
Citation: Chesi, G.; Macchiavello, C.;

Sacchi, M.F. Work Fluctuations in

Ergotropic Heat Engines. Entropy

2023, 25, 1528. https://doi.org/

10.3390/e25111528

Academic Editors: Tan Van Vu and

Keiji Saito

Received: 9 October 2023

Revised: 2 November 2023

Accepted: 4 November 2023

Published: 9 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Work Fluctuations in Ergotropic Heat Engines
Giovanni Chesi 1,* , Chiara Macchiavello 1,2 and Massimiliano Federico Sacchi 2,3

1 National Institute for Nuclear Physics, Sezione di Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy;
chiara@unipv.it

2 QUIT Group, Dipartimento di Fisica, Università degli Studi di Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy;
msacchi@unipv.it

3 CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
* Correspondence: giovanni.chesi@pv.infn.it

Abstract: We study the work fluctuations in ergotropic heat engines, namely two-stroke quantum
Otto engines where the work stroke is designed to extract the ergotropy (the maximum amount of
work by a cyclic unitary evolution) from a couple of quantum systems at canonical equilibrium at
two different temperatures, whereas the heat stroke thermalizes back the systems to their respective
reservoirs. We provide an exhaustive study for the case of two qutrits whose energy levels are
equally spaced at two different frequencies by deriving the complete work statistics. By varying the
values of temperatures and frequencies, only three kinds of optimal unitary strokes are found: the
swap operator U1, an idle swap U2 (where one of the qutrits is regarded as an effective qubit), and
a non-trivial permutation of energy eigenstates U3, which indeed corresponds to the composition
of the two previous unitaries, namely U3 = U2U1. While U1 and U2 are Hermitian (and hence
involutions), U3 is not. This point has an impact on the thermodynamic uncertainty relations (TURs),
which bound the signal-to-noise ratio of the extracted work in terms of the entropy production. In
fact, we show that all TURs derived from a strong detailed fluctuation theorem are violated by the
transformation U3.

Keywords: quantum thermodynamics; quantum heat engines; thermodynamic uncertainty relations;
two-stroke Otto cycles; ergotropy

1. Introduction

A quantum description of thermodynamic heat engines has lately become necessary
to consider physical systems at the mesoscale and nanoscale [1–3], such as nanojunctions
thermoelectrics [4], quantum dots [5], and biological [6,7] or chemical [8] systems. The
optimal transport theory has also recently been embedded in a thermodynamic quantum
framework [9]. At the quantum level, the fluctuations of the thermodynamic variables play
a fundamental role, due to the discrete spectral structure of quantum systems.

The probability distributions of a set of thermodynamic variables {Xi} (energy, work,
heat, particles, . . . ) are related to the entropy production Σ through the so-called fluctuation
theorems, which in general can be expressed as [10–28]

p({Xi}, Σ)
pB({−Xi},−Σ)

= eΣ (1)

where pB refers to the backward process, i.e., to the time-reversed process identified by
p. For a self-contained derivation of Equation (1) and its meaning in our context see
Appendix A and Equation (A22). There, a thermodynamical cycle is described by a set
of stochastic trajectories which correctly reproduce the mean values {〈Xi〉}, 〈Σ〉 of all
variables {Xi}, Σ by an average over all possible trajectories. Through the relation in
Equation (1), the symmetries of the processes set relevant constraints on the statistics of
the variables {Xi}. Another class of relations that connects the statistical properties of

Entropy 2023, 25, 1528. https://doi.org/10.3390/e25111528 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25111528
https://doi.org/10.3390/e25111528
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8411-255X
https://orcid.org/0000-0002-2955-8759
https://orcid.org/0000-0002-8909-2196
https://doi.org/10.3390/e25111528
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25111528?type=check_update&version=1


Entropy 2023, 25, 1528 2 of 30

mesoscopic and nanoscopic systems to the entropy production is given by the so-called
thermodynamic uncertainty relations (TURs) [9,26,29–39]. It has been shown that there is a
strong connection between fluctuation theorems and TURs, i.e., every fluctuation theorem
implies a specific TUR [32]. Note that the converse does not hold: it was recently found in
Ref. [38] a TUR that does not stem from any fluctuation theorem.

Thermodynamic engines that admit a straightforward quantum description are the
ones based on the Otto cycle [28,35,36,40–50] since the work and heat exchanged are
unambiguously identified by their respective distinct strokes. The case considered in this
paper, namely a two-stroke Otto cycle, is outlined in Figure 1, where the working fluid is
represented by two qutrits.

Figure 1. Scheme of a quantum thermodynamic engine based on the two-stroke Otto cycle with
two qutrits as working fluid. In the first stage, the qutrits A and B with frequency ωA and ωB are
at thermal equilibrium with the corresponding baths at temperature TA and TB, respectively, with
TA > TB. In the second stage, the two systems are isolated and allowed to interact through a unitary
evolution extracting work W. Finally, in the last stage, the systems A and B are allowed to relax to
the corresponding thermal baths, implying that A absorbs the heat QH and B releases the heat QC,
thus restoring the initial condition.

In the case of an engine based on a two-stroke Otto cycle, the full probability dis-
tribution of work and heat has been retrieved for two qudits [35] and for two bosonic
modes [36] as working fluids, where the transformation for the work extraction is the
unitary partial-swap interaction. The two-stroke Otto engine is particularly interesting
with respect to its well-known four-stroke version because it allows the extraction of the
maximum amount of work in the adiabatic step of the cycle by a single unitary operation,
the so-called ergotropy [51–57]. Note that the extraction of the ergotropy necessarily also
depends on the transformation that couples the systems. We show here that if the systems
are qudits with dimensions larger than two, unitary evolutions different from the swap
interaction can increase the extracted work.

We define a procedure for determining the unitary interaction that provides the
maximum work from two multilevel systems A and B for a given choice of the relevant
parameters, i.e., the frequency gaps ωA and ωB of the qudits and the temperatures TA and
TB of the reservoirs. Then we take the specific case of a working fluid described by two
qutrits and classify all the transformations that extract the ergotropy. Specifically, we find
three different kinds of optimal unitary strokes: the swap operator U1, an idle swap U2
(where one of the qutrits is regarded as an effective qubit), and a non-trivial permutation
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U3 given by a composition of the two previous unitaries, namely U3 = U2U1. Each
transformation extracts the ergotropy from a different regime defined by the frequency gaps
ωA and ωB of the two qutrits and by the temperatures TA and TB of the baths. By deriving
the characteristic function of work and heat, we evaluate the work statistics and the entropy
production for every case. Note that a complete description of a quantum ergotropic heat
engine and of the procedure for determining the work statistics is detailed in Appendix A.
Then, we focus on the trade-off between ergotropy extraction and relative fluctuations
var(W)/〈W〉2, i.e., the inverse of the signal-to-noise ratio (SNR). The evaluation of the
fluctuations allows us to establish the relation between the variance of the work and the
mean entropy production in terms of the TURs. A standard reference TUR bounds the
fluctuations with the inverse of the entropy production as follows [29]

var(W)

〈W〉2 ≥ 2
〈Σ〉 . (2)

We show that all three ergotropic transformations violate this TUR. Moreover, U3 is proved
to beat all the TURs derived by the strong fluctuation theorem where the forward and
backward processes in Equation (1) are related by the same condition pB({Xi}, Σ) =
p({Xi}, Σ).

This paper is structured as follows. In Section 2, we define the procedure for deter-
mining the transformations extracting the ergotropy in the case where the working fluid is
described by two qudits with generic dimensions dA and dB. Then, in Section 3, we apply
our procedure to the case of two qutrits. In particular, in Section 3.1, we classify all the
transformations extracting the ergotropy and their properties. In Section 3.2, we evaluate
the maximum work extracted by each transformation in terms of the frequency gaps and
the temperatures. In Section 3.3, we study the mean entropy production related to each
interaction. In Section 3.4, we derive the work distributions. Finally, in Section 3.5, we find
the relative fluctuations of work, compare the corresponding SNR to the bounds provided
by the most relevant TURs, and discuss the assumptions required for these TURs to hold.
In Section 4, we draw our conclusions.

2. Materials and Methods

In this work, we fix the Planck and Boltzmann constants to natural units, i.e., h̄ = kB = 1.
We consider two qudits A and B in a product of Gibbs states, i.e.,

ρ0 =
e−βA HA

ZA
⊗ e−βB HB

ZB
(3)

where HX = ωX ∑dX−1
n=0 n|n〉〈n| is the Hamiltonian of the system X = A, B, each one with

equally-spaced energy levels, and ZX = Tr[e−βX HX ] denotes the corresponding partition
function, and βX = T−1

X the inverse temperature. The number states |n〉 in the expansion
of the Hamiltonians are eigenstates of the occupation number nX ≡ HX/ωX . Without loss
of generality, we fix TA > TB.

