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Abstract

:

Deep convolution neural networks have proven their powerful ability in comparing many tasks of computer vision due to their strong data learning capacity. In this paper, we propose a novel end-to-end denoising network, termed Fourier embedded U-shaped network (FEUSNet). By analyzing the amplitude spectrum and phase spectrum of Fourier coefficients, we find that low-frequency features of an image are in the former while noise features are in the latter. To make full use of this characteristic, Fourier features are learned and are concatenated as a prior module that is embedded into a U-shaped network to reduce noise while preserving multi-scale fine details. In the experiments, we first present ablation studies on the Fourier coefficients’ learning networks and loss function. Then, we compare the proposed FEUSNet with the state-of-the-art denoising methods in quantization and qualification. The experimental results show that our FEUSNet performs well in noise suppression and preserves multi-scale enjoyable structures, even outperforming advanced denoising approaches.
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1. Introduction


Image denoising [1], a fundamental and important issue in low-level vision and image processing, aims at removing or eliminating external noise as much as possible while preserving clear details in the original image. Its essence lies in the process of reducing noise in the image, restoring and reconstructing the original clear image. While image restoration [2] is a long-standing problem, in the general image restoration problem a damaged image  Y  can be expressed as follows:


     Y = T  X  + n     



(1)




where  X  represents a clear image,    T (  • )   represents a degenerate function, and  n  represents additive noise. Generally referring to additive noise, image denoising is a common restoration technique.



In the early days, the most representative methods of traditional image denoising were block-matching and 3D filtering [3] (BM3D) and non-local means [4] (NLM), among others [5]. However, in recent years, deep learning-based image denoising methods have surpassed traditional image denoising methods [6] in terms of inference time and denoising performance. Early deep learning image denoising methods used reinforcement learning techniques [7], such as Q-learning [8] and other training recursive neural networks. However, reinforcement learning-based methods require a large amount of computation and have low search efficiency. Currently, deep learning denoising methods combine skip connections [9], attention mechanisms [10], multiscale feature fusion [11], and the introduction of residual blocks [12] to improve the network feature expression capabilities. Current methods for image denoising can be roughly divided into two categories: image denoising based on traditional methods and image denoising based on deep learning. For example, bilateral filters [13], Gaussian filters [14], and median filtering [15] are traditional image denoising methods. Discrete cosine transform [16], wavelet transform [17], and other methods are also used to modify the transform coefficients [18], and the average neighborhood [19] values are utilized to calculate the local similarity [20]. These methods are based on image denoising and attempt to preserve more edge details using smooth image features. However, the images processed with these methods often become blurry, and the edge details of the original image are not clearly retained, resulting in a poor overall effect.



With the development of deep learning, neural networks have overcome the drawbacks of traditional denoising methods. Most deep learning-based methods are external prior methods [21]. In 2017, Zhang et al. [22] proposed a convolutional neural network (CNN) called DnCNN, which utilizes residual learning and batch normalization to achieve network denoising. In 2018, Zhang et al. [23] proposed a faster and more flexible denoising convolutional neural network called FFDNet, which can remove more complex noise. In 2019, Guo et al. [24] proposed a real image-blind denoising network called CBDNet. They trained the network using synthetic and real-world noise images, dividing it into two subnetworks: nonblind denoising and noise estimation, which improved the generalization ability of deep CNN denoisers [25]. Presently, deep learning-based denoisers [26,27,28,29] have achieved good results, but most of these networks execute CNNs in the spatial domain. In recent years, transformer models have been successful in natural language processing (NLP). Visual transformers [30] have been widely used in image restoration [31] tasks owing to their strong global modeling ability. In 2022, Fan et al. [32] proposed the SUNet network, which combined a Swin transformer [33] and UNet into a denoising model and demonstrated impressive performance in image denoising tasks. Although these methods [34] have outstanding image denoising capabilities, they overlook the inherent priors of noisy images, making them prone to overfitting in synthetic datasets.



To date, some researchers have applied the Fourier transform to other low-level visual tasks, such as image deblurring [35] and image deraining [36]. We introduced a Fourier transform into the field of image denoising and learned the frequency domain features of the images. We equipped our Fourier transform residual blocks with a simple three-layer UNet [37]. A more complex network structure may result in greater performance improvement. Compared to the structural information, additive Gaussian white noise has a higher frequency. According to experimental results, we find that such a conclusion is reasonable. In view of this, we tried to plug the Fourier transform into a U-shaped network for a noise removal model construction, and the experimental results demonstrate that the proposed method can achieve promising results. Meanwhile, we also present their time cost. Compared with current mainstream deep learning-based image denoising methods, our network can achieve better performance, reflecting the superiority of our Fourier prior in image denoising tasks.



The main contributions of this study can be summarized as follows:




	
We propose a Fourier prior for image denoising that includes the physical characteristics of noisy images in both the spatial and frequency domains;



	
We designed and implemented a simple and effective residual block based on the Fourier transform that processes the amplitude and phase spectra of noisy images in parallel within Res FFT blocks and learns the frequency domain features of noisy images.









2. Fourier Embedded U-Shaped Network


We first introduce the Fourier prior in Section 2.1, where we conjecture and prove the well-known characteristics [38,39] of amplitude and phase spectra in noisy images. In Section 2.2, we present our proposed Res FFT blocks. In Section 2.3, we introduce our network structure. The loss function used for training is described in Section 2.4.



