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Abstract: We consider a particular isotropic and homogeneous cosmological model, in which the
equation of state is obtained from a thermodynamic fundamental equation by using the formalism of
geometrothermodynamics (GTD). The model depends effectively on three arbitrary constants, which
can be fixed to reproduce the main aspects of the inflationary era and the ΛCDM paradigm. We use
GTD to analyze the geometric properties of the corresponding equilibrium space and to derive the
stability properties and phase transition structure of the cosmological model.
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1. Introduction

One of the most interesting results of relativistic cosmology in the framework of
Einstein’s gravity theory is the standard cosmological model. It is based on the cosmological
principle, stating that at large scales, the Universe is homogeneous and isotropic. Moreover,
to implement Einstein’s equations, it is necessary to assume a model for the large-scale
structure of the universe. The simplest choice is that of an energy–momentum tensor
corresponding to a perfect fluid. The resulting field equations are known as the Friedmann
equations, which relate the density and pressure of the perfect fluid with the expansion rate
of the universe. Apart from the Friedmann equations, it is necessary to add an equation of
state in order to construct the details of the ΛCDM scenario, which is considered the best
model to explain the evolution of the universe [1].

As an alternative way to construct cosmological models, it has been proposed to use a
fundamental equation, so that the entire universe can be considered as a thermodynamic
system. The fundamental equation, in turn, is obtained by using the theory of GTD [2–5].

Indeed, the idea of GTD consists in analyzing the thermodynamic properties of a
system by using concepts of contact geometry and Riemannian geometry. To this end, it is
necessary to introduce the concept of equilibrium space, an n-dimensional space whose
points correspond to the states of equilibrium of the system, and the 2n + 1-dimensional
phase space, where the thermodynamic potential, extensive variables, and intensive vari-
ables are considered as independent coordinates. At the level of the equilibrium space
only, it is possible to introduce the formalism of thermodynamic geometry, which consists
in introducing metrics in such a way that the equilibrium space becomes a Riemannian
manifold. The first Riemannian structure of thermodynamic geometry was proposed by
Rao [6] in 1945 by identifying the components of the Fisher information matrix as the
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components of a Riemannian metric, which is currently known as the Fisher–Rao metric.
In 1975, Weinhold introduced a different metric, whose components are the Hessian of
the internal energy [7–10]. Then, in 1979, Ruppeiner proposed a different metric with
components given as the Hessian of the entropy [11,12]. It turned out that the Ruppeiner
metric is the thermodynamic limit of the statistical Fisher–Rao metric (see [13] for a review).

The approach of geometrothermodynamics is different and was proposed by Quevedo
in 2007 by using the additional structure of the phase space and assuming as fundamental
principle the Legendre invariance of the metrics of the phase space [14]. As a result, the GTD
metrics determine Riemannian structures, which are completely different from those used
in thermodynamic geometry.

We present in this work an introduction to the theory of GTD by considering the exact
mathematical definitions of the phase space and the equilibrium space. GTD is based on the
physical invariance of classical thermodynamics with respect to Legendre transformations,
i.e., with respect to the choice of thermodynamic potential.

This work is organized as follows. In Section 2, we review the standard cosmological
model. We emphasize the fact that an equation of state is necessary in order to integrate
the corresponding Friedmann equations. In Section 3, we review the main aspects of the
geometric structure of GTD. We then explain, in Section 4, how to construct geometrother-
modynamic cosmological models and consider a particular example that contains the
ΛCDM model as particular case and the inflationary era as another particular case. In Sec-
tion 5, we focus on the study of the stability properties of the model by using the geometric
structure of the GTD theory. Finally, in Section 6, we summarize our results.

