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Abstract: We consider unimodal time series forecasting. We propose Gaussian and Lerch models for
this forecasting problem. The Gaussian model depends on three parameters and the Lerch model
depends on four parameters. We estimate the unknown parameters by minimizing the sum of the
absolute values of the residuals. We solve these minimizations with and without a weighted median
and we compare both approaches. As a numerical application, we consider the daily infections of
COVID-19 in China using the Gaussian and Lerch models. We derive a confident interval for the
daily infections from each local minima.

Keywords: Gaussian model; Lerch model; least absolute deviation; daily infection; simplex
algorithm; Nelder–Mead; optim function

1. Introduction

The least absolute deviations (LAD) method of curve-fitting proposed [1] consists
of fitting the data (xi, yi) to a function f (xi, θ), with i = 1, . . . , n. The parameter θ ∈ Rp

minimizes the sum of absolute deviations

n

∑
i=1
|yi − f (xi, θ)|.

According to [2], in the linear regression case f (xi, θ) = ∑
p
j=1 xijθj, the minimization of the

quantity

n

∑
i=1
|yi −

p

∑
j=1

xijθj|

was suggested by Boscovitch (1757) (some asymptotic results are given in [3]), see also [4–6].
The latter objective function is convex with respect to the parameter θ. Hence, it has only
one minima but may have many minimizers.

The linear regression case of LAD optimization is inherently more complex than the
minimization of the sum of squares. The interest in the LAD method is associated with the
development of robust methods. The LAD method is more resistant to the outliers in the
data (see [7,8]).

The aim of our work is to analyze LAD minimization using a nonlinear regression
motivated by the daily infections of COVID-19 in China during the first wave. We denote
I(t) the observed number of infected persons at time t ∈ [1, T] with T ≤ 60 (see Figure 1).
The variable t = 1, . . . , T represents day 1, . . . , T.
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Figure 1. Daily infections of COVID-19 in China.

Justified by the sigmoidal nature of a pandemic, we propose two models: the Gaussian
model (see [9])

IGauss(t) = a exp(− (t− l)2

s2 )

and the Lerch model

ILerch(t) = a
zt

(v + t)s ,

as a prediction of the observed number of infected persons I(t) at time t.
The Gaussian parameter θ = (a, l, s), with a, l, s denote, respectively, the peak, the

location of the peak, and the width of the first wave of COVID-19.
The Lerch probability distribution on the non-negative integers is proportional to the

function zt

(v+t)s with t = 0, 1, . . ., the parameters z ∈ (0, 1) and v > 0. The Lerch probability
distribution is strongly unimodal when s < −1 and v ≥ 1. In this case, its mode is at
[ 1

z
1
s −1
− v] + 1, where [·] signifies taking the integer part, see [10].

To estimate the three parameters θ = (a, l, s) (respectively, θ = (a, z, v, s)) based on the
T observations, we consider LAD nonlinear regression

f (T, θ) =
∑T

t=1 |I(t)− Im(t)|
T

,

with the subscript m = Gauss (respectively, m = Lerch). The Gaussian model was studied
in our previous work [11].
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As in our previous work [11], we propose to solve our proposed LAD regression using
the simplex Nelder–Mead algorithm implemented by the optim function in R software. The
Nelder–Mead algorithm [7,12–14] is able to optimize functions without derivatives. It is a
simplex method for finding a local minima of a function, the most widely used direct search
method for solving optimization problems, and is considered one of the most popular
derivative-free nonlinear optimization algorithms.

The output of the optim function depends on the initialization and is in general not a
minimizer of the objective function. Restarting the Nelder–Mead algorithm from the last
solution obtained (and continuing to restart it until there is no further improvement) can
only improve the final solution and the latter is in general a local minimizer. Here is the
iteration of the optim function until the convergence:

2. Probabilistic Interpretation of LAD Regression

Let us assume that

I(t) = Im(t) + e(t),

where the errors (e(t)) are i.i.d. with the common probability distribution

1
2λ

exp(−|e|
λ
),

where e ∈ (−∞, ∞) and λ > 0 are location and scale parameters, respectively (see,
e.g., [15,16]). It was named after Pierre-Simon Laplace (1749–1827), as the distribution
whose likelihood is maximized when the location parameter is set to the median. Based on
the data (I(1), . . . , I(T)) the likelihood is equal to

T

∏
t=1

1
2λ

exp(−|I(t)− Im(t)|
λ

).