2.1. Fourier Prior


Mathematically, the Fourier transform refers to the ability to represent a function that satisfies certain conditions as a linear combination of a series of sine or cosine functions. When the Fourier transform is applied to image operations from a physical perspective, it transforms an image from the spatial domain to the frequency domain, whereas its inverse transformation transforms the image from the frequency domain to the spatial domain. Given image   f   x , y   ∈  R  H × W × 1    , the Fourier transform is represented as


     F   u , v   =  1  H W    ∑  x = 0   H − 1     ∑  y = 0   W − 1    f   x , y    e  − j 2 π     u x  H  +   v y  W            



(2)




where   u = 0 , 1 , 2 , … , H − 1   and   v = 0 , 1 , 2 , … , W − 1  . Similarly, given   F   u , v    ,   f   x , y     can be obtained through an inverse Fourier transform, which can be formulated as


     f   x , y   =  ∑  x = 0   H − 1     ∑  y = 0   W − 1    F   u , v    e  j 2 π     u x  H  +   v y  W            



(3)




where   x = 0 , 1 , 2 , … , H − 1   and   y = 0 , 1 , 2 , … , W − 1  . Given   f   x , y    , the amplitude spectrum    F   u , v      and the phase spectrum   φ   u , v     can be obtained after the Fourier transform as follows:


       F   u , v     =        R e  2    u , v   +   I m  2    u , v        



(4)






     φ   u , v       = arctan    I m ( u , v )   R e ( u , v )        



(5)




Here,   R e ( u , v )   and   I m ( u , v )   represent the real and imaginary parts of   F   u , v    , respectively.



By comparing the visualized images in Figure 1, we found that, in terms of visual perception, there was no significant difference in the real, (a) and (e), and imaginary, (b) and (f), parts of both the noisy image and the ground truth after the Fourier transform. However, there is a small difference in the amplitude spectra, (c) and (g), between the noisy image and the ground truth, and a significant difference in the phase spectra, (d) and (h), between the noisy image and the ground truth. Therefore, we infer that the noise features of the image may mostly exist in the phase spectrum of the image and that a small portion of the noise features may also exist in the amplitude spectrum of the image.



In Figure 2, we can observe from the results in (a) and (b) that the amplitude spectrum of the image represents the brightness of each pixel in the image. The center of the amplitude spectrum is the low-frequency region; the higher the brightness of the image is, the larger the corresponding amplitude spectrum value. That is, the amplitude spectrum stores the amplitude information of each pixel in the image, but the position information of the original pixel has been disrupted, and the original image cannot be reconstructed solely by the amplitude spectrum of the image. We can see from the results of (c) and (d) that the phase spectrum of the image records the position information of each pixel in the image. By observing the phase spectrum of the image for visualization operation in Figure 1d,h, the phase spectrum resembles a cluster of noise, but it is also particularly important for image reconstruction, and the original image cannot be reconstructed solely from the phase spectrum of the image. We then compare (e) and (f) in Figure 2. According to the rotation invariance of the Fourier transform, when the amplitude spectrum of the noise image is rotated 180° and the phase spectrum of the original noise image is reconstructed, it can be seen with the naked eye that the overall image does not rotate.



When the phase spectrum of the noise image is rotated 180° and the amplitude spectrum of the original noise image is reconstructed, it can be seen with the naked eye that the overall image is rotated 180°, thus verifying the conclusions of the above two points regarding the amplitude spectrum and phase spectrum of the image. To further prove our hypothesis, we found that (g) and (h) in Figure 2 compared the original noisy image with the labeled image, and (g) and (h) showed varying degrees of noise reduction visible to the naked eye. The noise level of (h) was significantly higher than that of (g), and (g) exhibited a decrease in image brightness. As mentioned previously, we can safely conclude that most noise features of the image exist in the phase spectrum of the image.




2.2. Res FFT Blocks


A widely used residual Fast Fourier Transform module based on ReLU is only utilized to concatenate the real and imaginary parts in the last dimension after the Fourier transform. However, it ignores the respective roles of the real and imaginary parts of the Fourier coefficients in the image, as shown in Figure 3a. We propose an improved Res FFT block, in which we preserve the identity mapping and normal spatial residual edges for auxiliary network training. To utilize the Fourier priors, we used dual channels in the channels of the Fourier transform to process the amplitude and phase spectra in parallel, known as RFAPB, where we used eight cascaded residual blocks in the ERB and DRB. The RFAPB structure is shown in Figure 3b.



We set   X ∈  R  H × W × C     as the input feature graph, where H, W, and C are the height, width, and number of channels of the feature graph, respectively. The overall data flow processing of RFAPB is as follows: (1) Input feature map   X ∈  R  H × W × C    . (2) (i) Fourier transform flow: calculate the two-dimensional discrete Fourier transform of  X  to obtain   F  X  ∈   C   H × W × C    ; take the real part   R [ F ( X ) ]   of the Fourier coefficient and the imaginary part   I [ F ( X ) ]   of the Fourier coefficient and calculate the amplitude spectrum   A [ F ( X ) ]   and the phase spectrum   P [ F ( X ) ]   based on the real and imaginary parts of the Fourier coefficient. Two stacked   1 × 1   convolution layers (convolution operator ⊙) and a ReLU activation function are used in the middle to process the amplitude spectrum   A [ F ( X ) ]   and the phase spectrum   P [ F ( X ) ]  , respectively. The processing part of the amplitude spectrum is formulated as


     f  { A  [ F  ( X )  ]  ,  C 1  ,  C 2  }  =  ReLU (  A  [ F  ( X )  ]  ⊙  C 1  ) ⊙  C 2      



(6)




where   f  { A  [ F  ( X )  ]  ,  C 1  ,  C 2  }  ∈   C   H × W × C    . The processing part of the phase spectrum is formulated as


     f  { P  [ F  ( X )  ]  ,  C 1  ,  C 2  }  =  ReLU (  P  [ F  ( X )  ]  ⊙  C 1  ) ⊙  C 2      



(7)




where   f  { P  [ F  ( X )  ]  ,  C 1  ,  C 2  }  ∈   C   H × W × C    . The feature graph    Y  f f t   ∈  R  H × W × C     is reconstructed according to the amplitude spectrum and phase spectrum, and the reconstructed feature graph   Y  f f t    is calculated by using the two-dimensional inverse discrete Fourier transform, which can be formulated as