2. The Standard Cosmological Model

According to observations, at scales on the order of hundreds of megaparsecs, the
universe satisfies the cosmological principle. This means that the spacetime of the universe
can be split into hypersurfaces of constant time, which are isotropic and homogeneous.
This is then taken into relativistic cosmology as an assumption for the entire universe and
its complete evolution. In turn, this assumption fixes the form of the line element of the
spacetime that can be written as [1,15,16]

ds2 = −dt2 + R2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]
, (1)

which is known as the Friedmann–Lemaître–Robertson–Walker (FLRW) line element. Here,
R(t) is the scale factor and k is a constant that represents the curvature of the hypersurfaces
of constant time.

Furthermore, Einstein’s equations with a perfect fluid as the source of gravity lead to
the Friedmann equations (we use units with G = c = 1)

Ṙ2

R2 +
k

R2 =
8π

3
ρ , (2)

R̈
R

= −4π

3
(ρ + 3p) , (3)

where ρ is the density and p the pressure of the fluid. Here, a dot represents derivation
with respect to the time parameter t.

The following step to develop the cosmological model consists in integrating Fried-
mann equations. To this end, it is necessary to postulate an additional equation, which
is usually an equation of state that relates density and pressure. The simplest choice is
the barotropic equation of state p = wρ, where w is the constant barotropic factor. It then
turns out that Friedman equations can be integrated for different values of the barotropic
factor w. According to observations, the standard cosmological model highlights three
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different epochs for the evolution of the universe, namely the epoch of radiation (w = 1/3),
the matter-dominated era (w = 0), and the dark-energy-dominated epoch(w = −1).

Geometrothermodynamics proposes an alternative approach to integrate Friedmann’s
equations. The idea is to replace the equation of state p = wρ by a fundamental equation
that describes a thermodynamic system. The difference is that with a fundamental equation,
it is also possible to derive other properties of the system, such as additional thermodynamic
variables, response functions, phase transitions, etc. In turn, the fundamental equation can
be obtained from the GTD theory by applying a variational principle.

3. The Theory of GTD

There are several proposals to apply Riemannian differential geometry in classical
thermodynamics. One of the most popular proposals consists in introducing Riemannian
metrics into the equilibrium space, whose points represent equilibrium states of the cor-
responding thermodynamic system. In particular, Hessian metrics have also been used
extensively in statistical physics and information theory [7–13,17–20].

The theory of GTD [14] uses concepts of contact geometry to guarantee that the
formalism itself satisfies the property of ordinary thermodynamics of being invariant under
the action of Legendre transformations. Therefore, GTD is the only theory that takes into
account this property, which from a physical point of view means that the theory does
not depend on the choice of thermodynamic system [21]. This is an essential symmetry
of classical thermodynamics that makes it possible to treat GTD as a theory from the
mathematical point of view in a way that resembles the mathematical construction of
field theories.

The starting point of the geometric construction of GTD is the phase space that is
defined as follows. The manifold (P , Θ, G) is called a Riemannian contact manifold if P is
a 2n + 1-dimensional differential manifold, Θ is a contact 1-form satisfying the condition
Θ ∧ (dΘ)n = Θ ∧ dΘ ∧ dΘ... 6= 0, and G is a Riemannian metric on P . The interesting
point of this construction is that it is always possible to introduce coordinates ZA =
(Φ, Ea, Ia), with a ranging from 1 to n, such that the contact 1-form can be written as
Θ = dΦ − δab IadEb with δab = diag(1, . . . , 1). These coordinates are called canonical
Darboux coordinates. In these coordinates, the condition Θ ∧ (dΘ)n 6= 0 is equivalent to
dΦ ∧ dE1 ∧ ...∧ dEn ∧ dI1 ∧ ...∧ dIn 6= 0, meaning that the volume element of P is nonzero.