We use the state in Equation (3) as the input to a two-stroke Otto engine. As depicted
in Figure 1, the process starts with the two qudits in thermal equilibrium with their baths,
at temperature TA and TB. Afterwards, the two qudits are isolated from their baths and
we make them interact through a unitary evolution in order to extract the ergotropy. The
procedure for the ergotropy extraction will be detailed in the following. Once the work
has been extracted through the interaction, the two qudits are decoupled from each other
and then reset to their equilibrium states, namely as in Equation (3), by re-connecting
them to their thermal baths via a weak-coupling and energy-preserving interaction. In
this way, no work contribution comes from the on-off interaction of the systems with
the reservoirs [45,47,58]. The sequential repetition of this process leads to our two-stroke
cyclic engine.
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We fix the convention of positive work for the extraction from the system and pos-
itive heat for the absorption from the reservoirs. Then, in each cycle the average en-
ergy change in system A due to the unitary stroke corresponds to the average heat re-
leased by the hot reservoir A, namely 〈QH〉 = −〈∆EA〉. Similarly, for the cold reservoir,
〈QC〉 = −〈∆EB〉, and, for the first law of thermodynamics, the average work is given
by 〈W〉 = 〈QH〉+ 〈QC〉 = −〈∆EA〉 − 〈∆EB〉. Correspondingly, the average entropy pro-
duction reads 〈Σ〉 = −βA〈QH〉 − βB〈QC〉 = (βA − βB)〈∆EA〉 − βB〈W〉. Our goal is the
investigation of an ergotropic heat engine based on the two-qudit system described above,
i.e., an engine extracting the maximum work by exploiting the difference in frequency and
temperature between the systems A and B. In other words, we are looking for the unitary
transformations U mapping the input ρ0 into a state ρ = Uρ0U† such that the average
extracted work is maximized, i.e.,

〈W〉 = max
U
{Tr[ρ0H]− Tr[ρH]} (4)

where H = HA⊗ IB + IA⊗HB is the Hamiltonian of the system. The evolution that extracts
the ergotropy was identified in Ref. [51] as the one minimizing the final energy Tr[ρH]. In
the present case, where the initial state ρ0 has no coherence, namely, it is diagonal in the
energy basis, the ergotropic evolution is the transformation that permutes the eigenstates of
the input state so that the magnitude order of the energy levels is reversed with respect to
the corresponding occupation fractions. More explicitly, if we take the occupation fractions
of the system e−(nβAωA+mβBωB)/(ZAZB) in descending order, the transformation permutes
the related eigenstates to set the corresponding energy levels in ascending order. If the
input state already displays this configuration, then the state is called passive and no
transformation can extract work. In summary, since unitary transformations preserve
the spectrum, the ergotropy is extracted by reversing all possible population inversion
with respect to the energy levels. In the following, we provide a re-visited analysis of the
first-level maximization strategy developed in Ref. [52].

The procedure of ergotropy extraction can be formalized in a compact way for two
subsystems A and B of dimension dA and dB as follows. We consider two different per-
mutations PE and Pρ of the energy eigenstates with respect to their lexicographic order.
The permutation PE sorts them so that the corresponding eigenvalues are set in ascending
order, i.e.,

PEHP†
E = PE

(
dA−1

∑
j=0

dB−1

∑
k=0

(Ej + Ek)|jk〉〈jk|
)

P†
E =

dAdB−1

∑
l=0

Ẽl |l〉〈l| ≡ H↑ (5)

where the vector of eigenvalues Ẽ̃ẼE = {Ẽl}
dAdB−1
l=0 satisfies Ẽl < Ẽl+1 ∀ l ∈ [0, dAdB − 1).

Similarly, the permutation Pρ rearranges the occupation numbers of the initial state in
descending order, namely,

Pρρ0P†
ρ = Pρ

(
dAdB−1

∑
l=0

rl |l〉〈l|
)

P†
ρ =

dAdB−1

∑
l=0

r̃l |l〉〈l| ≡ ρ↓0 (6)

and r̃̃r̃r = {r̃l}
dAdB−1
l=0 is such that r̃l+1 < r̃l ∀ l ∈ [0, dAdB − 1). Then, we can straightfor-

wardly find the transformation that minimizes the final energy from

Tr[ρH] = Tr[Uρ0U† H] = Tr[ρ↓0 H↑] = Tr[Pρρ0P†
ρ PEHP†

E]

= Tr[P†
EPρρ0P†

ρ PEH]
(7)

implying that the ergotropic transformation can be expressed as

U = P†
EPρ. (8)
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For instance, take two qubits in a Gibbs state

ρ0 =
1

ZAZB

1

∑
n,m=0

e−nβaωA−mβBωB |nm〉〈nm|. (9)

Then, the energies pertaining to the levels |10〉〈10| and |01〉〈01| are ωA and ωB, respectively,
while the related occupation fractions are Z−1

A Z−1
B e−βAωA and Z−1

A Z−1
B e−βBωB . If we have

ωA > ωB and βAωA < βBωB or the symmetric case where both the order relations are
reversed, the transformation that swaps |10〉〈10|with |01〉〈01|, namely U = U† = |00〉〈00|+
|11〉〈11|+ |01〉〈10|+ |01〉〈10|, extracts the ergotropy. This result appears immediately if
we consider the permutation matrices PE and Pρ, which in this case read

PE = θ(ωA −ωB)I+ θ(ωB −ωA)U

Pρ = θ(βAωA − βBωB)I+ θ(βBωB − βAωA)U
(10)

where θ(x) is the Heaviside function. The operator P†
EPρ promptly identifies the ergotropic

transformations and the corresponding ergotropic regimes, since

P†
EPρ =[θ(ωA −ωB)θ(βAωA − βBωB) + θ(ωB −ωA)θ(βBωB − βAωA)]I+

[θ(ωA −ωB)θ(βBωB − βAωA) + θ(ωB −ωA)θ(βAωA − βBωB)]U.
(11)

This simple example shows how the extraction of the ergotropy is entirely determined by
the order relations between the parameters. In particular, the initial state of an equally-
spaced two-qudit engine is described for any dimension of the qudits by a first partial
order over the frequencies ω and a second one over the products βω. These order relations
identify four basic partially ordered sets (posets). In the two-qubit example, the ergotropy
can only be extracted if the initial state belongs to Ω ≡ {ωA > ωB ∧ βAωA < βBωB} or Ω̄,
where the bar denotes the same poset with A and B switched. The states belonging to the
remaining two sets are passive.

The description in terms of posets becomes more complex in higher dimensions. For
a state as in Equation (3), the ordering procedure for the ergotropy extraction needs to
establish if kωA > jωB and if kβAωA > jβBωB for every pair of natural numbers k ∈ [0, dA)
and j ∈ [0, dB).

Even if the simplest non-trivial case would be a system made of a qubit and a qutrit,
here, as mentioned above, we consider a two-qutrit system, so that we can use the results
for the two-stroke swap Otto engine with two qudits with equal dimensions studied in
Ref. [35] as a benchmark. In this scenario, each of the four basic posets mentioned above
is further partitioned in four subsets, defined by the order relations 0 < yX1 < yX2 /2 and
yX2 /2 < yX1 < yX2 , with y = ω or βω and X1 6= X2 may be A or B. The total number of
posets determining the regimes for the ergotropy extraction is then sixteen. We expect some
of them to be passive regimes, i.e., the input state defined by those parameters is passive.
As for the others, we will show that a specific transformation can extract the ergotropy
from different regimes, as we noted for the two-qubit case with the swap in the regimes Ω
and Ω̄.

3. Results
3.1. Ergotropic Transformations

As mentioned above, we can jointly classify all the ergotropic transformations U and
the corresponding ergotropic regimes by inspecting the permutations PE and Pρ.

In the two-qutrit case we have four posets identified by ωA and ωB for PE, and four
identified by βAωA and βBωB for Pρ. We find different permutations PE and Pρ for each of
the corresponding four posets, i.e., four distinct transformations. We show them associated
with the corresponding poset in Figure 2. Note that, for what concerns Pρ, we have to



Entropy 2023, 25, 1528 6 of 30

distinguish three inequivalent cases identified by the relative position of points on the ωB
axis according to the value of the ratio βA/βB.

In summary, PE and Pρ are simply the identity I (i.e., no reordering is needed) for
ωA < 2ωB and βAωA < 2βBωB, respectively. For ωB > 2ωA and βBωB > 2βAωA, both PE
and Pρ are given by the swap U1, namely

U1 = U†
1 =|00〉〈00|+ |11〉〈11|+ |22〉〈22|+ |01〉〈10|+ |10〉〈01|+ |02〉〈20|+ |20〉〈02|+
|12〉〈21|+ |21〉〈12|,

(12)

or, equivalently, U1 = (24)(37)(68), using the cycle notation and the lexicographic ordering
where the elements of the cycles are related to the kets as |nm〉 → 3n + m + 1.

Figure 2. Scheme of the transformations realizing the permutations PE and Pρ in the different regimes
identified by ω in the former case and by βω in the latter. We show these regimes by fixing ωA and
the three inequivalent cases for the temperature ratio βA/βB and studying PE and Pρ for increasing
ωB. As ωB increases, we find that both the permutations are given by the identity (black thin line),
U2 (purple thick line), U3 (blue dotdashed line), and the swap U1 (red dashed line).

For ωB ∈ [ωA/2, ωA] and βBωB ∈ [βAωA/2, βAωA], both PE and Pρ are given by

U2 = U†
2 =|00〉〈00|+ |11〉〈11|+ |22〉〈22|+ |01〉〈01|+ |21〉〈21|+ |10〉〈02|+ |02〉〈10|+
|20〉〈12|+ |12〉〈20| = (34)(67).