      Y  f f t   =   F   − 1    { A  [ F  ( X )  ]  , P  [ F  ( X )  ]  }      



(8)




(ii) Main branch feature flow: Input feature map X through two stacked 3 × 3 convolution layers (convolution operator ⊙). A ReLU activation function is used in the middle, which can be formulated as


      Y  m a i n   = g  { X ,  C 1  ,  C 2  }  =  ReLU ( X  ⊙  C 1  ) ⊙  C 2      



(9)




(iii) Short-cut branching: output feature map   X ∈  R  H × W × C    . (3) Output feature map of improved residual modules   Y =  Y  f f t   +  Y  m a i n   + X  ,   Y ∈  R  H × W × C    ,    Y  f f t   ∈  R  H × W × C    ,    Y  m a i n   ∈  R  H × W × C    , and   X ∈  R  H × W × C    .




2.3. U-Shaped Network


The encoder–decoder structure is widely used in image denoising networks. The encoder structure refers to the gradual conversion of the input image data into feature maps with smaller spatial dimensions and more image channels, followed by the gradual conversion and restoration of the feature maps to the input image size through the decoder. This network structure is a symmetrical CNN, the most typical of which is a UNet network structure. In the encoder and decoder stages, a conventional skip connection method is used to combine different levels of information, which is conducive to the propagation of gradients and convergence of the model. The network structure diagram is shown in Figure 4.



In Figure 4, we not only use global residual learning but also introduce residual blocks for encoding and decoding. Here, we simply used the Res FFT blocks in the UNet architecture. We reviewed the reconstruction process of applying residuals to deep learning for image denoising. This method can also be used to build deep networks. Simultaneously, using multilevel residuals to stack, we can expand the receptive field of the feature image, which can be used to extract more delicate features in the image. After the Fourier transform, noisy images can be used to separate the low- and high-frequency features of the image, which is beneficial for preserving low-frequency features and removing high-frequency noise features. The structure of the residual network also solves the problem of network degradation to a certain extent and provides a simple mapping of the original features in the forward propagation process, which helps the model converge. In Figure 5, we present the intermediate results at different stages. The entire network is divided into two layers (Encode and Decode), and we visualize all the high-dimensional feature maps for each intermediate filter.




2.4. Loss Function


Because the mean square error (MSE) is the average square of the difference between the predicted value   X ^   of the model and the ground truth   X  l a b e l    of the sample for image denoising tasks, high-frequency texture information may be lost during the training process because of the MSE penalty, resulting in blurred and overly smooth vision. Therefore, we used the conventional mean absolute error (MAE) to balance image noise removal with the preservation of detailed features.


     L o s s =  L 1  + λ  L  p h a s e       



(10)




where  λ  can be set according to the empirical value and  λ  is set to 0 in our experiment;    L 1  =  1 n    ∑  i = 1  n      X ^  −  X  l a b e l      , and    L  p h a s e   =  1 n    ∑  i = 1  n     P   X ^   − P   X  l a b e l       .





3. Experiments


3.1. Datasets


3.1.1. Training Set and Validation Set


We trained our model using the DIV2K [40] dataset, which contains 900 high-resolution color images and is currently one of the most commonly used datasets for image super-resolution. We divided the 900 images in this dataset into 800 and 100 high-resolution images at an 8:1 ratio (with an average resolution of approximately 1920 × 1080). For the training set, we randomly cropped each training image into 10 pieces with a size of 256 × 256 patches and randomly applied additive Gaussian white noise (AWGN) to each patch with noise levels of  σ  = 5∼50 and a noise level interval of 5. For the validation set, we randomly cropped each image into three sizes of 256 × 256 patches and added AWGN with three different noise levels,   σ = 10  ,   σ = 30  , and   σ = 50  , to each patch. Therefore, 16,000 patches of size 256 × 256 were used to train the image denoising task, and 1800 patches of size 256 × 256 were used to validate the image denoising task. The dataset comprised 17,800 images.




3.1.2. Testing Set


CBSD68 [41] is a dataset used to evaluate the performance of image denoising algorithms and is part of the Berkeley segmentation dataset and benchmark. The dataset includes 12 buildings; 30 animals, such as cats, tigers, and horses; 11 people; four plants and animals; and 11 other outdoor scene images. Kodak24 [42] mainly provides outdoor scene images, mostly from the perspective of buildings, sky, and sea. The scene images of BSD68 [43] and CBSD68 are the same, but the former are the grayscale versions of the images in the CBSD68 dataset. There are nine outdoor scene images and three indoor scene images in Set12, including five characters, three animals, and other outdoor scene images such as houses and ships. The CBSD68 and Kodak24 datasets were used to test the color image denoising model, whereas the BSD68 and Set12 [22] datasets were used to test the grayscale image denoising model. We tested our model on these four commonly used datasets (CBSD68, Kodak24, BSD68, and Set12). To test the impact of different noise intensities on the network performance, we added AWGN with noise levels of 10, 30, and 50 to these datasets.





