
Citation: Žalik, B.; Strnad, D.;

Podgorelec, D.; Kolingerová, I.;

Lukač, L.; Lukač, N.; Kolmanič, S.;

Žalik, K.R.; Kohek, Š. A New

Transformation Technique for

Reducing Information Entropy: A

Case Study on Greyscale Raster

Images. Entropy 2023, 25, 1591.

https://doi.org/10.3390/e25121591

Academic Editor: Mateu Sbert

Received: 7 November 2023

Revised: 20 November 2023

Accepted: 22 November 2023

Published: 27 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A New Transformation Technique for Reducing Information
Entropy: A Case Study on Greyscale Raster Images
Borut Žalik 1,* , Damjan Strnad 1 , David Podgorelec 1 , Ivana Kolingerová 2 , Luka Lukač 1 , Niko Lukač 1 ,
Simon Kolmanič 1 , Krista Rizman Žalik 1 and Štefan Kohek 1

1 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46,
SI-2000 Maribor, Slovenia; damjan.strnad@um.si (D.S.); david.podgorelec@um.si (D.P.);
luka.lukac@um.si (L.L.); niko.lukac@um.si (N.L.); simon.kolmanic@um.si (S.K.); krista.zalik@um.si (K.R.Ž.);
stefan.kohek@um.si (Š.K.)

2 Department of Computer Science and Engineering, University of West Bohemia, Technická 8,
306 14 Plzen̆, Czech Republic; kolinger@kiv.zcu.cz

* Correspondence: borut.zalik@um.si

Abstract: This paper proposes a new string transformation technique called Move with Interleaving
(MwI). Four possible ways of rearranging 2D raster images into 1D sequences of values are applied,
including scan-line, left-right, strip-based, and Hilbert arrangements. Experiments on 32 benchmark
greyscale raster images of various resolutions demonstrated that the proposed transformation reduces
information entropy to a similar extent as the combination of the Burrows–Wheeler transform
followed by the Move-To-Front or the Inversion Frequencies. The proposed transformation MwI
yields the best result among all the considered transformations when the Hilbert arrangement
is applied.

Keywords: computer science; algorithm; string transformation; information entropy; Hilbert space
filling curve

1. Introduction

Information entropy is a measure for an uncertainty in data [1]. Data with lower
entropy have reduced diversity and, consequently, are more predictable. The concept was
introduced by Shannon [2]. It finds applications in various disciplines including computer
science [3], mathematics [4], chemistry [5], mechanics [6], and statistics [7]. In computer
science, we are often interested in determining the minimum number of bits required to
encode a message X, where X = 〈xi〉 is a sequence of symbols from the alphabet ΣX = {xi}.
Each symbol xi ∈ ΣX is assigned a probability pi, which is calculated as the ration of the
number of occurrences of xi in X to the number of all symbols in X. Shannon’s information
entropy is calculated with Equation (1), and provides a lower bound on the average number
of bits required to represent symbols xiΣX .

H(X) = −
|ΣX |−1

∑
i=0

pi log2(pi). (1)

The entropy is strongly related to the efficiency of various compression algorithms;
lower entropy leads to better compression [8,9]. However, there are known techniques that
can influence the information entropy of X [10], including predictions and transformations.
This paper initially considers three such transformation techniques: Move-To-Front, Inver-
sion Frequencies, and the Burrows–Wheeler Transform. A new transformation technique is
proposed later.

This paper is divided into five Sections. Section 2 provides a brief explanation of
Move-To-Front, Inversion Frequencies, and the Burrows–Wheeler Transform. Section 3

Entropy 2023, 25, 1591. https://doi.org/10.3390/e25121591 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25121591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4372-5020
https://orcid.org/0000-0003-4468-0290
https://orcid.org/0000-0002-0701-9201
https://orcid.org/0000-0003-4556-2771
https://orcid.org/0000-0003-4691-5401
https://orcid.org/0000-0002-9517-1157
https://orcid.org/0000-0002-0776-1860
https://orcid.org/0000-0001-6980-4523
https://orcid.org/0000-0002-6210-0889
https://doi.org/10.3390/e25121591
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25121591?type=check_update&version=1

Entropy 2023, 25, 1591 2 of 13

introduces the new transformation method named Move-With-Interleaving (MwI), and dis-
cusses various possibilities for arranging the data from the raster images into sequences
X, which are then transformed. The results of applying the considered transformations
on 32 benchmark greyscale raster images are presented in Section 4. Section 5 concludes
the paper.

2. Background

String transformation techniques, including Move-To-Front [11], Inversion Frequen-
cies [12], Sorted Inversion Frequencies [13], Frequency Count [14], Weighted Frequency
Count [15], Distance Coding [16], Time Stamp [17], Burrows–Wheeler Transform [18],
have attracted a lot of research attention in the past. In this paper, however, we will limit
our focus to the most known techniques, namely Move-To-Front, Inversion Frequencies,
Burrows–Wheeler Transform, and their combinations [19].

2.1. Move-To-Front Transform

Move-To-Front (MTF) transformation was introduced independently by Ryabko [11],
and, shortly thereafter, by Bentley et al. [14]. It is one of the self-organising data structures [20].
MTF transforms X = 〈xi〉, xi ∈ ΣX, into Y = 〈yi〉, yi ∈ ΣY = {0, 1, 2, · · · , |ΣX| − 1}. Not all
elements from ΣY need to exist in Y. MTF changes the domain from ΣX to the set of natural
numbers including 0. The lengths of the sequences X and Y remain the same, i.e., |X| = |Y|.
MTF utilises a list L with random access, and operates through the following steps:

• Initialisation: fill L with all xi ∈ ΣX ,
• For each xi ∈ X:

– Find the index l in L where xi is located;
– Send l to Y;
– Increment the positions of all xk, where 0 ≤ k < l;
– Move xi to the front of L.