(13)

Finally, for ωB ∈ [ωA, 2ωA] and βBωB ∈ [βAωA, 2βAωA], both PE and Pρ are given by

U3 =|00〉〈00|+ |11〉〈11|+ |22〉〈22|+ |01〉〈10|+ |10〉〈20|+ |20〉〈21|+ |21〉〈12|+
|12〉〈02|+ |02〉〈01| = (236874).

(14)

We notice that U2 and U3 are not invariant under swap symmetry. In particular, Ũ2 ≡
U1U2U1 = U1U3 reads

Ũ2 = Ũ†
2 =|00〉〈00|+ |11〉〈11|+ |22〉〈22|+ |10〉〈10|+ |12〉〈12|+ |01〉〈20|+ |20〉〈01|+
|02〉〈21|+ |21〉〈02| = (27)(38),

(15)

while
Ũ3 ≡ U1U3U1 = U−1

3 = U†
3 . (16)

The unitary operators U1, U2, and Ũ2 are also Hermitian and hence self-inverse. Notice
also that

U3 = U1Ũ2 = U2U1, (17)

and, similarly, Ũ3 = U1U2 = Ũ2U1.
The product P†

EPρ together with the composition rules for U1, U2 and U3 explored
above allows to find the ergotropic transformations for each ergotropic regime identified
by combining an ω poset with a βω poset. In particular, we remark that the ergotropic
transformations resulting from the product P†

EPρ must be again U1, U2, Ũ2 and U3. There are
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five overall, considering the identity too, which pertains to initial passive states. We provide
a direct visualization of the landscape of ergotropic transformations in Figures 3–5. Having
set βA < βB, each figure is linked to a different regime for the ratio βA/βB. As outlined in
Figure 2, we can identify three distinct ranges of βA/βB with two critical values, namely
1/4 and 1/2. For each case, we show the ergotropic transformation related to each poset. In
particular, we set βA/βB = 1/16 in Figure 3, βA/βB = 5/16 in Figure 4 and βA/βB = 9/16
in Figure 5. Firstly, we observe that in the first two cases, all the transformations found
above appear (except Ũ3, which pertains to the regime TA < TB). In the case of Figure 5, U3
is never present and the number of passive regimes becomes four. Notice that in the region
0 < βA/βB < 1/4, it is possible to take the limits βA → 0 and βB → ∞. In this case, one of
the passive regimes disappears and most of the parameter region is dominated by the swap.
On the contrary, approaching the critical point βA/βB = 1/4 we see that the region where
the swap extracts the ergotropy shrinks until it vanishes at the critical point. In the second
case, in Figure 4, the swap plays again a role, but the passive regimes grow as well until,
at the critical point βA/βB = 1/2, the ergotropic region of U3 vanishes and is replaced for
βA/βB > 1/2 by passive regimes. Of course, at βA/βB = 1, the whole frequency subset
is passive.

Let us inspect more in detail the non-trivial ergotropic transformations U1, U2, Ũ2 and
U3. The swap U1 clearly commutes with the total number operator, namely

[U1, nA ⊗ IB + IA ⊗ nB] = 0. (18)

On the other hand, the evolutions U2 and Ũ2 act asymmetrically on the two systems, since
they perform a permutation of the frequency levels of ρ0 as if the system identified by the
smallest frequency gap (B when the ergotropy is extracted by U2 and A when it is extracted
by Ũ2) were a two-level system, being its intermediate level |1〉 left unaffected. Thus, we
name U2 as idle swap. In fact, for this asymmetry, we have U2 6= Ũ2.

Figure 3. First case: 0 < βA/βB < 1/4. Here, specifically, βA/βB = 1/16.

Differently from U1, the idle swaps U2 and Ũ2 enjoy the conservation laws

[U2, 2nA ⊗ IB + IA ⊗ nB] = 0,

[Ũ2, nA ⊗ IB + IA ⊗ 2nB] = 0.
(19)

As for U3 = U2U1, being the composition of the standard and the idle swap, we name it
double swap. We noticed above that U3 is not Hermitian. Indeed, one finds out that the
double swap has multiplicative order six, namely U6

3 = I, as it can be inferred from the
cycle notation in Equation (14). Furthermore, the double swap does not commute with
any linear combination of nA and nB. In Appendix A, we prove that, if the transformation
commutes with a linear combination of HA and HB, then all work and heat moments are
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proportional to each other, and hence, the mean entropy production is proportional to the
mean extracted work, as we will explicitly show for U1, U2 and Ũ2 in the next sections.

Figure 4. Second case: 1/4 < βA/βB < 1/2. Here, specifically, βA/βB = 5/16.

Figure 5. Third case: 1/2 < βA/βB < 1. Here, specifically, βA/βB = 9/16.

3.2. Ergotropy

Now, we are ready to provide the mean work of Equation (4) extracted by each
ergotropic transformation. In the case of the swap U1, the ergotropy can be expressed in
terms of ωA −ωB units and reads

〈W1〉 = 2(ωA −ωB)

[
sinh βBωB

1 + 2 cosh βBωB
− sinh βAωA

1 + 2 cosh βAωA

]
= 2(ωA −ωB)

2 sinh (βBωB − βAωA) + sinh βBωB − sinh βAωA
(1 + 2 cosh βAωA)(1 + 2 cosh βBωB)

.
(20)

In the case of the idle swaps U2 and Ũ2, we obtain

〈W2〉 = 2(ωA − 2ωB)
sinh βBωB + sinh (βBωB − βAωA)

(1 + 2 cosh βAωA)(1 + 2 cosh βBωB)
(21)

and

〈W̃2〉 = 2(ωB − 2ωA)
sinh βAωA + sinh (βAωA − βBωB)

(1 + 2 cosh βAωA)(1 + 2 cosh βBωB)
. (22)
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Here, we recognize the action described above: the lower frequency qutrit is taken as a qubit
whose gap is 2ωB for 〈W2〉 and 2ωA for 〈W̃2〉, so that the extracted work is proportional to
ωA− 2ωB and ωB− 2ωA, respectively. As expected, the work extracted from U2 is obtained
from the one extracted by Ũ2 just by swapping A with B. From Equations (20)–(22) one
also verifies that

〈W1〉
1− x

=
〈W2〉

1− 2x
+
〈W̃2〉
2− x

, (23)

where the ratio x ≡ ωB/ωA is a relevant parameter, as we will find in the following.
In the case of the double swap, we have

〈W3〉 = 2
ωA[sinh βBωB + sinh (βBωB − βAωA)]−ωB(sinh βAωA + sinh βBωB)

(1 + 2 cosh βAωA)(1 + 2 cosh βBωB)

= 〈W1〉+
1− 2x
x− 2

〈W̃2〉 = 〈W2〉+
x

1− x
〈W1〉.

(24)

Here, we see the effects of the atypical behavior of U3: the extracted work is not proportional
to any frequency gap. On the contrary, the frequencies ωA and ωB appear multiplied with
different weights. Notice that for x = 1/2, one has 〈W2〉 = 0 and from the second line of
Equation (24) the double swap U3 extracts the same work as U1, i.e., 〈W3〉 = 〈W1〉. Instead,
for x = 1, namely ωA = ωB, one has 〈W1〉 = 0 and 〈W3〉 = 〈W̃2〉. Finally, for x = 2, we
have 〈W̃2〉 = 0 and again 〈W3〉 = 〈W1〉. In Figure 6, we represent the ergotropy extraction
in the case βA/βB ∈ (0, 1/4). In particular, we set the ratio βA/βB = 1/16, as in Figure 3,
with βB = 10. Note that the pretended discontinuities in the transitions between different
ergotropic regions are just cusps, as it can be recognized in Figures 7–11.

Figure 6. Ergotropy extraction in the case 0 < βA/βB < 1/4. Here, βA/βB = 1/16 and βB = 10.

In these figures, we show specific examples of ergotropy extraction as a function of
ωB, by fixing all the other parameters. Figure 7 displays the case βA/βB < 1/4, with
βA/βB = 1/8. Therefore, this is not a critical point, and for varying ωB, we span all the
non-equivalent ergotropic transformations. The black dot line displays the work extracted
from the standard swap U1 so that we can see how it is outperformed by the other unitaries
outside its own ergotropic regime. Moreover, the solid lines, corresponding to U2 and Ũ2,
show that the regime of operation of an ergotropic heat engine is enlarged with respect
to the swap Otto engine. In Figure 8, we consider the critical point βA/βB = 1/4, which
represents the transition between the cases in Figures 3 and 4, where the ergotropic regime
of the standard swap vanishes. Indeed, here we do not have any ergotropic contribution
from U1, except for the limiting case ωA = 2ωB, where the work extracted coincides with
the one provided by U3, identified by the red point. In Figure 9, we show the ergotropy as
a function of ωB for the critical point βA/βB = 1/2, which is the transition point between
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the cases of Figures 4 and 5. As expected, the double swap U3 is never required to extract
the ergotropy. The maximum work is extracted by the idle swap U2 for ωB < ωA/2, by
the standard swap U1 for ωA/2 < ωB < ωA and by Ũ2 for ωA < ωB < 2ωA. For the case
βA/βB > 1/2 of Figure 5, we fix in Figure 10 βA/βB = 3/4. As in the previous case, U3
is not needed and, furthermore, there are two more passive regions. Finally, in the last
example in Figure 11, we plot the ergotropy for the ideal case βA/βB = 0, by setting βA to
0 and finite large values for ωA and βB. In particular, the high value of ωA allows to see
that the extracted work is large when ωA −ωB is large, except for the limiting case ωB → 0
(in such a case indeed we would have βAωA = βBωB = 0, implying 〈W1〉 = 0).