It comes that the maximum likelihood estimator of the parameters θ and λ are{
θ̂ = arg min{ fm(T, θ) : θ}
λ̂ = fm(T, θ̂).

In practice, θ̂ are given by an algorithm of optimization, and usually, they are only local
minimizers. Having θ̂ and the scale λ̂, we derive a confidence interval for I(t) with t > T
as a solution of the equation ∫ q

−q

1
2λ̂

exp(−|e|
λ̂
)de = 0.95

given by q = −λ̂ ln(0.05) = 2.995732λ̂. We derive the confidence interval

IC0.95[I(t)] =
[
Îm(t)− 2.995732λ̂; Îm(t) + 2.995732λ̂

]
of I(t) with the confidence level 0.95. Here, Îm(t) = â exp(− (t−l̂)2

ŝ2 ) in the Gaussian case,
and Îm(t) = âẑt/(v̂ + t)ŝ in the Lerch case.

3. LAD Regression Analysis Using Weighted Median

Before going forward, we recall the weighted median definition.

3.1. Weighted Median

We recall in the following proposition, the definition and the calculation of the
weighted median. For more details, we advise the reader to see the work of [17].
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Proposition 1. Let us consider a sequence (x(t), w(t)) of real numbers with positive weighted
w(t) > 0 and t = 1, . . . , T. The minimizer of the function a → ∑T

t=1 w(t)|a − x(t)| (called
the weighted median) is given as follows. We calculate the permutation p(1), . . . , p(T), which
rearranges the sequence (x(t) : t = 1, . . . , T) into ascending order. We form the sequence (w(p(t)) :
t = 1, . . . , T), then we find the largest integer k which satisfies

k

∑
t=1

w(p(t)) ≤ ∑T
t=1 w(t)

2
.

If

k

∑
t=1

w(p(t)) < ∑T
t=1 w(t)

2
,

then the weighted median a = x(p(k + 1)).
If ∑k

t=1 w(p(t)) = ∑n
t=1 w(t)

2 , then the weighted median [x(p(k)), x(p(k + 1))] is equal to the
interval [x(p(k)), x(p(k + 1))].

3.1.1. Back to Our Proposed LAD Regression

Both our LAD regressions have the form

f (T, a, b) =
1
T

T

∑
t=1
|ag(t, b)− I(t)|,

with a > 0, and g : (0,+∞) × D → (0,+∞) is a continuous positive map with D is a
Euclidean domain. Now, we can announce the following corollary.

Corollary 1. For each fixed b, the minima of the function a → f (T, a, b) is attained at the
weighted median a(b) of the sequence (x(t) = I(t)/g(t, b) : t = 1, . . . , T) endowed with the
weights (w(t) = g(t, b) : t = 1, . . . , T). Moreover, if (a∗, b∗) is a local minimizer of the function
(a, b) → f (T, a, b), then a∗ is the weighted median of (x∗(t) = I(t)/g(t, b∗) : t = 1, . . . , T)
endowed with the weights (w∗(t) = g(t, b∗) : t = 1, . . . , T).

Proof. We observe that for fixed b, the map a→ f (T, a, b) is a convex function. Now, let us
assume that (a∗, b∗) is a local minimizer of the function (a, b)→ f (T, a, b). Then, a∗ is the
global minimizer of the convex function a→ f (T, a, b∗). Hence, a∗ is the weighted median
of (x∗(t) = I(t)/g(t, b∗) : t = 1, . . . , T) endowed with the weights (w∗(t) = g(t, b∗) :
t = 1, . . . , T).

3.1.2. Comparison of the Minimizers of the Map b→ f (T, a(b), b) and the Minimizers of
the Map (a, b)→ f (T, a, b)

The following proposition is obvious.

Proposition 2. (1) For each fixed a, the map b → f (T, a, b) is above the map b → f (T, a(b), b)
and they intersect at the curve a = a(b).

(2) If b∗ is a local minimizer of the map b → f (T, a(b), b), then (a(b∗), b∗) is also a local
minimizer of the map (a, b)→ f (T, a, b).