3.2. Experiment Setup


3.2.1. Implementation Details


All the experiments were conducted on a server equipped with a third-generation intelligent Intel Xeon processor and an NVIDIA Tesla A100 40G. Our model trained a patch of size 256 × 256, and it took approximately 30 h to train the synthetic noise images on the DIV2K dataset. During the training process, it was primarily used to remove the AWGN. The Adam optimizer was used to optimize the network parameters. The hyperparameter batch size for training was 12, and the initial learning rate was set to   2 ×  10  − 4    . Using the cosine annealing learning strategy, the minimum learning rate decreased to   1 ×  10  − 6    , and a total of 200 epochs were trained. We used the default settings for the other hyperparameters of the Adam optimizer.




3.2.2. Evaluation Metric


To quantitatively compare the advantages and disadvantages of the denoising performance, we used the peak signal-to-noise ratio [44] (PSNR) and structural similarity [45] (SSIM) for quantitative evaluation and analysis. In recent research, new methods [46,47,48,49] for image quality assessment have been proposed, which have potential implications for the performance evaluation of image denoising algorithms.



The PSNR is currently the most widely used method in the field of image denoising, and it mainly represents the difference in pixel values between images, which can be formulated as


     PSNR = 10  log 10         2 n  − 1    M S E    2       



(11)




where n is the number of bits per pixel, usually   n = 8  , which means that the pixel’s gray scale is 256 (in dB);   M S E   represents the mean square error of the current image    f ^   ( i , j )    and the reference image   f ( i , j )  , which can be formulated as


     MSE =  1  M N    ∑  i = 1  M    ∑  j = 1  N       f ^   ( i , j )  − f  ( i , j )     2       



(12)




where M and N represent the height and width of the image.



SSIM measures the quality of images from three aspects: luminance, contrast, and structural information of the sample image. The calculation formulas for the luminance (l), contrast (c), and image structure information (s) are as follows:


      l ( x , y )  =   2  u x   u y  +  c 1     u x 2  +  u y 2  +  c 1        



(13)






      c ( x , y ) =    2  σ x   σ y  +  c 2     σ x 2  +  σ y 2  +  c 2        



(14)






      s ( x , y )  =    σ  x y   +  c 3     σ x   σ y  +  c 3        



(15)




Here,    c 3  =   c 2  2   ,   u x   represents the mean value of the pixels in image x,   u y   represents the mean of the pixels in image y,   σ x 2   represents the variance of the pixels in image x,   σ y 2   represents the variance of the pixels in image y, and   σ  x y    represents the covariance of image x and image y. The calculation formula for SSIM is as follows:


     SSIM  ( x , y )  =   [ l  ( x , y )  ]  α    [ c  ( x , y )  ]  β    [ s  ( x , y )  ]  γ      



(16)




where,  α ,  β , and  γ  represent the weights of the three dimensions and generally   α = β = γ = 1  . The value of SSIM should not exceed 1, and the closer it is to 1, the better the denoising effect on the image.





3.3. Ablation Experiment


We propose two structures, as shown in Figure 3. The structure in Figure 3c adds a convolution layer of 1 × 1 before the Fourier transform relative to the structure shown in Figure 3b. To verify the effectiveness of the Fourier transform residual blocks, we ablated the use of two structures and trained them using different loss functions. The results in Table 1 present the denoising effect when the residual structures of different Fourier transforms are matched with different loss functions. The loss function is shown in Equation (10), which changes  λ  to conduct ablation experiments based on the empirical values. We separately set   λ = 0 , 0.05 , 0.2 , 0.5  ;    L  1 p h a s e   ∈ MAE  , and    L  2 p h a s e   ∈ MSE  . These data represent the evaluation of the denoising model on the validation set, where Gaussian white noise was added at noise levels of 10, 30, and 50. When calculating the PSNR and SSIM, the noisy images of the entire validation set were averaged. According to the experimental results in Table 1, using the structure in Figure 3b and the loss function of Equation (10), the best denoising effect is achieved at   λ = 0  . When the same structure and the same loss function are used, the denoising effect will decrease to varying degrees with an increase in  λ . Using the same Fourier transform residual structure and different loss functions, when  λ  is the same, the utilization of   L  1 p h a s e    in the phase part can often achieve a better denoising effect.



In Figure 6, we show the visualization results of the color image denoising models in different ablation experiments and enlarge the details. Figure 6a shows the Fourier residual structure of Figure 3b with loss function   L 1  ; Figure 6b shows the Fourier residual structure of Figure 3b with loss function    L 1  + 0.05  L  1 p h a s e    ; Figure 6c shows the Fourier residual structure of Figure 3b with loss function    L 1  + 0.2  L  1 p h a s e    ; Figure 6d shows the Fourier residual structure of Figure 3b with loss function    L 1  + 0.5  L  1 p h a s e    ; Figure 6e shows the Fourier residual structure of Figure 3b with loss function    L 1  + 0.05  L  2 p h a s e    ; Figure 6f shows the Fourier residual structure of Figure 3b with loss function    L 1  + 0.2  L  2 p h a s e    ; Figure 6g shows the Fourier residual structure of Figure 3b with loss function    L 1  + 0.5  L  2 p h a s e    ; Figure 6h shows the Fourier residual structure of Figure 3c with loss function   L 1  ; Figure 6i shows the Fourier residual structure of Figure 3c with loss function    L 1  + 0.05  L  1 p h a s e    ; Figure 6j shows the Fourier residual structure of Figure 3c with loss function    L 1  + 0.2  L  1 p h a s e    ; Figure 6k shows the Fourier residual structure of Figure 3c with loss function    L 1  + 0.5  L  1 p h a s e    ; Figure 6l shows the Fourier residual structure of Figure 3c with loss function    L 1  + 0.05  L  2 p h a s e    ; Figure 6m shows the Fourier residual structure of Figure 3c with loss function    L 1  + 0.2  L  2 p h a s e    ; and Figure 6n shows the Fourier residual structure of Figure 3c with loss function    L 1  + 0.5  L  2 p h a s e    .