We say that the Riemannian contact manifold P , Θ, G) is a thermodynamic phase
space if it is invariant under Legendre transformations of the form [14]

ZA → Z̃A = (Φ̃, Ẽa, Ĩa) (4)

with
Φ = Φ̃− δkl Ẽk Ĩl , Ei = − Ĩi, Ej = Ẽj, Ii = Ẽi, I j = Ĩ j , (5)

where k, l = 1, . . . , i and i ∪ j is any disjoint decomposition of the set of indices {1, . . . , n}.
Interestingly, the contact 1-form Θ is form-invariant with respect to the above Legendre

transformations, in the sense that under a Legendre transformation ZA → Z̃A, it behaves
as Θ → Θ̃ = dΦ̃− δab ĨadẼb. However, the components of the metric GAB are not form
invariant, in general. Nevertheless, it is possible to find the conditions for GAB to be
Legendre-invariant, which can be solved and yield a set of three different metrics, whose
line elements can be represented as

G
I
= (dΦ− IadEa)2 + (βabEa Ib)(δcddEcdId) , (6)

G
I I
= (dΦ− IadEa)2 + (βabEa Ib)(ηcddEcdId) , (7)

GI I I = (dΦ− IadEa)2 +
n

∑
a=1

βa(Ea Ia)dEadIa , (8)
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where ηab = diag(−1, 1, · · · , 1), βab = diag(β1, . . . , βn), and βa are the coefficients of
quasi-homogeneity of the variables Ea within the fundamental equation Φ = Φ(Ea) [22].

The quasi-homogeneity coefficients are related to the symmetry properties of the
fundamental equation, which is demanded to be a quasi-homogeneous function of degree
βΦ, i.e., under the rescaling Ea → λβa Ea, it behaves as

Φ(λβa Ea) = λβΦ Φ(Ea), (9)

where λ is a positive real constant and βa positive or negative real constants.
The second main component of GTD is the equilibrium space, which is a Riemannian

submanifold of the phase space (E , g) ⊂ (P , Θ, G), defined by the conditions

1. ϕ : E −→ P , i.e., ϕ : {Ea} 7−→ {Φ(Ea), Ea, Ia(Ea)} is a smooth embedding map.
2. ϕ∗(Θ) = 0, i.e., dΘ = IadEa on E , which is equivalent to saying that on E , the first

law of thermodynamics is satisfied, where Ea represent the extensive thermodynamic
variables and Ia =

∂Φ
∂Ea are the corresponding dual variables.

3. The pullback ϕ∗ induces metrics of E by means of g = ϕ∗(G), i.e.,

gab =
∂ZA

∂Ea
∂ZB

∂Eb GAB = ZA
,a ZB

,bGAB . (10)

In particular, the metrics generated by the pullback of (6)–(8) are

gI
ab = βΦΦδ c

a
∂2Φ

∂Eb∂Ec , (11)

gI I
ab = βΦΦη c

a
∂2Φ

∂Eb∂Ec , (12)

gI I I =
n

∑
a=1

βa

(
δadEd ∂Φ

∂Ea

)
δab ∂2Φ

∂Eb∂Ec dEadEc , (13)

respectively, where δ c
a = diag(1, · · · , 1), η c

a = diag(−1, 1, · · · , 1), and βΦ is the
quasi-homogeneity index of the function Φ(Ea).
4. ϕ is a harmonic map, i.e., the action Ig =

∫
E dnE

√
|det(gab)| is stationary, i.e.,

δIg

δZA =
1√

|det(gab)|

(√
|det(gab)| gabZA

,a

)
,b
+ ΓA

BCZB
,bZC

,c gbc = 0 , (14)

where
Γa

bc =
1
2

Gad(Gdb,c + Gdc,b − Gbc,d) (15)

are the Christoffel symbols of the metric Gab of the phase space.

The solution to this equation ZA = ZA(Ea) includes the function Φ = Φ(Ea), which
could be interpreted as a fundamental equation if it satisfies the laws of thermodynamics.
A particular solution for n = 2 is

Φ = c1 ln
(

E1 +
α

E2

)
+ c2 ln(E2 − β) , (16)

where c1, c2, α, and β are constants.
Although this solution is valid only in the case n = 2, it is possible to generalize it to

include higher dimensions as follows

Φ = c1 ln
(

E1 +
α

El

)
+

n

∑
k=2

ck ln(Ek − βk) , (17)
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where l ∈ (1, 2, . . . , n). In the following section, we see that the case with n = 2 can
be applied in the context of relativistic cosmology with two effective fluids. In general,
however, we believe that the solution for higher dimensions could be used in case additional
effective fluids are necessary.