Figure 7. Ergotropy 〈W〉 as a function of ωB in the case βA/βB = 1/8, with ωA = 1, βA = 0.5,
βB = 4. Purple solid lines: idle swaps U2 (ωB < 1/8) and Ũ2 (ωB > 1). Blue dot-dashed line: double
swap U3. Red dashed line: standard swap U1 inside the corresponding ergotropic regime. Black
dotted line: standard swap for any ωB such that the extracted work is positive.

Figure 8. Ergotropy 〈W〉 as a function of ωB at the critical point βA/βB = 1/4, with ωA = 1,
βA = 0.5, βB = 2. The red mark identifies the tangent point where the standard swap U1 (dotted
black line) and the double swap U3 (blue dashed-dotted line) extracts the same amount of work at
ωB = ωA/2 = 0.5. The purple solid curves identify the ergotropy extracted by U2 (1/8 < ωB < 1/4)
and Ũ2 (1 < ωB < 2).
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Figure 9. Ergotropy 〈W〉 as a function of ωB in the critical case βA/βB = 1/2, with ωA = 1, βA = 0.5,
βB = 1. Dashed red line: standard swap U1 for ωB ∈ [ωA/2, ωA] = [1/2, 1]. Purple solid lines: idle
swaps U2 for ωB ∈ [βAωA/2βB, ωA/2] = [1/4, 1/2] and Ũ2 for ωB ∈ [ωA, 2ωA] = [1, 2].

Figure 10. Ergotropy 〈W〉 as a function of ωB in the case βA/βB = 3/4, with ωA = 1, βA = 1/2,
βB = 2/3. Dashed red line: standard swap U1 for ωB ∈ [βAωA/βB, ωA] = [3/4, 1]. Purple solid
lines: idle swaps U2 for ωB ∈ [βAωA/2βB, ωA/2] = [3/8, 1/2] and Ũ2 for ωB ∈ [2βAωA/βB, 2ωA] =

[3/2, 2].

Figure 11. Ergotropy 〈W〉 as a function of ωB in the limiting case βA/βB = 0, with ωA = 100, βA = 0,
βB = 10. Blue dot-dashed line: double swap U3. Red dashed line: standard swap U1 inside the
corresponding ergotropic regime. Purple solid line: idle swap Ũ2. Black dotted line: standard swap
for any ωB such that the extracted work is positive.
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In summary, in the regime of operation of the standard swap Otto engine, i.e., ωA >
ωB ∧ βAωA < βBωB, the work extraction may be improved by replacing the swap U1 with
the permutation U3. Moreover, the idle swaps U2 and Ũ2 even allow to enlarge the range
of operation of the heat engine.

3.3. Entropy Production

Let us now evaluate the mean entropy production of the quantum heat engine in order
to study its relation with the work fluctuations and to explore the validity or violation of
TURs. As mentioned in Section 2, the mean entropy production is given by

〈Σ〉 = (βA − βB)〈∆EA〉 − βB〈W〉. (25)

We can evaluate the moments of W and ∆EA through the derivatives of the characteristic
function, according to Equations (A27) and (A28) of Appendix A. Due to the conservation
laws for U1, U2, and Ũ2 as in Equations (18) and (19), according to Equation (A34), we have

〈W l∆Es
A〉 = αs〈W l+s〉, (26)

where α = ωA/(ωB−ωA) for U1, α = 2ωB/(ωA− 2ωB) for U2, and α = 2ωA/(ωB− 2ωA)
for Ũ2. Hence, the entropy production of U1, U2, and Ũ2 is proportional to their pertaining
work, and one has

〈Σ1〉 =
βBωB − βAωA

ωA −ωB
〈W1〉,

〈Σ2〉 =
2βBωB − βAωA

ωA − 2ωB
〈W2〉,

〈Σ̃2〉 =
βBωB − 2βAωA

2ωA −ωB
〈W̃2〉,

(27)

where 〈W1〉, 〈W2〉 and 〈W̃2〉 are given in Equations (20)–(22), respectively.
Equation (26) does not hold for U3, and the entropy production explicitly is given by

〈Σ3〉 = 2
βBωB(sinh βAωA + sinh βBωB)− βAωA[sinh βBωB + sinh (βBωB − βAωA)]

(1 + 2 cosh βAωA)(1 + 2 cosh βBωB)
. (28)

Note that in all cases the mean entropy production is positive and depends only on the
ratios between frequency and temperature and not on the bare frequencies.

3.4. Work Distribution

We can now provide the explicit expression for the distribution of work p(W) per-
taining to each ergotropic transformation. As shown in Appendix A (see Equation (A15)),
we have

p(W) = ∑
n,m,l,s

pn,mq(l, s|n, m)δ(W −ωA(n− l)−ωB(m− s)) (29)

where pn,m is the energy distribution of the input state, namely

pn,m =
1

ZAZB
e−βAωAne−βBωBm (30)

while q(l, s|n, m) is the energy conditional distribution after the evolution U, given the
input energy levels n and m, i.e.,

q(l, s|n, m) = |〈l, s|U|n, m〉|2. (31)

In the case of the standard swap U1, the conditional distribution reads q1(l, s|n, m) =
δl,mδn,s, and hence
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p1(W) =
2

∑
n,m=0

pn,mδ(W − (n−m)ωA − (m− n)ωB), (32)

which is a 5-point distribution. Explicitly, upon naming k ≡ n−m, one has

p1(W = k(ωA −ωB)) =

=
1

ZAZB

1− exp [−(k + 3)(βAωA + βBωB)]

1− exp [−(βAωA + βBωB)]
eβAωAk with k ∈ [−2, 0)

=
1

ZAZB

1− exp [(k− 3)(βAωA + βBωB)]

1− exp [−(βAωA + βBωB)]
e−βBωBk with k ∈ [0, 2].

(33)

A specific example is plotted in Figure 12. Equation (33) is consistent with the general result
given in Ref. [35] for the work distribution in swap engines based on two qudits.

Figure 12. Distribution p1(W = k(ωA − ωB)) of the work extracted by the standard swap U1 in
ωA −ωB units. We set βAωA = 0.5 and βBωB = 2.

Now, we focus on the idle swap U2. Due to its asymmetric action on systems A and B,
the conditional distribution is slightly more complicated and reads

q2(l, s|n, m) =
2

∑
m=0

δn,mδl,sδs,m + δs,2−m(δn,m
⊕

1 + δn,m
⊕

2) + (δl,s
⊕

1 + δl,s
⊕

2) (34)

where
⊕

denotes the sum mod 3. Hence, one retrieves the following 3-point distribution

p2(W) =

(
2

∑
n=0

pn,n + p01 + p21

)
δ(W) + (p10 + p20)δ(W −ωA + 2ωB)

+ (p02 + p12)δ(W + ωA − 2ωB).

(35)

An example is depicted in Figure 13.
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Figure 13. Distribution p2(W = k(2ωB−ωA)) of the work extracted by the idle swap U2 in 2ωB−ωA

units. We set βAωA = 0.5 and βBωB = 2.

Similarly, in the case of Ũ2 one has

p̃2(W) =

(
2

∑
n=0

pn,n + p10 + p12

)
δ(W) + (p01 + p02)δ(W −ωB + 2ωA)

+ (p20 + p21)δ(W + ωB − 2ωA).

(36)

Finally, since U3 = U2U1, for the double swap we readily find

q3(l, s|n, m) = q2(l, s|m, n), (37)

and then one obtains the following 7-point distribution

p3(W) =
2

∑
n=0

pn,nδ(W) + p10δ(W −ωA + ωB) + p12δ(W + ωA −ωB)+

+ p01δ(W + ωB) + p21δ(W −ωB) + p02δ(W + ωA) + p20δ(W −ωA).

(38)

A specific example is provided in Figure 14.

Figure 14. Distribution p3(W = kωA)) of the work extracted by the double swap U3 in ωA units in
the case ωB/ωA = 3/4. We set βAωA = 0.5 and βBωB = 2.
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3.5. Work Fluctuations and TURs

Here, we evaluate the relative fluctuations of the work extracted by the ergotropic
transformations and compare them to the lower bounds identified by different thermody-
namic uncertainty relations (TURs).

We can find the relative fluctuations as the ratio between the variance of the extracted
work and the square of its mean value, namely var(W)/〈W〉2 = 〈W2〉/〈W〉2 − 1, with
var(W) = 〈W2〉 − 〈W〉2 . The second moment of the extracted work can be obtained from
the characteristic function as in Equations (A28) and (A29), and one has

〈W2
k 〉 =Tr[(HA ⊗ IB + IA ⊗ HB)

2ρ0] + Tr[(HA ⊗ IB + IA ⊗ HB)
2Ukρ0U†

k ]

− 2Tr[U†
k (HA ⊗ IB + IA ⊗ HB)Uk(HA ⊗ IB + IA ⊗ HB)ρ0].