3.4. Comparison with State-of-the-Art Denoising Methods


In this section, we present the results of our network for denoising grayscale and color images corrupted by AWGN and compare them with the results of DnCNN, UNet, and SUNet.



3.4.1. Gray Image Denoising


Table 2 lists the results of image denoising using different denoising models on the BSD68 dataset and displays the parameter quantities and runtime of different models used for image denoising tasks in the last column. On the BSD68 dataset with a noise level of 50, our method improved the PSNR by 1.4323 dB and the SSIM by 0.0208 compared to those of DnCNN. On the BSD68 dataset with a noise level of 50, our method improved the PSNR by 1.0126 dB and the SSIM by 0.0122 compared to those of UNet. Compared to SUNet, a model with a large number of parameters as a transformer, our method improved the PSNR by 0.9677 dB and the SSIM by 0.0033.



Table 3 and Table 4, respectively, list the results of image denoising using different denoising models on the Set12 dataset for images with noise levels of 10, 30, and 50. On the Set12 dataset with noise levels of 10 and 30, our method achieved ideal results. For example, when the noise level was 30, our method improved the average PSNR by 0.3959 dB and the average SSIM by 0.0168 compared to those of DnCNN. Compared with UNet, our method had an average PSNR increase of 1.1033 dB and an average SSIM increase of 0.0116. Compared to SUNet, our method had an average PSNR improvement of 0.9487 dB and an average SSIM improvement of 0.0074. Although our method did not achieve the best average PSNR on the Set12 dataset with a noise level of 50, both the average SSIM and the SSIM of a single image achieved higher results than those obtained by DnCNN, UNet, and SUNet. On balance, our network showed advantages in the noise removal of gray images. Figure 7 shows a comparison of the visual effects of image “test006” in the BSD68 dataset after denoising using different gray-level image denoising models with a noise level of 50. Figure 8 shows a comparison of the visual effects of image “Monarch” in the Set12 dataset after denoising using different grayscale image denoising models with a noise level of 30. Figure 9 shows a comparison of the visual effects of image “Lena” in the Set12 dataset after denoising using different gray-level image denoising models with a noise level of 50.




3.4.2. Color Image Denoising


Table 5 lists the PSNR and SSIM values under different noise levels compared on the CBSD68 and Kodak24 datasets, respectively. The last column displays the parameter quantities and runtime of different methods used for image denoising tasks. On the CBSD68 dataset with a noise level of 50, our method improved the PSNR by 1.1443 dB and the SSIM by 0.0282 compared to those of DnCNN. On the Kodak24 dataset with a noise level of 50, our method improved the PSNR by 1.2443 dB and the SSIM by 0.0339 compared to those of DnCNN. On the CBSD68 dataset with a noise level of 50, our method improved the PSNR by 0.7419 dB and the SSIM by 0.0180 compared to those of UNet. On the Kodak24 dataset with a noise level of 50, our method improved the PSNR by 2.2228 dB and the SSIM by 0.0243 compared to those of Une. Compared with SUNet, our method had a much smaller number of parameters in the network. Although the improvement in the PSNR and SSIM is minimal on the CBSD68 dataset with a noise level of 50, on the Kodak24 dataset with a noise level of 50, our method increased the PSNR by 1.1673 dB and the SSIM by 0.0103. In summary, our network exhibited a clear advantage in the noise removal performance of color images. Figure 10 shows the comparison results of the visual effects of denoising image “14037” in the CBSD68 dataset with a noise level of 30 using different denoising models. Figure 11 shows the comparison results of the visual effects of denoising image “21077” in the CBSD68 dataset with a noise level of 50 using different denoising models. Figure 12 shows the comparison results of the visual effects of denoising image “kodim20” in the Kodak24 dataset with a noise level of 50 using different denoising models.