4. A Cosmological Model Based on GTD

As mentioned above, the idea of using GTD to construct cosmological models consists
in endowing the Friedmann equations with a fundamental equation derived from GTD.
Using the solution (16) with Φ = S, E1 = U, and E2 = V, the GTD cosmological model is
based on the equations

Ṙ2

R2 +
k

R2 =
8π

3
ρ , (18)

R̈
R

= −4π

3
(ρ + 3p) , (19)

S = c1 ln
(

U +
α

V

)
+ c2 ln(V − β) , (20)

where we interpret S as the entropy of the universe, U = ρV its internal energy, and V =
V0R3(t) its volume. It has been shown in [23] that the above system can be used to
construct an inflationary model and to reproduce the standard ΛCDM model. In fact, since
the fundamental Equation (20) is assumed to satisfy the first law of thermodynamics,

dS =
1
T

dU +
p
T

dV , (21)

we can compute the thermodynamic temperature

T =
U
c1

+
α

c1V
, (22)

and the pressure

p =
c2UV2 + α[βc1 + (c2 − c1)V]

c1V2(V − β)
. (23)

In the particular case with α = β = 0, we obtain

U = c1T , pV =
c2

c1
U , (24)

which implies that p = c2
c1

ρ. This is a barotropic equation of state, with w = c2
c1

as the
barotropic factor. Consequently, this model is equivalent to the standard cosmological
model, reproducing the evolution epochs for different values of the ration c2

c1
.

In the general case with α 6= 0 and β 6= 0, it has been shown that one can obtain
an effective inflationary model, which is in accordance with the standard inflationary
parameter [24–26], namely, the beginning and end of inflation is limited by the values
ti ∼ 10−36 s and t f ∼ 10−32s, a period during which the universe expanded exponentially
from R(ti) to R(t f ) according to the relationship R(t f ) = e60R(ti). These physical values
are part of the model under the assumption that the free parameters are chosen as

c2

c1
= −8

9
, α ' 10−78Jm3 , β ' 10−84m3 . (25)

The parameter α is interpreted as related to the interaction of the particles that conform the
cosmic fluid. The parameter β = 10−84m3 is related to the volume of the universe at the
beginning of inflation. The values of these parameters represents a prediction of the model.
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5. Stability Properties of the Model

In GTD, the stability properties a thermodynamic system can be determined by an-
alyzing the properties of the curvature of the equilibrium space. In the last section, we
used the fundamental Equation (20) to construct a cosmological model, in which the entire
universe is the thermodynamic system with two degrees of freedom, n = 2. Accordingly,
we have to investigate the curvature properties of the metrics (11)–(13). Using the notations
Φ = S, E1 = U, and E2 = V, we obtain

gI = βSS
[
S,UU(dU)2 + 2S,UVdUdV + S,VV(dV)2

]
, (26)

gI I = βSS
[
−S,UU(dU)2 + S,VV(dV)2

]
, (27)

gI I I = βUUS,US,UU(dU)2 ++βVVS,VS,VV(dV)2

+[βU(US,U) + βV(VS,V)]S,UVdUdV , (28)

where S,U = ∂S
∂U , etc.