(39)

For the standard swap U1 one obtains

var(W1)

〈W1〉2
=(1 + 2 cosh βAωA)(1 + 2 cosh βBωB)

× cosh βAωA + cosh βBωB + 4 cosh (βBωB − βAωA)

2[sinh βBωB − sinh βAωA + 2 sinh (βBωB − βAωA)]2
− 1

(40)

which is in agreement with the general result of the swap engine with two qudits of Ref. [35].
As expected, the fluctuations of the standard swap are invariant under swapping A and B.
For the idle swap U2, we have

var(W2)
〈W2〉2

= (1 + 2 cosh βAωA)(1 + 2 cosh βBωB)
cosh βBωB+cosh (βBωB−βAωA)

2[sinh βBωB+sinh (βBωB−βAωA)]2
− 1. (41)

As for the ergotropy in Equations (21) and (22), the expression for var(W̃2)/〈W̃2〉2 is simply
obtained by exchanging A with B in Equation (41). Note that the fluctuations of both the
standard and the idle swap depend only on the products βω.

This is not the case for the double swap U3, which depends also on the frequency ratio
x = ωB/ωA as follows

var(W3)

〈W3〉2
=(1 + 2 cosh βAωA)(1 + 2 cosh βBωB)

× x2 cosh βAωA + (1− x)2 cosh βBωB + cosh (βBωB − βAωA)

2[(1− x) sinh βBωB − x sinh βAωA + sinh (βBωB − βAωA)]
2 − 1.

(42)

For all the ergotropic transformations the fluctuations are minimized in the limiting case
where βω → 0 for one qutrit and βω → ∞ for the other one. In the case of the swap, being
naturally invariant under swap symmetry, we can either set βAωA to zero and βBωB to
infinity or the other way around. On the contrary, the case of the idle and the double swap
is asymmetric and we achieve the minimum of the fluctuations for βBωB → 0∧ βAωA → ∞
in the case of Ũ2 and for βAωA → 0∧ βBωB → ∞ in the case of U2 and U3. Here, we mainly
focus on the transformations that extract the ergotropy in the same poset identified by
the products βω. In particular, we choose the poset defined by βAωA < βBωB, where the
optimal evolutions are U1, U2 and U3. In the case of the double swap U3, the minimization
has to be performed also on the frequency ratio and the infimum is obtained for x → 0. The
optimization of the fluctuations over the whole span of the parameters readily provides

2
3
= inf

βAωA ,βBωB

var(W1)

〈W1〉2
> inf

βAωA ,βBωB

var(W2)

〈W2〉2
= inf

βAωA ,βBωB ,x

var(W3)

〈W3〉2
=

1
2

. (43)

Therefore, it turns out that U2 and U3 achieve smaller fluctuations than U1.
We now investigate if damping the noise comes together with the extraction of the

ergotropy. While for U1 this is always the case, the same is not true for U2 and U3. The
idle swap U2 extracts the ergotropy for βBωB < βAωA, where the condition for the mini-
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mization of fluctuations corresponding to U2 does not hold. Interestingly, in that region,
it is Ũ2 the ergotropy extractor. Within the ergotropic region of U2, we need to take
βBωB → 0∧ βAωA → ∞, which provides var(W2)/〈W2〉2 = 2. For U3, on the contrary, the
condition on the ratios βω for optimal fluctuations is compatible with the extraction of
ergotropy, but with the additional constraint x ≥ 1/2. The minimization over x then sets
it to 1/2, and, as discussed after Equation (24), for that frequency ratio 〈W3〉 = 〈W1〉. To
sum up, if we aim to optimize the noise inside the ergotropic regimes of each ergotropic
transformation, we find that the best performance is achieved by the standard swap since

2 = inf
βAωA ,βBωB

var(W2)

〈W2〉2
> inf

βAωA ,βBωB

var(W1)

〈W1〉2
= inf

βAωA ,βBωB ,x

var(W3)

〈W3〉2
=

2
3

. (44)

In this last regime where ergotropy extraction and minimal noise coexist, we finally note
that the standard swap extracts more work than the idle and double swap. In fact, one has

sup
ωB

W1(βAωA → 0, βBωB → ∞) = ωA,

sup
ωB

W2(βAωA → ∞, βBωB → 0) =
ωA
3

,

sup
ωB

W3(βAωA → 0, βBωB → ∞) =
ωA
2

.

(45)

We remark that the results found so far do imply that the standard swap is the best
operation in terms of fluctuations and extracted work in the optimal limiting case βAωA →
0∧ βBωB → ∞, but the same does not hold for intermediate values of βω, as we shall see
in the following.

Now, we compare the relative fluctuations of the ergotropic engine in asymptotic and
non-asymptotic cases with the bounds derived from the most significant TURs. We recall
that the double swap U3 is not Hermitian. Therefore, as remarked in the Appendix after
Equation (A26), U3 could violate all the TURs based on the equivalence between forward
and backward processes. On the other hand, we already know from previous works [35]
that the swap itself breaks the standard TUR in Equation (2). We study in Figure 15 the
violation of the standard TUR as a function of βω in conditions of minimal fluctuations,
independently from the ergotropic regime. Namely, in the case of U1 (red dashed line), U2
(purple solid line) and U3 (blue dot-dashed line) the free variable is βBωB with βAωA � 1.
Just for U3, we also need ωB/ωA � 1. We remark that here we are not focusing on the
ergotropy extraction, but only on the properties of the evolutions U1, U2, and U3 in terms
of work fluctuations. We find that all three ergotropic transformations break the standard
thermodynamic uncertainty relation. In particular, the violation due to U3 is impressive.
As found in [35], when the evolution is the standard swap the relative fluctuations for the
extracted work satisfies

var(W)

〈W〉2 ≥ 2
〈Σ〉 − 1. (46)

The variation of Equation (46) from the standard TUR explains the slight violation
found in Figure 15, where the lower bound from the standard TUR is displayed as a black
dotted line. Similarly to U1, also U2 and Ũ2 satisfy Equation (46). In fact,

〈W2
2 〉

〈W2〉2
=

f (βAωA, βBωB)

〈Σ2〉
(47)

where

f (x, y) ≡ (2y− x)
cosh y + cosh (y− x)
sinh y + sinh (y− x)

, (48)

which satisfies
f (x, y) ≥ 2 ∀ x, y ≥ 0. (49)
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The fluctuations originated from U3, instead, can break the TUR in Equation (46). Such
violation stems from the asymmetry of the process described by U3, which is not Hermitian.
Indeed, we note that a necessary condition for the TURs in Equations (2) and (46) to hold is
the equivalence between forward and backward process, i.e., pB(W, ∆EA) = p(W, ∆EA).
Moreover, note that the double swap is the only transformation whose fluctuations depend
also on the frequency ratio while leaving the mean entropy as a function of just βAωA and
βBωB. Therefore, in this case, we can optimize over a third parameter without changing
the lower bound of the TUR.

Figure 15. Product of the relative fluctuations with the mean entropy production, which is lower
bounded by 2 (black dotted line) in the standard TUR of Equation (2) and by a function of the
mean entropy in Equation (50). We set βAωA = 10−3. The plot shows the violations due to the
standard swap U1 (red dashed line), the idle swap U2 (solid purple line) and the double swap U3

(blue dot-dashed line) as a function of βBωB.

The violation of the TUR in Equation (46) by U3 can also be found in realistic cases, i.e.,
even if we do not set the parameters to the values minimizing the fluctuations. Actually,
these cases are the most relevant to be considered, not only because closer to experimen-
tal applications but especially because they keep into account the ergotropy extraction
provided by the different evolutions. For instance, consider the case of Figure 7, where
ωA = 1, βA = 0.5, βB = 4 and ωB is left free. Correspondingly, in Figure 16, we plot the
signal-to-noise ratio (SNR) of the extracted work for each transformation in its ergotropic
regime, together with the lower bound of Equation (2) (dotted lines). Firstly, note that
the double swap violates the TUR even if we are far from the optimal conditions on the
parameters maximizing the SNR. Second, the TUR is violated in both regimes where U3
extracts the ergotropy (ωB ∈ [1/8, 1/4] ∪ [1/2, 1]). Third, differently from what we found
in the case of optimal conditions, U2 and U3 can achieve better SNRs than the standard
swap U1 where the ergotropy is extracted.

The standard TUR is not the only relevant lower bound which we show in Figure 16.
The tightest TUR that cannot be violated by any time-symmetric process was found in
Ref. [33] and, applied to the extracted work, reads

var(W)

〈W〉2 ≥ csch2[g(〈Σ〉/2)] (50)

where g(x) is the inverse of the function x tanh(x). Therefore, we expect that neither U1
nor U2 can violate this TUR, while U3 in principle can. This is what we see in Figure 16,
where the dot-dashed lines correspond to the lower bound determined by Equation (50):
the SNR identified by the double swap U3 is the only one that can violate the tight TUR,
also within its ergotropic regime.
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Figure 16. SNRs obtained from the ergotropy extraction of the example and parameters as in
Figure (7). The vertical dashed lines separate different the ergotropic regimes. We have the idle swaps
U2 for ωB ∈ [1/16, 1/8] and Ũ2 for ωB ∈ [1, 2] (purple lines), the double swap U3 for ωB ∈ [1/8, 1/4]
and for ωB ∈ [1/2, 1] (blue lines) and U1 for ωB ∈ [1/4, 1/2] (red line). The solid curves display the
SNR. The dotted and dot-dashed lines show the upper bounds provided by the standard TUR in
Equation (2) and the tight TUR in Equation (50). In the region ωB ∈ [1/2, 1], corresponding to the
non-Hermitian unitary U3, strong violations of both TURs are apparent.