(3) The local minimizers of the map (a, b) → f (T, a, b) belong to the set {(a(b), b) : b}.
If (a(b∗), b∗) is a local minimizer of the map (a, b) → f (T, a, b), then, in general, b∗ is not a
local minimizer of the map b → f (T, a(b), b). However, if (a(b∗), b∗) is a global minimizer of
(a, b)→ f (T, a, b), then b∗ is also a global minimizer of b→ f (T, a(b), b).
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Proof. For each fixed b, the minima of the map a→ f (T, a, b) is attained at the point a(b),
which implies that f (T, a, b) ≥ f (T, a(b), b) and achieves the proof of (1). Let (a∗, b∗) be a
local minimizer of the map (a, b)→ f (T, a, b). It follows that f (T, a, b) ≥ f (T, a∗, b∗) when
a ∈W, b ∈ V with W, V are some neighborhoods, respectively, of a∗ and b∗. We derive that
the minima of a ∈ W → f (T, a, b∗) is attained at b∗. As a ∈ V → f (T, a, b∗) is convex, it
has the unique minima b∗ = a(b∗). Which achieves the proof of (3). The proof of (2) works
as follows. There exists a neighborhood V of b∗ such that

f (T, a(b), b) ≥ f (T, a(b∗), b∗)

for each b ∈ V. By definition of a(b), we have f (T, a, b) ≥ f (T, a(b), b) for all a. It follows
that (a(b∗), b∗) is a local minimizer of (a, b)→ f (T, a, b).

Proposition 3. Assume that b → f (T, a(b), b) has only a global minimizer. Then, the map
(a, b)→ f (T, a, b) may have many local minimizers, and b→ a(b) is discontinuous at any point
b∗ such that (a(b∗), b∗) is a local minimizer of the map (a, b)→ f (T, a, b).

Proof. By definition of the local minimizer, there exists a neighborhood V of (a(b∗), b∗)
such that f (T, a, b) ≥ f (T, a(b∗), b∗) for each point (a, b) ∈ V. Necessarily, (a(b), b) is not
in V for at least one point b near b∗, if not f (T, a(b), b) ≥ f (T, a(b∗), b∗) for all point b near
b∗, and then b∗ is a local minimizer of the map b → f (T, a(b), b). This is absurd because
b→ f (T, a(b), b) has only a global minimizer.

4. Numerical Results

In China, COVID-19 appeared on 23 December 2019 in the Wuhan region and after its
fast-initial spreading, strict rules of social distancing were imposed almost one month later.
Three months after the initially reported cases, the spreading in China subsided. The China
data in Figure 1 were extracted from owid/COVID-19-data, available on the web.

Figure 1 shows that the peak and location, which are equal, respectively, to a = 15,136,
and l = 22.

4.1. LAD Regression Using Gaussian Model with T = 10

By varying the initial condition and using the Algorithm 1 with the objectif func-
tion equals (l, s) → fGauss(T, a(T, l, s), l, s), we obtain only one minima: a(10, l∗, s∗) =
2088.911, l∗ = 10.11930, s∗ = 5.712179 and fGauss(T, a(10, l∗, s∗), l∗, s∗) = 319.5446. We

recall that a(T, l, s) is the weighted median of the sequence (x(t) = I(t) exp( (t−l)2

s2 ) :

t = 1, . . . , T) with the weights (w(t) = exp(− (t−l)2

s2 ) : t = 1, . . . , T).
However, by varying the initial condition and using the Algorithm 1 with the objectif

function equals (a, l, s) → fGauss(T, a, l, s), we found several lists of minima. Table 1
shows some of them. The minima 331.487 corresponds to the minimizer a∗ = 5526.386,
l∗ = 22.018, s∗ = 12.182. We recall that the observed location is l = 22. The minima
337.0095 corresponds to the minimizer a∗ = 15,185.797, l∗ = 31.994, s = 15.614. We recall
that the observed peak is a = 15,136.

