On Complex Matrix-Variate Dirichlet Averages and Its Applications in Various Sub-Domains
Abstract
:1. Introduction
Complex Domain
2. Dirichlet Averages for Functions of Matrix Argument in the Complex Domain
3. Dirichlet Averages in Complex Matrix-Variate Type-2 Dirichlet Measure
4. Dirichlet Averages in Complex Rectangular Matrix-Variate Dirichlet Measure
5. A Connection to Tsallis Statistics of Non-Extensive Statistical Mechanics
6. Applications
6.1. Special Functions
6.2. Fractional Calculus
6.3. Statistical Mechanics
6.4. Gene Expression Modeling
6.5. Geometrical Probability
6.6. Bayesian Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H. On Dirichlet us Divisor Problem. Proc. Lond. Math. Soc. 1917, 2, 1–25. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E. Some Problems of “Partitio Numerorum”. III. On the Expression of a Number as a Sum of Primes. Acta Math. 1923, 44, 1–70. [Google Scholar] [CrossRef]
- Erdős, L.; Yau, H. A Dynamical Approach to Random Matrix Theory; New York University: New York, NY, USA, 2017. [Google Scholar]
- Mai, J.-F.; Schenk, S.; Scherer, M. Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach. Stat. Risk Model. 2015, 32, 177–195. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Griffiths, T.L.; Steyvers, M. Finding Scientific Topics. Proc. Natl. Acad. Sci. USA 2004, 101, 5228–5235. [Google Scholar] [CrossRef] [PubMed]
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- de Finetti, B. Theory of Probability; Wiley: New York, NY, USA, 1974; Volume I. [Google Scholar]
- Carlson, B.C. Special Functions of Applied Mathematics; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Carlson, B.C. Lauricella’s hypergeometric function FD. J. Math. Anal. Appl. 1963, 7, 452–470. [Google Scholar] [CrossRef]
- Carlson, B.C. A connection between elementary and higher transcendental functions. SIAM J. Appl. Math. 1969, 17, 116–148. [Google Scholar] [CrossRef]
- Carlson, B.C. Invariance of an integral average of a logarithm. Amer. Math. Mon. 1975, 82, 379–382. [Google Scholar] [CrossRef]
- Carlson, B.C. Dirichlet Averages of xtlogx. SIAM J. Math. Anal. 1987, 18, 550–565. [Google Scholar] [CrossRef]
- Carlson, B.C. B-splines, hypergeometric functions and Dirichlet average. J. Approx. Theory 1991, 67, 311–325. [Google Scholar] [CrossRef]
- Mathai, A.M. Jacobians of Matrix Transformations and Functions of Matrix Argument; World Scientific Publishing: New York, NY, USA, 1997. [Google Scholar]
- Gupta, R.D.; Richards, D.S.P. Multivariate Liouville distribution. J. Multivariate Anal. 1987, 23, 233–256. [Google Scholar] [CrossRef]
- Hayakawa, T. On the distribution of the latent roots of a complex Wishart matrix (non-central case). Ann. Inst. Statist. Math. 1972, 24, 1–17. [Google Scholar] [CrossRef]
- Fujikoshi, Y. Asymptotic expansions of the non-null distributions of two criteria for the linear hypothesis concerning complex multivariate normal populations. Ann. Inst. Statist. Math. 1971, 23, 477–490. [Google Scholar] [CrossRef]
- Mathai, A.M. An Introduction to Geometrical Probability: Distributional Aspects with Applications; Gordon and Breach: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Mathai, A.M.; Provost, S.B.; Hayakawa, T. Bilinear Forms and Zonal Polynomials; Lecture Notes Series; Springer: New York, NY, USA, 1995. [Google Scholar]
- Mathai, A.M. Random volumes under a general matrix-variate model. Linear Algebra Its Appl. 2007, 425, 162–170. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Mathai, A.M.; Rathie, P.N. Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications; Wiley Eastern: Mumbai, India, 1975. [Google Scholar]