4. Conclusions


In this paper, we proposed a method for image denoising based on Fourier priors. We designed and implemented residual blocks for amplitude spectrum and phase spectrum processing of noisy images. Experiments on synthetic noise datasets showed that our method can effectively recover clean images from noisy images and that the content and details are well preserved, which significantly improves the performance of image denoising. In the future, we will attempt to explore the frequency domain features of noisy real-world images.
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Figure 1. Visualized image after Fourier transform. (a) represents the real part diagram of the complex matrix of the noisy image after Fourier transform and frequency domain centralization; (b) represents the imaginary part diagram of the complex matrix of the noisy image after Fourier transform and frequency domain centralization; (c) represents the amplitude spectrum obtained by the Fourier transform calculation of the noisy image after centralization; (d) represents the phase spectrum obtained by the Fourier transform calculation of the noisy image after centralization; (e) represents the real part diagram of the complex matrix of the ground truth after Fourier transform and frequency domain centralization; (f) represents the imaginary part diagram of the complex matrix of the ground truth after Fourier transform and frequency domain centralization; (g) represents the amplitude spectrum obtained by the Fourier transform calculation of the ground truth image after centralization; (h) represents the phase spectrum obtained by the Fourier transform calculation of the ground truth image after centralization. 
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Figure 2. (a) represents the image reconstructed using only the phase spectrum from its noise image; (b) represents the image reconstructed using only the phase spectrum from its ground truth; (c) represents the image reconstructed using only the amplitude spectrum from its noise image; (d) represents the image reconstructed using only the amplitude spectrum from its ground truth; (e) represents the image reconstructed by combining the amplitude spectrum of the noise image rotated 180° and the phase spectrum of the original noise image; (f) represents the image reconstructed by combining the phase spectrum of the noise image rotated 180° and the amplitude spectrum of the original noise image; (g) represents the image reconstructed by combining the amplitude spectrum of the noisy image and the phase spectrum of the ground truth; (h) represents the image reconstructed by combining the amplitude spectrum of the ground truth and the phase spectrum of the noisy image. 
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Figure 3. (a) represents the existing Res FFT-Conv Block; (b,c) represent the proposed improved Res FFT-Conv Block, where (b) represents our proposed RFAPB. 
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Figure 4. Network structure. Our network structure embeds the RFAPB module within a three-layer UNet architecture. The abbreviations ERB and DRB stand for encoding residual blocks and decoding residual blocks, respectively, as illustrated in the example. 
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Figure 5. The intermediate results at different stages. 
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Figure 6. A comparison of the visual effects of denoising color image “kodim08” from the Kodak24 dataset using different Fourier transform structures for denoising is performed. The image is corrupted with additive Gaussian white noise   σ = 50  . The bottom right corner of each subfigure shows the enlarged result within the red box. The first row represents the visualization results of the noisy image and the Fourier residual structure of Figure 4b with different loss functions. The second row represents the visualization results of the ground truth and the Fourier residual structure of Figure 4c with different loss functions. The best results are highlighted in bold. Noisy image: 18.2552 dB/0.5348; ground truth: ∞/1.0; (a): 30.5806 dB/0.8451; (b): 30.4021 dB/0.8381; (c) 30.3749 dB/0.8351; (d) 24.3112 dB/0.8286; (e): 24.1747 dB/0.8269; (f): 23.7677 dB/0.8061; (g): 22.5183 dB/0.7448; (h): 30.2183 dB/0.8328; (i): 30.4640 dB/0.8391; (j): 24.5194 dB/0.8362; (k): 22.8274 dB/0.7684; (l): 24.1793 dB/0.8246; (m): 29.7990 dB/0.8095; (n): 22.8878 dB/0.7675. 






Figure 6. A comparison of the visual effects of denoising color image “kodim08” from the Kodak24 dataset using different Fourier transform structures for denoising is performed. The image is corrupted with additive Gaussian white noise   σ = 50  . The bottom right corner of each subfigure shows the enlarged result within the red box. The first row represents the visualization results of the noisy image and the Fourier residual structure of Figure 4b with different loss functions. The second row represents the visualization results of the ground truth and the Fourier residual structure of Figure 4c with different loss functions. The best results are highlighted in bold. Noisy image: 18.2552 dB/0.5348; ground truth: ∞/1.0; (a): 30.5806 dB/0.8451; (b): 30.4021 dB/0.8381; (c) 30.3749 dB/0.8351; (d) 24.3112 dB/0.8286; (e): 24.1747 dB/0.8269; (f): 23.7677 dB/0.8061; (g): 22.5183 dB/0.7448; (h): 30.2183 dB/0.8328; (i): 30.4640 dB/0.8391; (j): 24.5194 dB/0.8362; (k): 22.8274 dB/0.7684; (l): 24.1793 dB/0.8246; (m): 29.7990 dB/0.8095; (n): 22.8878 dB/0.7675.



[image: Entropy 25 01418 g006]







[image: Entropy 25 01418 g007] 





Figure 7. A comparison of the visual effects of the image “test006” in the BSD68 dataset after denoising using different grayscale image denoising models with a noise level of 50 is presented. The PSNR and SSIM values are calculated based on the patch in the upper part of the subgraph and highlighted in red font. 
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Figure 8. A comparison of the visual effects of the image “Monarch” in the Set12 dataset after denoising using different grayscale image denoising models is presented. The image is adversely affected by additive Gaussian white noise with a standard deviation of   σ = 30  . The PSNR and SSIM values are displayed in the upper part of the image and highlighted in yellow font. Additionally, an enlarged result image is shown within the red box in the bottom right corner of the subgraph. 






Figure 8. A comparison of the visual effects of the image “Monarch” in the Set12 dataset after denoising using different grayscale image denoising models is presented. The image is adversely affected by additive Gaussian white noise with a standard deviation of   σ = 30  . The PSNR and SSIM values are displayed in the upper part of the image and highlighted in yellow font. Additionally, an enlarged result image is shown within the red box in the bottom right corner of the subgraph.