Algorithm 1 The output of the iteration of optim function until convergence
Input: Fonction F

1: initialization θ0,
2: while F(θ0) 6= F(T, optim(θ0, F, method = ”Nelder−Mead”) do
3: θ(θ0) = optim(θ0, F, method = ”Nelder−Mead”) // optim function applied to F with

the initialization θ(θ0).
4: end while

output: θ(θ0) and F(θ(θ0)).
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Table 1. A list of minimizers of (a, l, s)→ fGauss(T, a, l, s) with T = 10.

a∗ l∗ s∗ minima % Predictions

2088.911 10.119 5.712 319.545 0.66
2137.277 10.98621 6.457 320.9898 0.66
2301.818 12.186 7 322.358 0.68
3229.843 16.346 9.609 325.995 0.88
5526.387 22.018 12.183 331.487 0.60

15,185.797 31.994 15.614 337.009 0.12

4.2. Confidence Intervals Using Six minimas with T = 10 in the Gaussian Model

We recall that the confidence interval of I(t) from the minimizer (â, l̂, ŝ) is given by

IC0.95[I(t)] =

[
â exp(− (t− l̂)2

(ŝ)2 )− 2.995732λ̂; â exp(− (t− l̂)2

(ŝ)2 ) + 2.995732λ̂

]
with t > 10.

In Figure 2, we present the confidence intervals for the global minima and five local
minimas among the list T = 10. The predictions using the minimas 335.047 and 336.92
are clearly bad. However, their predictions at the location l = 22 are close to the real peak
among the six minimas. The percentage of predictions is given in Table 1. An R source
code is given in Appendix A, which can be used to determine the confidence intervals
for the other values of T once the list of minimas is determined by using one of the three
considered methods.

In Figure 2, we present the confidence intervals for the global minima and six local
minimas among the list T = 10 in the Gaussian model.

Figure 2. Confidence intervals using six minimas with T = 10 in the Gaussian model.

Remark 1. Let us conclude this paragraph with a comparison between the output of the optim
function and the output of the iteration of the optim function until the convergence using the
same initialization with T = 10. As initialization, we use (a = 25, 325.01, l = 41.78141,
s = 19.85630) for the two approaches; the use of the optim function leads to the following
minima (23, 034.33, 36.03957, 16.80575, 338.2104), while the iteration of the optim function until
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convergence leads to (2137.277, 10.98621, 6.457341, 320.9898). Figure 3 illustrates the plots of daily
infections t ∈ [1, 60]→ I(t) of COVID-19 in China, the LAD regression t ∈ [1, 60]→ I∗without(t)
using the minima 338.2104 of the optim function and the LAD regression t ∈ [1, 60]→ I∗iteration(t)
using the minima 320.9898 of the iteration of the optim function until the convergence.

0 10 20 30 40 50 60

0
50

00
10

00
0

15
00

0
20

00
0

T

I(1 : 60)
I∗iteration(320.5450)
I∗without(338.210)

Figure 3. Optimal time series for T = 10, for the Gaussian model with and without iterations.

4.3. LAD Regression Using the Lerch Model with T = 10

By varying the initial condition and using the Algorithm 1 with the function (z, v, s)→
fLerch(T, a(T, z, v, s), z, v, s) we found a huge number of minimas. Table 2 shows some of
them. We recall that a(T, z, v, s) is the weighted median of the sequence (x(t) = I(t)(v +
t)s/zt : t = 1, . . . , T) with the weights

(
w(t) = zt/(v + t)s : t = 1, . . . , T

)
. We also recall

that in the Gaussian case, the surface (l, s)→ fGauss(T, a(T, l, s), l, s) has only one minima
equal to the global minima of the map (a, l, s)→ fGauss(T, a, l, s).

Figures 4 and 5 show, respectively, the optimal time series for the Lerch and Gauss
models for T = 10, using our list of local minimas. We can observe that the Lerch model
fits better with the prediction of I(t) for t > 10. But the Gauss model fits better with the
prediction of the location and the size of the peak.

Table 2. A list of minimizers of (a, z, v, s)→ fLerch(T, a, z, v, s) with T = 10.

a∗ z∗ v∗ s∗ Minima % Predictions

5.990886 ×10−01 0.81023163 3.201870 −3.976447 311.9606 0.84
1.354215 ×10−08 0.59318684 8.174956 −10.683932 314.7595 0.70
1.555525 ×10−14 0.50711308 10.701817 −15.255833 315.4869 0.68
8.235320 ×10−34 0.35420137 16.512305 −28.741171 316.5241 0.66
2.185815 ×10−103 0.1647315 28.956740 −71.553876 317.5824 0.66
7.23785 ×10−266 0.05804243 45.948388 −160.673224 318.2142 0.66

In Table 3, we report the columns of mode positions and the corresponding amplitudes
for each minimizer.
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Figure 4. Optimal time series for T = 10 for Gauss.
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Figure 5. Optimal time series for T = 10 for Lerch.