We focus more in detail on the violation of the TURs above in Figures 17–19, where
we plot the SNRs for the three evolutions both for optimal values of the parameters
independently from the ergotropy extraction and within the corresponding ergotropic
regime. In particular, Figure 17 displays the performance of the standard swap U1. Here,
we set βAωA � 1, which implies that the fluctuations are minimized for large βBωB. As
βBωB increases, the signal-to-noise ratio approaches the inverse of the minimal fluctuations,
namely 3/2, in agreement with Equation (43). Again, we find a slight violation of the
standard TUR (dotted line).

Figure 17. SNR of the work extracted by the standard swap U1 (solid line) in ideal optimal conditions,
with βAωA = 10−3. The dotted and dot-dashed lines display the upper bound from the standard
TUR in Equation (2) and the tight TUR in Equation (50), respectively. The dashed horizontal line
highlights the asymptotic limit of the SNR.
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In Figure 18, we show the performance of the idle swap U2 where it maximizes the
SNR (first panel) and extracts the ergotropy (second panel). Therefore, in the former case,
we set βAωA � 1 and retrieve the optimization of the SNR for large values of βBωB, as
in Equation (43). In the regime where U2 extracts the ergotropy, as in Equation (44), we
find an optimal SNR approaching 1/2 for βAωA � βBωB ∼ 0 and an almost negligible
violation of the standard TUR. Neither the standard nor the idle swap violates the tight
TUR in Equation (50), displayed as a dashed-dotted line.

Figure 18. SNR of the work extracted by the idle swap U2 (solid lines). The dotted lines display the
upper bound from the standard TUR in Equation (2), while the dot-dashed lines display the upper
bound from the tight TUR in Equation (50). The dashed horizontal lines highlight the limit of the SNR.
(Up panel): conditions for the maximum SNR independently from the ergotropy extraction, namely
βBωB > βAωA ∼ 0. Here, we set βAωA = 10−3. (Bottom panel): conditions for the maximum SNR
within the ergotropic regime of U2, namely βAωA > βBωB ∼ 0. Here we set βBωB = 10−3.

The case of the double swap, displayed in Figure 19, is radically different. If we neglect
the conditions for the ergotropy extraction, here we can optimize also over the frequency
ratio ωB/ωA and we can set it to zero, while βAωA ∼ 0, implying that we expect to find
the optimal SNR for large βBωB, as in Equation (43). Again, the standard TUR is violated,
but, compared with the previous cases, the corresponding bound is saturated for larger
values of βBωB, where the SNR approaches its maximum. Most importantly, the tight TUR
of Equation (50) is also violated, both when the SNR is optimized (first panel) and when
the ergotropy is extracted (second panel).
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Figure 19. SNR of the work extracted by the double swap U3. The dotted and dot-dashed lines
display the upper bound from the standard TUR in Equation (2) and the tight TUR in Equation (50).
The dashed brown lines display the bound from the loosest TUR for time-symmetric processes in
Equation (51). The dashed horizontal lines highlight the limit of the SNR. (Up panel): conditions
for the maximum SNR independently from the ergotropy extraction, namely βBωB > βAωA ∼ 0
and ωB/ωA ∼ 0. Here, we set βAωA = ωB/ωA = 10−3. The solid blue line displays the SNR.
(Bottom panel): conditions for the maximum SNR within the ergotropic regime of U3, namely
βBωB > βAωA ∼ 0 and ωB/ωA ∈ [1/2, 1). Here, we set βAωA = 10−3 and show the cases obtained
from two different choices of the frequency ratio. The red line displays the choice optimizing the
SNR, i.e., ωB/ωA = 1/2, which reduces the statistics of the work extracted by the double swap to the
one extracted by the standard swap. The blue solid line displays the case ωB/ωA = 3/4.

We also compare the SNR of U3 with the loosest bound that always holds for time-
symmetric processes [21,31,34] given by

var(W)

〈W〉2 ≥ 2
e〈Σ〉 − 1

. (51)

The bound from Equation (51) is displayed as a brown line in Figure 19. The violation that
we find is a consequence of the fact that U3 is not Hermitian.

In the second panel of Figure 19, as mentioned above, we explore the performance
of the double swap U3 in its ergotropic regime, where ωB/ωA ∈ [1/2, 1]. The best perfor-
mance is obtained for ωB/ωA = 1/2, where the amount of work extracted by U3 is the
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same as the one extracted by U1 (red line in Figure 19). We also plot the case ωB/ωA = 3/4,
in blue. We obtain a worse SNR but still can observe a violation of all the TURs derived for
time-symmetric processes.

The only TURs that can set a bound that cannot be violated by U3 are those obtained
without posing the symmetry between the forward and backward process. In fact, the
TURs in Equations (50) and (51) have been generalized, respectively, in Refs. [32,39] by
releasing the assumption that forward and backward processes share the same distribution
of the stochastic variables. These new bounds are given by

var(W) + var(W)B

(〈W〉+ 〈W〉B)2 ≥ 1
2

csch2[g(a/2)] (52)

and
var(W) + var(W)B

(〈W〉+ 〈W〉B)2 ≥ 1
ea/2 − 1

, (53)

where the quantities with subscript B are referred to the backward process and a =
(〈Σ〉+ 〈Σ〉B)/2. In the case of U3, the statistics of W for the backward process are easily
found since U−1

3 = Ũ3. Hence, U−1
3 outputs the same work statistics as U3 provided

that systems A and B are swapped. Then, 〈W3〉B, var(W3)B and 〈Σ3〉B can be obtained
from Equations (24), (28) and (42) simply swapping labels A and B. Note also that the
bounds (right-hand sides) given by the TURs in Equations (52) and (53) depend only on the
products βω, while the corresponding bounded quantities depend also on the frequency
ratio ωB/ωA.

In Figure 20, we compare the reciprocal of the left-hand sides of Equations (52) and (53)
for U3 with the corresponding bounds as a function of βBωB with fixed βAωA � 1. In this
regime, U3 maximizes the SNR. We show the two limiting cases ωB/ωA � 1 (thick dark-
blue curve) and ωB/ωA � 1 (thin light-blue curve) together with the bounds obtained
from the TURs in Equations (52) and (53), identified by the dot-dashed brown curve and the
dashed green curve, respectively. Note that these TURs are never violated and, as expected,
the first is tighter than the second. Having set βAωA ∼ 0, the maximum is asymptotically
reached for βBωB � 1 and ωB � ωA, and amounts to 8/9 (dashed horizontal line in
Figure 20).

Figure 20. Ratio between the squared sum of the mean works extracted in the forward (〈W3〉) and
backward (〈W̃3〉) processes and the sum of the corresponding variances as a function of βBωB (solid
lines). We set βAωA = 10−3. We display the cases ωB/ωA = 10−2 (dark-blue thick line) and
ωB/ωA = 102 (light-blue thin line). The dot-dashed brown and the dashed green curve represent
the upper bounds given by Equations (52) and (53), respectively. The dashed black horizontal
line identifies the asymptotic value, which amounts to 8/9 and is achieved for both βBωB, and
ωB/ωA → ∞.
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4. Conclusions

We devised a consistent description of ergotropic heat engines for the optimal work
extraction from a couple of quantum systems, which are cyclically restored to the canonical
equilibrium at two different temperatures. We provided an exhaustive study for the
case of two qutrits with equally-spaced energy levels by deriving the optimal ergotropic
transformations, the statistics of the extracted work and the mean entropy production.
We showed that going beyond the standard swap Otto engine allows one to improve the
work extraction and also to enlarge the range of operation of the heat engine. We think
that further interesting results for systems with arbitrary energy-level structures may be
found by means of the approach outlined in Ref. [59]. Within the approach of stochastic
thermodynamics we exploited a two-point measurement scheme to retrieve the first and
second moment of the work distribution. We recall that, to this aim, many equivalent
measurement schemes exist [60]. In future developments, it will be interesting to consider
the effect of measurements explicitly performed on the quantum systems to monitor the
engine, along with its impact on the thermodynamic cycles as performed, for example, in
Ref. [61].

We focused on the relative fluctuations of the work extracted by each ergotropic
transformation and showed that one of them, the double swap U3, violates many common
TURs, specifically those based on the assumption that the distributions of the extracted
work for the forward and backward processes are the same.

The application of our procedure to systems with higher dimensions is promising
because it will lead to the generalization of the ergotropic transformations found for the
qutrit case and will allow to finding new transformations which, as shown in this work,
may possibly extract more work on average with lower fluctuations with respect to Otto
engines based on the swap interaction with qudits.