[image: Entropy 25 01418 g008]







[image: Entropy 25 01418 g009] 





Figure 9. A comparison of the visual effects of the image “Lena” in the Set12 dataset after denoising using different grayscale image denoising models is presented. The image is affected by additive Gaussian white noise with a standard deviation of   σ = 50  . The PSNR and SSIM values are displayed in the upper part of the image and highlighted in yellow font. Additionally, an enlarged result image is shown within the red box in the bottom right corner of the subgraph. 
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Figure 10. A comparison of the visual effects of the image “14037” in the CBSD68 dataset after denoising using different color image denoising models is presented. The image is affected by additive Gaussian white noise with a standard deviation of   σ = 30  . The PSNR and SSIM values are calculated based on the patch in the upper part of the subgraph and displayed in yellow font. Furthermore, the enlarged result within the red box of the subgraph is shown in the bottom right corner. 
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Figure 11. A comparison of the visual effects of the image “21077” in the CBSD68 dataset after denoising using different color image denoising models is presented. The image is affected by additive Gaussian white noise with a standard deviation of   σ = 50  . The PSNR and SSIM values are calculated based on the patch in the upper part of the subgraph and displayed in yellow font. Furthermore, the bottom right corner of the subgraph shows the enlarged result within the red box. 
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Figure 12. A comparison of the visual effects after denoising the image “kodim20” in the Kodak24 dataset using different color image denoising models is presented. The image is affected by additive Gaussian white noise with a standard deviation of   σ = 50   The PSNR and SSIM values are displayed in the upper part of the image, highlighted in red font. Additionally, the enlarged result image is shown within the red box located at the bottom right corner of the subgraph. 
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Table 1. Verify the results of residual structure image denoising using different Fourier transforms and highlight the best results in bold font.
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Methods

	
Loss

	
    λ = 0    

	
    λ = 0.05    

	
    λ = 0.2    

	
    λ = 0.5    




	
PSNR

	
SSIM

	
PSNR

	
SSIM

	
PSNR

	
SSIM

	
PSNR

	
SSIM






	
(b)

	
    L 1  + λ  L  1 p h a s e     

	
33.5579

	
0.8872

	
33.2095

	
0.8836

	
32.7649

	
0.8751

	
31.8952

	
0.8579




	
    L 1  + λ  L  2 p h a s e     

	
32.3945

	
0.8666

	
31.6962

	
0.8453

	
29.1296

	
0.7655




	
(c)

	
    L 1  + λ  L  1 p h a s e     

	
33.3783

	
0.8843

	
33.2428

	
0.8837

	
32.8874

	
0.8770

	
29.4967

	
0.7906




	
    L 1  + λ  L  2 p h a s e     

	
32.5373

	
0.8695

	
31.6969

	
0.8454

	
30.1490

	
0.7995











 





Table 2. The results of image denoising using different denoising models on the BSD68 dataset show that all PSNR and SSIM values are averaged across the entire dataset, with the best results highlighted in bold font.
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Methods

	
BSD68

	
Parms

	
Runtime




	
   σ = 10   

	
   σ = 30   

	
   σ = 50   




	
PSNR

	
SSIM

	
PSNR

	
SSIM

	
PSNR

	
SSIM






	
DnCNN [22]

	
33.6233

	
0.9552

	
28.9922

	
0.8806

	
26.4376

	
0.8269

	
558K

	
0.005 s




	
UNet [37]

	
33.9969

	
0.9640

	
29.7034

	
0.8931

	
26.8573

	
0.8355

	
34M

	
0.009 s




	
SUNet [32]

	
35.2309

	
0.9671

	
29.5802

	
0.8964

	
26.9022

	
0.8444

	
99M

	
0.048 s




	
FEUSNet

	
35.8763

	
0.9689

	
30.2040

	
0.9004

	
27.8699

	
0.8477

	
8M

	
0.044 s











 





Table 3. On the Set12 dataset, for images with noise levels of 10, 30, and 50, the PSNR (in dB) of grayscale images denoised using different denoising models is obtained, and the best result is highlighted in bold font.
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Images

	
C.man

	
House

	
Peppers

	
Starfish

	
Monarch

	
Airplane

	
Parrot

	
Lena

	
Barbara

	
Boat

	
Man

	
Couple

	
Average






	
Noise level

	
10




	
DnCNN [22]

	
31.8587

	
34.9391

	
27.0164

	
32.6365

	
40.3418

	
35.9615

	
33.1813

	
30.9360

	
34.5168

	
33.0507

	
34.0274

	
31.6149

	
33.3401




	
UNet [37]

	
33.2413

	
35.6834

	
26.4148

	
32.0360

	
40.1507

	
32.9350

	
34.9532

	
38.1159

	
31.1866

	
33.2963

	
26.5380

	
32.7682

	
33.1100




	
SUNet [32]

	
33.7737

	
41.9341

	
32.3558

	
39.1856

	
33.9902

	
30.5177

	
35.5054

	
39.7368

	
36.9011

	
40.0563

	
27.6437

	
33.1838

	
35.3987




	
FEUSNet

	
33.5682

	
41.8812

	
36.5702

	
40.7204

	
40.6232

	
32.0950

	
35.5087

	
35.5617

	
33.4224

	
35.1235

	
34.0752

	
34.6913

	
36.1534




	
Noise level

	
30




	
DnCNN [22]

	
29.0558

	
36.6891

	
25.7730

	
28.8950

	
29.2347

	
25.4943

	
29.6536

	
33.5781

	
32.6968

	
28.4647

	
30.2848

	
28.2205

	
29.8367




	
UNet [37]

	
29.3609

	
36.7196

	
23.5930

	
28.5871

	
27.6426

	
24.3376

	
29.9903

	
28.3835

	
26.7738

	
34.8503

	
30.2311

	
29.0818

	
29.1293




	
SUNet [32]

	
29.6134

	
36.7858

	
25.6224

	
28.3282

	
34.6563

	
23.9163

	
30.1507

	
27.8893

	
26.9235

	
34.7974

	
24.7896

	
27.9343

	
29.2839




	
FEUSNet

	
29.9776

	
38.1233

	
25.7778

	
34.9665

	
36.0304

	
27.1347

	
30.4399

	
29.2414

	
28.5770

	
29.2499

	
23.5881

	
29.6847

	
30.2326




	
Noise level

	
50




	
DnCNN [22]