Table 3. Mode position and amplitude using Lerch.

a∗ z∗ v∗ s∗ Mode Position Amplitude

5.990886 ×10−01 0.81023163 3.201870 −3.976447 16.19885 2618.210
1.354215 ×10−08 0.59318684 8.174956 −10.683932 12.78678 2236.537
1.555525 ×10−14 0.50711308 10.701817 −15.255833 12.26928 2186.184
8.235320 ×10−34 0.35420137 16.512305 −28.741171 11.68264 2134.780
2.185815 ×10−103 0.1647315 28.956740 −71.553876 11.22172 2101.053
7.23785 ×10−266 0.05804243 45.948388 −160.673224 11.05461 2090.932
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4.4. Confidence Intervals Using Six Minimas with T = 10 in the Lerch Model

The percentage of predictions is given in Table 2. Observe that the best percentage
of predictions occurs at the global minima of the Lerch model, but the best percentage of
predictions occurs at the local minimizer 325.186 of the Gauss model.

In Figure 6, we present the confidence intervals for the global minima and six local
minimas among the list T = 10 of the Lerch model.

Figure 6. Confidence intervals using six minimas with T = 10 of the Lerch model.

5. The Case T > 10

In this section, we consider the cases T = 20 and T = 60. In the Lerch model case,
LAD regression still has many minimizers for T = 20. See Table 4. But in the Gauss model,
LAD regression has only one minimizer for T = 20. See Table 5.

Table 4. A list of minimizers of (a, z, v, s)→ fLerch(T, a, z, v, s) with T = 20. The last column contains
the percentage of predictions.

a∗ z∗ l∗ s∗ Minima % Predictions

4.366541 ×10−268 0.1073967 55.31169 −154.51447 392.5692 0.825
3.422419 ×10−262 0.1387492 47.81770 −121.91023 393.5286 0.825
2.572282×10−256 0.1708497 41.39999 −97.69044 394.7033 0.825
1.155039×10−253 0.1860852 38.76658 −88.52397 395.2740 0.825
3.035334×10−234 0.3069971 23.34634 −43.86187 400.4082 0.825
4.970115×10−230 0.3344249 20.71433 −37.77693 401.7952 0.825
1.667726×10−233 0.3634773 22.30914 −36.60867 403.6049 0.825

Table 5. The unique minimizer of (a, l, s)→ fGauss(T, a, l, s) with T = 20.

a∗ l∗ s∗ Minima % Predictions

3712.1297 14.2556 7.60744 386.0318 0.80

From Tables 4 and 5, we can observe that the percentage of prediction of the Lerch
model is better than the percentage of prediction of the Gauss model.
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Finally, the minima for T = 60 for both models (Gauss and Lerch) are unique and
respective to (3318.433, 16.94084, 10.19735, 617.2386) and (0.05691053, 0.7445283, 3.3413322,
−5.2886448, 570.7861098).

Figure 7 shows the optimal time series for the Lerch and Gauss models for T = 60,
using our local minima.

0 10 20 30 40 50 60

0
50

00
10

00
0

15
00

0

T

I(1 : 60)
I∗Gauss(1 : 60)
I∗Lerch(1 : 60)

Figure 7. Optimal time series for T = 60 for Lerch and Gauss.

We observe that the Lerch approximation has a heavier tail than the Gaussian approximation.