The components of the first metric gI can be written as gI
ab = βSS ∂2S

∂Ea∂Eb , meaning that
it is conformal to a Hessian metric with the entropy as the Hessian potential. In this sense,
the metric gI is conformal to the Ruppeiner metric, which is not invariant under Legendre
transformations. We see that the role of the conformal factor S consists in guaranteeing the
Legendre invariance of the GTD metric gI . This analogy between the line element gI and
the Ruppeiner line element is the reason why in most cases the results obtained from gI

coincide with those obtained in thermodynamic geometry.
The line element gI I also contains the entropy as the conformal factor. However,

the metric itself is not Hessian due to the presence of the pseudo-Euclidean metric η c
a in

the original Formula (12). This means that there is no analogue metric in thermodynamic
geometry. Interestingly, the determinant of the metric contains the term S,UUS,VV , which
appears then in the denominator of the scalar curvature RI I (see below) and partially
determines the phase transitions of the corresponding system. In concrete examples, one
can see that the solutions of the equation S,UUS,VV = 0 correspond to divergences of the
response functions, such as the heat capacity, i.e., to phase transitions.

The line element gI I I represents the most general metric, which is invariant with
respect to partial Legendre transformations. It cannot be related in any way to the Hessian
metrics of thermodynamic geometry. As shown below, this metric is free of curvature
singularities if SUV 6= 0, a condition that is essential for the determination of the stability
properties of the corresponding system.

The singularity structure of the above metrics is determined from the behavior of the
corresponding Ricci scalars. In fact, in two dimensions, there is only one independent
component of the curvature tensor, and so all the algebraic curvature scalars should be
proportional the Ricci scalar. Using the Euler identity in the form [27]

βUUS,U + βVVS,V = βSS , (29)

the computation of the Ricci scalars yields

RI =
N I

2βSS3[S,UUS,VV − (S,UV)2]
2 , (30)

RI I =
N I I

2βSS3(S,UUS,VV)
2 , (31)

RI I I =
N I I I[

β2
SS2(S,UU)2 − 4βU βVUVS,US,VS,UUS,VV

]3 , (32)

respectively, where the functions N I , N I I , and N I I I are functions of S and its derivatives.
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A detailed analysis of the form of the denominators of the expressions (30)–(32) shows
that the singularities are determined by the conditions [28,29]

S,UUS,VV − (S,UV)
2 = 0 , (33)

S,UUS,VV = 0 , (34)

S,UV = 0 , (35)

respectively, which can be interpreted in terms of the stability conditions and phase transi-
tion structure of the corresponding system.

Notice that the above conditions are not independent, because the validity of any
two of them implies the validity of the third one. However, for the analysis of concrete
examples, it is convenient to consider all three conditions separately.

We now investigate the conditions (33) and (34). First, consider the limiting case
α = β = 0. Then,

S,UUS,VV − (S,UV)
2 =

c1c2

U2V2 = 0 , (36)

SUU = − c1

U2 , S,VV = − c2

V2 , SUV = 0 . (37)

We see that in general, for nonzero values of c2, the singularity conditions are not satisfied,
implying that during the period corresponding to the ΛCDM model, from a thermodynamic
point of view, no instabilities and no phase transitions can occur.

The lack of phase transitions means that the model cannot represent the crossing
between different eras of the evolution of the Universe. However, one can expect that
parametrizations can be used to describe transitions between eras, in a similar way as it is
performed in the standard cosmological model.

Now, we consider the general case (α 6= 0, β 6= 0), which corresponds to an inflation-
ary model. A straightforward calculation with the fundamental Equation (20) shows that

SUU = − c1V2

(UV + α)2 , SUV =
c1α

(UV + α)2 , (38)

so that these derivatives do not lead to nontrivial zeros. To express the remaining conditions
in a compact form, in the final result, we replace the expression with the pressure (23) and
the value c2 = − 8

9 c1 we obtained for the inflationary era. Then,

S,UUS,VV − (S,UV)
2 = 0←→ pV3 − αV + 2αβ = 0 , (39)

S,VV = 0←→ 9p2V5 + 18αβpV2 − 17α2V + 18α2β = 0 . (40)

Condition (39) means that there are values for the pressure at which instabilities can take
place. In Figure 1, we show the behavior of the pressure in terms of the volume.