	
27.0796

	
27.8077

	
33.0292

	
26.0415

	
26.3214

	
23.6338

	
27.4224

	
26.0859

	
24.6739

	
32.0285

	
28.3184

	
26.1363

	
27.3816




	
UNet [37]

	
27.3405

	
34.2780

	
28.0408

	
26.2381

	
33.1297

	
24.1050

	
27.6724

	
26.8109

	
24.2559

	
26.3609

	
22.0707

	
26.5218

	
27.2354




	
SUNet [32]

	
27.5922

	
35.0753

	
26.9206

	
32.3959

	
27.1645

	
24.0077

	
27.7915

	
32.6766

	
23.7805

	
32.5406

	
22.3230

	
26.3605

	
28.2191




	
FEUSNet

	
27.8703

	
27.6870

	
25.1088

	
26.9962

	
26.7924

	
24.8094

	
27.9388

	
32.6816

	
22.9595

	
26.5815

	
28.9749

	
27.1161

	
27.1264











 





Table 4. On the Set12 dataset, for images with noise levels of 10, 30, and 50, the results of denoising using different denoising models for grayscale images are SSIM, and the best result is highlighted in bold font.






Table 4. On the Set12 dataset, for images with noise levels of 10, 30, and 50, the results of denoising using different denoising models for grayscale images are SSIM, and the best result is highlighted in bold font.





	
Images

	
C.man

	
House

	
Peppers

	
Starfish

	
Monarch

	
Airplane

	
Parrot

	
Lena

	
Barbara

	
Boat

	
Man

	
Couple

	
Average






	
Noise level

	
10




	
DnCNN [22]

	
0.9257

	
0.9605

	
0.9638

	
0.9650

	
0.9800

	
0.9587

	
0.9666

	
0.9608

	
0.8904

	
0.9635

	
0.8930

	
0.9621

	
0.9492




	
UNet [37]

	
0.9377

	
0.9646

	
0.9645

	
0.9631

	
0.9813

	
0.9633

	
0.9751

	
0.9632

	
0.9376

	
0.9634

	
0.8948

	
0.9673

	
0.9563




	
SUNet [32]

	
0.9455

	
0.9672

	
0.9695

	
0.9688

	
0.9811

	
0.9678

	
0.9774

	
0.9676

	
0.9550

	
0.9684

	
0.9009

	
0.9693

	
0.9615




	
FEUSNet

	
0.9452

	
0.9728

	
0.9742

	
0.9753

	
0.9841

	
0.9692

	
0.9793

	
0.9726

	
0.9720

	
0.9733

	
0.9123

	
0.9738

	
0.9670




	
Noise level

	
30




	
DnCNN [22]

	
0.8851

	
0.9313

	
0.9318

	
0.9249

	
0.9462

	
0.9105

	
0.9288

	
0.9094

	
0.8463

	
0.8966

	
0.7942

	
0.8990

	
0.9003




	
UNet [37]

	
0.8912

	
0.9330

	
0.9319

	
0.9262

	
0.9464

	
0.9144

	
0.9345

	
0.9190

	
0.8483

	
0.9083

	
0.8067

	
0.9057

	
0.9055




	
SUNet [32]

	
0.9016

	
0.9368

	
0.9362

	
0.9209

	
0.9498

	
0.9165

	
0.9369

	
0.9217

	
0.8594

	
0.9095

	
0.8156

	
0.9115

	
0.9097




	
FEUSNet

	
0.9030

	
0.9399

	
0.9413

	
0.9259

	
0.9550

	
0.9213

	
0.9384

	
0.9307

	
0.9070

	
0.9152

	
0.8083

	
0.9193

	
0.9171




	
Noise level

	
50




	
DnCNN [22]

	
0.8449

	
0.9062

	
0.8980

	
0.8756

	
0.9094

	
0.8767

	
0.8971

	
0.8605

	
0.7972

	
0.8489

	
0.7299

	
0.8413

	
0.8571




	
UNet [37]

	
0.8540

	
0.9135

	
0.9061

	
0.8808

	
0.9158

	
0.8805

	
0.9037

	
0.8746

	
0.8082

	
0.8581

	
0.7336

	
0.8485

	
0.8648




	
SUNet [32]

	
0.8663

	
0.9224

	
0.9112

	
0.8865

	
0.9218

	
0.8865

	
0.9080

	
0.8881

	
0.8199

	
0.8667

	
0.7405

	
0.8566

	
0.8729




	
FEUSNet

	
0.8679

	
0.9235

	
0.9145

	
0.8952

	
0.9239

	
0.8869

	
0.9099

	
0.8976

	
0.8405

	
0.8720

	
0.7560

	
0.8691

	
0.8798











 





Table 5. The results of image denoising using different denoising models on the CBSD68 and Kodak24 datasets show that all PSNR and SSIM values are averaged across the entire dataset, with the best results highlighted in bold font.






Table 5. The results of image denoising using different denoising models on the CBSD68 and Kodak24 datasets show that all PSNR and SSIM values are averaged across the entire dataset, with the best results highlighted in bold font.





	
Methods

	
CBSD68

	
Kodak24

	
Parms

	
Runtime




	
   σ = 10   

	
   σ = 30   

	
   σ = 50   

	
   σ = 10   

	
   σ = 30   

	
   σ = 50   




	
PSNR