6. Conclusions

In this work, we considered LAD nonlinear regression

f (T, θ) =
∑T

t=1 |I(t)− Im(t)|
T

,

with the subscript m = Gauss (respectively, m = Lerch).
The two models have the form (a, b) → f (T, a, b) = ∑T

t=1|ag(t, b)− I(t)|. We have
associated f (T, ·) with the map S(T, ·) : b → f (T, med(x(b), w(b)), b) with the sequence
x(b) = (I(t)/ f (t, b), t = 1, . . . , T), and the weights w(b) = (g(t, b), t = 1, . . . , T), and
med(x(b), w(b)) denotes the weighted median of x(b) endowed with the weights w(b).
We showed that if b∗ is a local minimizer of S, then (med(x(b∗), w(b∗)), b∗) is also a local
minimizer of f (T, ·). The converse is, in general, false, i.e., if (a∗, b∗) is a local minimizer of
f (T, ·), then b∗ is not, in general, a local minimizer of S. However, if (a∗, b∗) is the global
minima of f (T, ·), then b∗ is also the global minima of S. We showed that if S has only a
global minima, then b→ f (T, med(x(b), w(b)), b) is discontinuous at each local minimizer.
Using the data of the daily infections of COVID-19 in China during the first wave, we

showed numerically in the Gaussian case g(t, l, s) = exp(− (t−l)2

s2 ) that the map f (T, a, l, s)
has a huge number of local minimas, but the surface S has only a global minima, which is
also the global minima of the map f (T, ·). However, in the Lerch case g(t, z, v, s) = zt

(t+v)s ,
contrary to the Gaussian case, we showed that the maps (a, z, v, s) → f (T, a, z, v, s) and
(z, v, s) → S(T, z, v, s) have each a huge number of local minimas. We derived confident
intervals for the daily infections from each local minima. Our message is that each local
minima contains a part of the information and can be used for the prediction of a part of
the parameters.
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In future work, we will deal with the log-transformation ln(IGauss(t)) = β0 + β1t− β2t2,
where (β0, β1, β2) are in bijection with the parameters a, l, s of the Gaussian model. This
allows us to consider the linear model ln(I(t)) = β0 + β1t− β2t2 + ε(t), with the errors
(ε(t)), which are i.i.d. We will deal with this problem using other robust regression
estimators as the least trimmed median estimator (LTM) proposed in [18].
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Appendix A. R Source Code

Here, we provide a source code for a better understanding of the proposed method.

Appendix A.1. opt() Function

library(optim)
OPT = function(T, init) {

y =function(x) f(T, x)
repeat {

optim.result=optim(init, y)$par
init= optim.result$par
min.opt=optim.result$value
if (f(T,init) == f(T, optim(init, y)$par)) {

break
} else{init=init}

}
return(c(init, min.opt))

}

Appendix A.2. Confidence Intervals Plot

library(ggplot2)
library(openxlsx)
conf.int.min=function(T,Min.list,T.inf,T.sup){

# given T
# Min.list is the list of minima obtained for T
## T.inf = T+1 and T.sup=upper limit of days

j=1:(60-T)
Tj=T+j

born_sup=NULL
born_inf=NULL
confid.int=NULL
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int_T=NULL
for(i0 in 1:nrow(Min.list)){

for(i00 in 1:length(Tj)){
born_sup=Min.list[i0,1]*exp(-(Tj[i00]-Min.list[i0,2])^2/(Min.list[i0,3]^2))

+2.995732*Min.list[i0,4]
born_inf=Min.list[i0,1]*exp(-(Tj[i00]-Min.list[i0,2])^2/(Min.list[i0,3]^2))

-2.995732*Min.list[i0,4]
int_T=rbind(int_T,c(born_inf,i[Tj[i00]],born_sup))

}
colnames(int_T)=c("lower","i","upper")
confid.int=cbind(confid.int,int_T)
int_T=NULL

}
confid.int=data.frame(confid.int)
row.names(confid.int)=as.character(Tj)
#export all confidence intervals
write.xlsx(confid.int,file=paste0("confid_int_",T,".xlsx"))
#creation of a matrix which is equal to the matrix of
#confidence intervals for use with ggplot below
ggplot.confid=confid.int
iter.plot=1
while(ncol(ggplot.confid)>=3){

ggsave(ggplot(ggplot.confid[,1:3], aes(x=T.inf:T.sup, y=ggplot.confid[,2])) +
xlab(paste0(paste0("minima",sep=Min.list[iter.plot,4])))+ylab("")+
geom_errorbar(aes(ymin=ggplot.confid[,1], ymax=ggplot.confid[,3]), width=.1)+
geom_point(),
file=paste0("int_conf_min_",T,"_", iter.plot,".png"))
iter.plot=iter.plot+1
ggplot.confid=ggplot.confid[,-c(1:3)]

}

}
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