We choose the values of the volume as V > β in order for the fundamental Equation (20)
to be well defined. Also, we expect that during inflation, the pressure is negative for the
universe to expand. We see that only in the interval V ∈ (β, 2β) is the pressure negative.
Since β = 10−84m3 was interpreted as the volume of the universe at the beginning of
inflation, we conclude that the instabilities can occur only at the onset of inflation. Later on,
no instabilities can occur.
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Figure 1. Representation of the condition (39) for the inflationary era. For concreteness, we assume
that α is positive.

Consider now the condition (40). We solve this condition with respect to the pressure
and obtain

p1,2

α
= −β± 1

V3

[
3β +

√
9β2 − 18βV + 17V2

]
. (41)

In Figure 2, we show the behavior of p1 and p2 in terms of the volume.
The plot of the solution p1 (left panel) shows that the pressure is negative only within

the interval
(

β, 18
17 β
)

, i.e., in the vicinity of the onset of inflation. This means that a phase
transition can take place at the moment where the inflation starts. The solution p2 (right
panel) is always negative. This means that such a phase transition can occur at any time
during the inflation.

In conclusion, the analysis of the Ricci scalars of the metrics of the equilibrium space
shows that there can be three different classes of critical points, corresponding to the dif-
ferent singularity conditions, at which instabilities and phase transitions can take place.
Two of these critical points occur in the vicinity of the inflation onset, i.e., they could
be interpreted as describing the thermodynamic beginning of inflation. The third crit-
ical point can occur at any time during inflation and would indicate the occurrence of
a phase transition.

The phase transitions that occur before and during inflation cannot be described
within the frame of the GTD theory, because phase transitions lead to the appearance of
non-equilibrium states. To investigate such states. it would be necessary to generalize
the geometric structure of GTD in such a way that non-equilibrium states are points
of a deformed equilibrium space. This task, however, is well beyond the scope of the
present work.
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Figure 2. Representation of the condition (40) for the inflationary era. The values of the pressure p1

and p2 are the solutions of this condition. For concreteness, we assume that α is positive.

6. Conclusions

This work is dedicated to the study of geometrothermodynamic cosmology. First,
we present the essentials of the standard cosmological model, emphasizing the fact that
an additional equation is necessary in order to be able to integrate Friedmann equations.
In the case of the standard ΛCDM scenario, the additional equation is a barotropic equation
of state. In the case of geometrothermodynamic cosmology, it is a fundamental equation,
which is a solution of a set of differential equations derived from the theory of GTD.

We reviewed the geometric structure of GTD, including the construction of the phase
space, where the conditions of Legendre invariance are implemented as coordinate trans-
formations, and the equilibrium space, where the laws of thermodynamics are valid, and
the metrics and geometric properties are derived from the knowledge of the fundamental
equation of the system under consideration. We investigated in detail the three different
metrics that can be determined from the fundamental equation of a particular cosmological
model that includes the inflationary era and the epochs of the standard ΛCDM paradigm.

Furthermore, we analyzed in detail the curvature singularities of the equilibrium
space and found that there are three critical points where instabilities and phase transitions
can take place. We use as a criterion for determining the physical meaning of the critical
points the condition that the pressure be negative. This is in accordance with our physical
expectations that expansion is generated effectively by a negative pressure. It turns out
that two critical points occur practically at the beginning of inflation; so, we can interpret
them as the generators of inflation. The third critical point can be interpreted as a phase
transition that can occur at any time during inflation.

From the above results, we see that the application of GTD in cosmology allows us
to explore the Universe from a different perspective. We established that the beginning of
inflation is a thermodynamic process associated with a phase transition. This opens the pos-
sibility of exploring the pre-inflationary era by using non-equilibrium thermodynamics and
non-equilibrium GTD. After inflation, the evolution of the Universe corresponds effectively
to the thermodynamic evolution of an ideal barotropic gas, with a different barotropic
factor for each era of evolution. This is a novel aspect that deserves further investigation.
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