Author Contributions: Conceptualization, M.F.S.; methodology, M.F.S.; validation, C.M.; formal
analysis, G.C.; investigation, G.C. and M.F.S.; writing—original draft preparation, G.C.; writing—
review and editing, C.M. and M.F.S.; visualization, C.M. and M.F.S.; supervision, C.M. and M.F.S.;
project administration, C.M. and M.F.S.; funding acquisition, C.M. and M.F.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research and the APC were funded by EU H2020 QuantERA ERA-NET Cofund in
Quantum Technologies project QuICHE grant number 731473.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Acknowledgments: This material is based upon work supported the Italian MUR through PRIN
2022. C.M. acknowledges support from the PNRR MUR Project PE0000023-NQSTI.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Let us describe the two-stroke Otto engines. We consider two quantum systems A
and B (with Hamiltonians HA and HB) initially at thermal equilibrium with their own
reservoirs RA and RB (with Hamiltonians HRA and HRB ) at inverse temperatures βA and
βB. Without loss of generality, we take βA < βB. We assume weak coupling between
systems and reservoirs so that we can represent the initial state as the tensor product of
canonical density matrices, namely

ρ0 ⊗ ρR =
1

ZAZBZRA ZRB

e−βA HA ⊗ e−βB HB ⊗ e−βA HRA ⊗ e−βB HRB , (A1)
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where ZX = Tr[e−βX HX ]. We perform a two-stroke cyclic heat engine by (i) isolating the
two quantum systems from the reservoir at t = 0+; (ii) extracting work by a unitary
transformation U acting on the two systems up to time t = t̃; (iii) reconnecting the two
quantum systems to their respective reservoirs by weak coupling to achieve complete
thermalization at t = t′ � t̃. We remark that the unitary U incorporates the free evolution
of the two systems and their interaction obtained by external (possibly time-dependent)
driving protocols, with the condition of being cyclic, namely, such that initial and final
Hamiltonian coincide, i.e., HX = HX(0) = HX(t̃) for both A and B.

The average value 〈W〉 of the work extracted on a cycle corresponds to the opposite of
the variation of the internal energy of A and B during the unitary stroke U, i.e.,

〈W〉 = −〈∆EA〉 − 〈∆EB〉 = Tr[(HA + HB)ρ0]− Tr[(HA + HB)Uρ0U†] . (A2)

During the thermalization stroke, each system comes back to equilibrium, namely system
A absorbs the average heat 〈QH〉 = Tr[HAρ0] − Tr[HAUρ0U†] = −〈∆EA〉 from the hot
reservoir, and system B dumps 〈QC〉 = Tr[HBρ0]− Tr[HBUρ0U†] = −〈∆EB〉 on the cold
one. In our convention the cycle operates as a heat engine when 〈W〉 > 0, 〈QH〉 > 0,
and 〈QC〉 < 0. Clearly, the first law is obtained as 〈W〉 = 〈QH〉+ 〈QC〉. At each cycle,
the two quantum systems come back to their respective equilibrium states, and hence the
average entropy production per cycle simply corresponds to 〈Σ〉 = −βA〈QH〉 − βB〈QC〉 =
(βA − βB)〈∆EA〉 − βB〈W〉.

Let us now describe the above thermodynamical cycle by a set of stochastic trajectories
which correctly reproduce the mean values of all thermodynamic variables by an average of
stochastic variables over all possible trajectories. We adopt an operational approach based
on complete energy measurements at different times [2,16,23] as in the typical derivation of
Jarzynski equality [12]. This approach will allow us to study the complete statistics of work
extraction and heat exchanges, and in particular to evaluate the fluctuations of work and
their relation with entropy production.

Figure A1. Scheme for the stochastic description of a cycle of the Otto two-stroke engine. Labels
A and B identify the two systems operated by the engine as a working fluid, RA and RB are the
corresponding reservoirs. The unitary U is the transformation extracting work, while VA and VB are
the energy-preserving unitaries for the thermal relaxation of each system with its pertaining reservoir.

As depicted in Figure A1, we identify a single stochastic trajectory by the outcomes
of the sequential fine-grained energy measurements of HA, HB, HRA , HRB at the beginning
of the cycle t = 0+; of HA, HB at the end of the work stroke t = t̃ operated by U; and
finally of HA, HB, HRA , HRB at the end of the thermalization stroke t = t′. We denote by
VX , with X = A, B, the unitary operator representing the joint evolution of system X and
reservoir RX by weak coupling and energy-preserving interaction up to complete thermal
equilibrium at t = t′ � t̃. By respecting the order of the above measurements, we denote
by γ the stochastic trajectory corresponding to the sequence of outcomes, namely

γ = {n, m, u, v; l, s; n′, m′, u′, v′} (A3)
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with corresponding energy eigenvalues

{EA
n , EB

m, ERA
u , ERB

v ; EA
l , EB

s ; EA
n′ , EA

m′ , ERA
u′ , ERB

v′ } . (A4)

We could denote by |i〉C the eigenvector pertaining to the eigenvalue EC
i of Hamiltonian HC,

with C = A, B, RA, RB, but we will generally write |i〉 instead of |i〉C since in the following
it will be clear from the context (and with the help of Figure A1) the respective Hilbert
space of all eigenvectors.

Let us now evaluate the probability P[γ] of occurrence of a specific trajectory γ.
Since the initial state is given by Equation (A1), the probability p(n, m, u, v) for the initial
outcomes n, m, u, v is given by the product of Gibbs weights, namely

p(n, m, u, v) =
1

ZAZBZRA ZRB

e−βA(EA
n +E

RA
u ) e−βB(EB

m+ERB
v ) . (A5)

The conditional probability qw(l, s|n, m) pertaining to the energy measurements of A and B
with outcomes l and s after the unitary stroke U, given initial outcomes n and m, writes

qw(l, s|n, m) = |〈l|〈s|U|n〉|m〉|2 . (A6)

Finally, the conditional probability for the thermalization stage is given by

qt(n′, m′, u′, v′|l, s, u, v) = |〈n′|〈u′|VA|l〉|u〉|2 |〈m′|〈v′|VB|s〉|v〉|2 . (A7)

It follows that the probability of the trajectory γ = {n, m, u, v; l, s; n′, m′, u′, v′} is given by

P[γ] = p(n, m, u, v)qw(l, s|n, m)qt(n′, m′, u′, v′|l, s, u, v) . (A8)

One easily identifies the functions of stochastic variables in correspondence to the ther-
modynamical variables of interest for each trajectory. Clearly, the work contribution
corresponds to

W[γ] = EA
n − EA

l + EB
m − EB

s . (A9)

On the other hand, the heat released by reservoirs A and B corresponds to

QH [γ] = ERA
u − ERA

u′ ' EA
n′ − EA

l ,

QC[γ] = ERB
v − ERB

v′ ' EB
m′ − EB

s , (A10)

since we describe the thermalization with each reservoir by weak coupling and energy-
preserving interactions [15]. Notice that under this approximation no work is generated by
connecting and disconnecting the systems with the reservoirs [45,47,58].

By weighting each possible trajectory with its probability of occurrence we obtain the
joint probability for extracting work W along with heat exchanges QH and QC as follows

p(W, QH , QC) = ∑
γ

P[γ]δ(W − (EA
n − EA

l )− (EB
m − EB

s ))

× δ(QH − (EA
n′ − EA

l ))δ(QC − (EB
m′ − EB

s )) . (A11)

Since VX models the complete thermalization by the reservoir RX , one has

TrRX

[
VX

(
σ⊗ 1

ZRX

e−βX HRX

)
V†

X

]
=

1
ZX

e−βX HX (A12)
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for arbitrary density matrix σ of system X. This fact can be used to simplify Equation (A11)
by summing on all reservoir indexes {u, u′, v, v′}. Hence, p(W, QH , QC) can be rewritten in
terms of measurements outcomes only on systems A and B, namely

p(W, QH , QC) = ∑
n,m,l,s,n′ ,m′

1
Z2

AZ2
B

e−βA(EA
n +EA

n′ )−βB(EB
m+EB

m′ ) |〈l|〈s|U|n〉|m〉|2 ×

δ(W − (EA
n − EA

l )− (EB
m − EB

s )) δ(QH − (EA
n′ − EA

l )) δ(QC − (EB
m′ − EB

s )) . (A13)

Equation (A13) allows one to study the complete statistics of an ergotropic heat engine. The
first principle of thermodynamics for the cycle is recovered since the average variation of
the internal energy 〈∆U〉 = 〈QH + QC −W〉 correctly gives zero, as shown as follows

〈∆U〉 = 〈QH + QC −W〉 =
∫

dW
∫

dQH

∫
dQC p(W, QH , QC) (QH + QC −W)

= ∑
n,n′ ,m,m′

1
Z2

AZ2
B

e−βA(EA
n +EA

n′ )−βB(EB
m+EB

m′ )(EA
n′ − EA

n + EB
m′ − EB

m) = 0 . (A14)

One also has 〈QH〉 = −〈∆EA〉, where 〈∆EA〉 is the average variation of the internal energy
of A during the unitary stroke, whose expectation can be obtained by averaging EA

l − EA
n

over all trajectories. Similarly, 〈QC〉 = −〈∆EB〉, where 〈∆EB〉 has corresponding stochastic
values given by EB

s − EB
m.

By introducing the trajectories for the thermalization stroke, we remark that the present
result allows us to refine the approach of Refs. [33,35,36], where the stochastic values of
QH were identified with −∆EA (and analogously for QC with −∆EB). In fact, notice that
the relation W = QH + QC does not generally hold at the trajectory level. Anyway, since
〈QH + ∆EA〉 corresponds to the average of EA

n′ − EA
n over the trajectories, for increasing

number of cycles the discrepancy between the stochastic variables QH and −∆EA remains
bounded by the finite energy of system A, whereas both QH and ∆EA increase linearly
with the number of cycles, thus providing 〈QH〉+ 〈∆EA〉 = 0. Analogous point applies for
the variables QC and ∆EB.

