social space
to learn the complex information in the respective spaces. Through two sets of compara-
tive experiments, the effectiveness of using the base feature space to fuse heterogeneous
information was demonstrated, and the advantages of our constructed bilateral generative
adversarial networks in mining information were also verified. However, the factors that
affect user interaction behavior are diverse and complex. We only consider the impact
of user social information on recommendations, which is not comprehensive enough to
learn the potential interaction characteristics of users. We should also consider more di-
verse information, such as item attribute information and user’s own attribute information.
Therefore, in the next work, we should consider fusing more auxiliary information for
user expression and item expression in bilateral generative adversarial networks, such as
knowledge graph information or user attribute information. At the same time, it is neces-
sary to find appropriate fusion methods for this information to further enrich the feature
representation of users and items, thereby improving the accuracy of recommendations.
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