- Neuman, E.; Fleet, P.J.V. Moments of Dirichlet splines and their applications to hypergeometric functions. J. Comput. Appl. Math. 1994, 53, 225–241. [Google Scholar] [CrossRef]
- Massopust, P.; Forster, B. Multivariate complex B-splines and Dirichlet averages. J. Approx. Theory 2010, 162, 252–269. [Google Scholar] [CrossRef]
- Simić, S.; Bin-Mohsin, B. Stolarsky means in many variables. Mathematics 2020, 8, 1320. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Kattuveettill, A. Representations of Dirichlet averages of generalized Mittag–Leffler function via fractional integrals and special functions. Frac. Calc. Appl. Anal. 2008, 11, 471–492. [Google Scholar]
- Saxena, R.K.; Pogány, T.K.; Ram, J.; Daiya, J. Dirichlet averages of generalized multi-index Mittag–Leffler functions. Armen. J. Math. 2010, 3, 174–187. [Google Scholar]
- Uthayakumar, R.; Gowrisankar, A. Generalized Fractal Dimensions in Image Thresholding Technique, Inf. Sci. Lett. 2014, 3, 125–134. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Iftikhar, S.; Awan, M.U. Fractal Integral Inequalities for Harmonic Convex Functions. Appl. Math. Inf. Sci. Vol. 2018, 12, 831–839. [Google Scholar] [CrossRef]
- Dinesh, V.; Murugesan, G. A CPW-Fed Hexagonal Antenna With Fractal Elements For UWB Applications, Appl. Math. Inf. Sci. 2019, 13, 73–79. [Google Scholar] [CrossRef]
- Kumar, D.; Ram, J.; Choi, J. Dirichlet Averages of Generalized Mittag–Leffler Type Function. Fractal Fract. 2022, 6, 297. [Google Scholar] [CrossRef]
- Liu, Y. Extended Bayesian Framework for Multicategory Support Vector Machine. J. Stat. Appl. Prob. 2020, 9, 1–11. [Google Scholar]
- Kumar, M.; Awasthi, A.A.; Kumar, A.; Patel, K.K. Sequential Testing Procedure for the Parameter of Left Truncated Exponential Distribution. J. Stat. Appl. Prob. 2020, 9, 119–125. [Google Scholar]
- Albeverio, S.; Høegh-Krohn, R. Some remarks on Dirichlet forms and their applications to quantum mechanics and statistical mechanics. Funct. Anal. Markov Process. 1982, 923, 120–132. [Google Scholar]
- Rodriguez, A.; Tsallis, C. Connection between Dirichlet distributions and a scale-invariant probabilistic model based on Leibniz-like pyramids. J. Stat. Mech. Theory Exp. 2014, 12, P12027. [Google Scholar] [CrossRef]
- Scalas, E.; Gabriel, A.T.; Martin, E.; Germano, G. Velocity and energy distributions in microcanonical ensembles of hard spheres Phys. Rev. E 2015, 92, 022140. [Google Scholar]
- Wang, L.; Wang, X. Hierarchical Dirichlet process model for gene expression clustering. EURASIP J. Bioinform. Syst. Biol. 2013, 5, 1–14. [Google Scholar] [CrossRef]
- Thomas, S.; Mathai, A.M. p-Content of a p-Parallelotope and Its Connection to Lilkelihood Ratio Statistic. Sankhyä Indian J. Stat. Ser. 2009, 71, 49–63. [Google Scholar]
- Dickey, J.M. Multiple hypergeometric functions: Probabilistic interpretations and statistical uses. J. Amer. Statist. Assoc. 1983, 78, 628–637. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thankamani, P.; Sebastian, N.; Haubold, H.J. On Complex Matrix-Variate Dirichlet Averages and Its Applications in Various Sub-Domains. Entropy 2023, 25, 1534. https://doi.org/10.3390/e25111534
Thankamani P, Sebastian N, Haubold HJ. On Complex Matrix-Variate Dirichlet Averages and Its Applications in Various Sub-Domains. Entropy. 2023; 25(11):1534. https://doi.org/10.3390/e25111534
Chicago/Turabian StyleThankamani, Princy, Nicy Sebastian, and Hans J. Haubold. 2023. "On Complex Matrix-Variate Dirichlet Averages and Its Applications in Various Sub-Domains" Entropy 25, no. 11: 1534. https://doi.org/10.3390/e25111534
APA StyleThankamani, P., Sebastian, N., & Haubold, H. J. (2023). On Complex Matrix-Variate Dirichlet Averages and Its Applications in Various Sub-Domains. Entropy, 25(11), 1534. https://doi.org/10.3390/e25111534