All results about the stochastic efficiency η of the heat engines given in Refs. [35,36]
rigorously hold for η defined in terms of ∆EA, namely η = −W/∆EA. One could refine and
compare the results for η defined as η = W/QH by means of the probability distribution
presented here in Equation (A13). The subtle difference between these two definitions
of stochastic efficiency was already discussed in Ref. [45], where the thermalization in a
two-stroke Otto engine was modeled by the quantum jump method.

The probability of work extraction is the marginal of p(W, QH , QC) in Equation (A13)
with respect to the heat exchanges, and one has

p(W) =
∫

dQH

∫
dQC p(W, QH , QC) =

∑
n,m,l,s

1
ZAZB

e−βAEA
n −βBEB

m |〈l|〈s|U|n〉|m〉|2 δ(W − (EA
n − EA

l )− (EB
m − EB

s )) . (A15)

Let us now consider a backward protocol where the measurements on the quantum systems
and the reservoirs are performed in the reverse ordering, along with the time-reversal
evolution of all interactions. The initial state for the backward protocol is again taken as
the product of canonical density matrices, namely as in Equation (A1). By assuming that
all Hamiltonians are invariant under time-reversal at all times [17,18,23], the backward
protocol is then equivalent to follow Figure A1 from the right to the left, along with the
replacement of VA, VB and U with V†

A, V†
B and U†, respectively.

We can compare the forward and the backward protocols by the probability P[γ]
of a trajectory γ = {n, m, u, v; l, s; n′, m′, u′, v′} and the probability PB[γB] for the occur-
rence of the specular reverse trajectory with the same measurement outcomes, namely
γB = {n′, m′, u′, v′; l, s; n, m, u, v}. The comparison between the forward and the backward
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protocol is made by the logarithm of the probabilities, which defines the stochastic entropy
Σ[γ] generated along a trajectory γ as [18]

Σ[γ] = log
P[γ]

PB[γB]
. (A16)

Since each γ identifies a corresponding backward trajectory γB, the fluctuation theorem
simply follows as

〈e−Σ〉 = ∑
γB

PB[γB] = 1 . (A17)

In the present case, using Equation (A8) and the cancellation between forward and back-
ward conditional probabilities for both qw and qt, one obtains

P[γ]
PB[γB]

=
p(n, m, u, v)

p(n′, m′, u′, v′)
, (A18)

and hence

Σ[γ] = βA(EA
n′ − EA

n + ERA
u′ − ERA

u ) + βB(EB
m′ − EB

m + ERB
v′ − ERB

v )

' βA(EA
l − EA

n ) + βB(EB
s − EB

m) , (A19)

where we used Equation (A10). As for the case of the stochastic work W[γ] = EA
n −

EA
l + EB

m − EB
s , notice that also Σ[γ] depends only on the reduced set of indexes {n, m, l, s}

pertaining to the unitary stroke operated by U. The probability of the stochastic entropy is
then given by

p(Σ) = ∑
n,m,l,s

1
ZAZB

e−βA EA
n −βB EB

m |〈l|〈s|U|n〉|m〉|2 δ(Σ− βA(EA
n − EA

l )− βB(EB
m − EB

s )) . (A20)

From Equation (A20), one correctly recovers the equivalent identities 〈Σ〉 = βA〈∆EA〉+
βB〈∆EB〉 = (βA − βB)〈∆EA〉 − βB〈W〉 = −βA〈QH〉 − βB〈QC〉.

Since from definition (A16) one has Σ[γB] = −Σ[γ] we easily derive the detailed
fluctuation theorem as follows

p(Σ) = ∑
γ

P[γ]δ(Σ− Σ[γ]) = ∑
γ

eΣ[γ]PB[γB]δ(Σ− Σ[γ])

= eΣ ∑
γ

PB[γB]δ(Σ + Σ[γB]) = eΣ pB(−Σ) . (A21)

Indeed, by analogous derivation, for any set {Xi[γ]} of odd stochastic variables such that
Xi[γB] = −Xi[γ], one has

p({Xi}, Σ) = eΣ pB({−Xi},−Σ) . (A22)

In particular, since Σ = (βA − βB)∆EA − βBW, we can also write [17,20,22,24]

p(W, ∆EA)

pB(−W,−∆EA)
= eΣ . (A23)

where

p(W, ∆EA) = ∑
n,m,l,s

1
ZAZB

e−βAEA
n −βBEB

m |〈l|〈s|U|n〉|m〉|2

× δ(W − (EA
n − EA

l )− (EB
m − EB

s )) δ(∆EA − (EA
l − EA

n )) (A24)
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and pB identifies the distribution of the backward process, described by the transformation
U† instead of U. We recall here that the relation ∆EB = −W − ∆EA holds for the stochastic
variables, namely at the trajectory level.

When the unitary operator U is of the form

U = eiφA HA+iφB HB VeiψA HA+iψB HB , (A25)

with unitary Hermitian V = V† and arbitrary phases φA, φB, ψA, ψB, notice that one has
the symmetry

pB(W, ∆EA) = p(W, ∆EA) . (A26)

Typically, this happens when the time-dependent protocol that actualizes the unitary
evolution U is a time-symmetric driving [2,17,20]. We remark that the TUR in Equation (50)
derived from the fluctuation theorem of Equation (A22) implicitly assumed the condition
pB({Xi}, Σ) = p({Xi}, Σ).

Let us now consider in more detail the joint probability p(W, ∆EA). The full statistics
of W and ∆EA is equivalently contained in the characteristic function χ(λ, µ) given by the
Fourier transform

χ(λ, µ) =
∫

dW
∫

d∆EA p(W, ∆EA) eiλW+iµ∆EA . (A27)

Here, λ and µ denote the counting parameters for W and ∆EA, so that all moments and
correlations can be recovered as

〈W j∆Ek
H〉 = (−i)j+k ∂j+kχ(λ, µ)

∂λj∂µk

∣∣∣∣∣
λ=µ=0

. (A28)

Using Equation (A24) and applying the delta functions in the integrals of Equation (A27)
one obtains

χ(λ, µ) =
1

ZAZB
∑

n,m,l,s
e−βAEA

n e−βBEB
m eiλ(EA

n −EA
l +EB

m−EB
s )eiµ(EA

l −EA
n )

×Tr[U†(|l〉〈l| ⊗ |s〉〈s|)U(|n〉〈n| ⊗ |m〉〈m|)]
= Tr[U†(e−i(λ−µ)HA ⊗ e−iλHB)U(ei(λ−µ)HA ⊗ eiλHB) ρ0] . (A29)

Recalling Equation (A1), one easily verifies the identity χ[−iβB, i(βA − βB)] = 1, which
corresponds to the fluctuation theorem of Equation (A17). In fact, one has

〈e−Σ〉 =
∫

dW
∫

∆EA p(W, ∆EA) eβBW−(βA−βB)∆EA = χ[−iβB, i(βA − βB)] = 1 . (A30)

In terms of the characteristic function, we notice that the detailed fluctuation theorem of
Equation (A23) is translated into the symmetry

χR(λ, µ) = χ[−iβB − λ, i(βA − βB)− µ] . (A31)

In the presence of a symmetry in the unitary stroke achieved by U such that for a real
x 6= 0 one has

[HA + xHB, U] = 0 , (A32)

from Equation (A29) one obtains the corresponding property

χ(λ, µ) = χ((1− x)λ + xµ, (1− x)λ + xµ) = χ(0, µ− (1− x−1)λ) , (A33)
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i.e., the characteristic function becomes a function of a single variable. It follows that
x∂λχ = (1− x)∂µχ, and from Equation (A28) one obtains the symmetry relations

〈W j∆Ek
A〉 =

(
x

1− x

)k
〈W j+k〉 =

(
1− x

x

)j
〈∆Ej+k

A 〉 , (A34)

namely the stochastic variables W and ∆EA are perfectly correlated. Moreover, since
∆EB = −W − ∆EA, one has 〈∆Ek

A〉 = (−x)k〈∆Ek
B〉. It also follows that the average entropy

is simply proportional to the average work, namely

〈Σ〉 = xβA − βB
1− x

〈W〉 . (A35)

The effect of a strong symmetry as Equation (A32) can be seen directly on the joint proba-
bility p(W, ∆EA). In fact, by using the last expression in Equation (A33) for χ(λ, µ) in the
inverse Fourier transform of Equation (A27), one easily obtains

p(W, ∆EA) = p(∆EA) δ(W + (1− x−1)∆EA) , (A36)

namely one has the perfect correlation p(W|∆EA) = δ(W + (1− x−1)∆EA). In this case,
one also recognizes that the stochastic ∆EA-efficiency defined as the ratio η∆EA = W

−∆EA
,

is a self-averaging quantity and has no fluctuations, since η∆EA = 1− x−1. Interestingly,
under full correlation between W and ∆EA (and hence between W and Σ), in Ref. [62] it is
shown that a general lower bound for the mean entropy 〈Σ〉 in terms of the asymmetry of
the marginal work distribution p(W) evaluated by the relative entropy D(p(W)‖p(−W))
is saturated.
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