Let us consider an example in Table 1, where X = 〈barbara|barbara〉, ΣX = {a, b, r, |}
and H(X) = 1.806. MTF transforms X into Y = 〈1, 1, 2, 2, 2, 2, 1, 3, 3, 2, 3, 2, 2, 2, 1〉, with
H(Y) = 1.457. In this example, Y contains fewer symbols than |ΣX |, although this is not
always the case.

Table 1. MTF Transform: an example.

X / 1 b a r b a r a | b a r b a r a

L

0 a b a r b a r a | b a r b a r a
1 b a b a r b a r a | b a r b a r
2 r r r b a r b b r a | b a r b b
3 | | | | | | | | b r r | | | | |

Y 1 1 2 2 2 2 1 3 3 2 3 2 2 2 1
1 Initialisation.

MTF reduces the information entropy in data by revealing local correlations. In fact,
the sequences of the same symbols are transformed into 0, pairs of symbols are trans-
formed into 1, triplets are transformed into 2, and so on. In some cases, repeated MTF
transformations further reduce H [21].

The Inverse Move-To-Front (IMTF) Transform is straightforward. The input consists
of the sequence of indices Y = 〈yi〉 and the alphabet ΣX . List L should be initialised in the
same manner as in the MTF case (see Table 1). After that, indices l = yi are taken one by
one from Y. The symbol xi at index l in L is read and sent to X. L is then rearranged in the
same way as during the transformation.

Entropy 2023, 25, 1591 3 of 13

2.2. Inversion Frequencies

Transformation Inversion Frequencies (IF) was proposed by Arnavut and Magliv-
eras [12,22]. IF accepts X = 〈xi〉 as an input, where xi is from the alphabet ΣX, and trans-
forms it into Y = 〈yi〉, yi ∈ ΣY, where ΣY = {0, 1, 2, · · · , |X| − 1}. Similarly to MTF, IF
transforms the input symbols into the domain of natural numbers, but this time, the limit
is |X| instead of |ΣX | as in the case of MTF. Of course, not all elements from ΣY need to be
present in Y.

For each xi ∈ ΣX, IF stores the position (i.e., an index) of its first appearance in X,
and calculates an offset for all subsequent occurrences of xi. However, all symbols xj ∈ ΣX ,
0 ≤ j < i, that have been used up to this point, are skipped over. The partial results for
each xi are stored in auxiliary sequences Axi , which are merged in Y at the end.

Let us transform X = 〈barbara|barbara〉 with IF, where ΣX = {a, b, r, |}. The partial
transformations are:

• Aa = 〈1, 2, 1, 2, 2, 1〉;
• Ab = 〈0, 1, 2, 1〉;
• Ar = 〈0, 0, 1, 0〉;
• A| = 〈0〉.

The first ’a’ is located at position 1 in X and, therefore, the first entry into Aa is
1. To reach the next ’a’, two symbols (’r’ and ’b’) have to be skipped, and therefore,
the next entry into Aa is 2. The remaining entries in Aa are obtained using the same
principle. First, ’b’ is located at index 0. Two symbols (’a’ and ’r’) exist before the next
’b’. However, ’a’ was already used, giving the offset 1. The first appearance of ’r’ in X
is at the position 2. However, as ’b’ and ’a’ were already used they should be skipped,
and therefore, the first entry in Ar is 0. All the auxiliary arrays are then merged into
Y = 〈1, 2, 1, 2, 2, 1, 0, 1, 2, 1, 0, 0, 1, 0, 0〉 with H(Y) = 1.566. Expectantly, the values in the
auxiliary sequences become smaller gradually, with all entries being zero for the last symbol.

Inverse Inversion Frequency (IIF) transformation requires information about the
lengths of auxiliary sequences, i.e., the frequencies of the symbols in X, in addition to Y
and ΣX . In our example, F = 〈6, 4, 4, 1〉. However, F could be avoided by the introduction
of a guard, which should not be an element in ΣX . The guard then separates the elements
from auxiliary sequences. As we know that the last auxiliary array only contains zeros, it
can be avoided. If the guard is −1, then Y = 〈1, 2, 1, 2, 2, 1,−1, 0, 1, 2, 1,−1, 0, 0, 1, 0,−1〉.
When the occurrence of the last symbol exceeds |ΣX |, |Y| < |X| could be advantageous,
for example, for compression.

2.3. Burrows–Wheeler Transform

One of the ideas on how to transform X could be the generation of all possible
permutations, and then selecting the one with the highest local correlations. The consecutive
number of this permutation should be stored to reproduce the X. Unfortunately, the number
of permutations grows exponentially by |X|, and this approach is, therefore, not applicable
in practice. However, one of the permutations is obtained by sorting. The sorted sequence
offers many good properties; among others, the local correlations are also emphasised.
Unfortunately, an inverse transformation, which would convert the sorted sequence into
its unsorted source, is not known. Burrows–Wheeler Transform (BWT), one of the most
surprising algorithms in Computer Science [23], constructs the permutation of X, where
the same symbols tend to be close together. In addition, only O(1) additional information
is needed to restore X. Transformation, as suggested by Burrows and Wheeler [18], consists
of four steps:

1. Generating |X| permutations of X through rotational shift-right operations;
2. Sorting the obtained permutations lexicographically;
3. Reading the BWT(X) from the last column of the sorted permutations;
4. Determining the position of X in the sorted array of permutations. This position is

essential for reconstruction, and is considered a BWT index, iBWT ;

Entropy 2023, 25, 1591 4 of 13

The construction of BWT for X = 〈barbara|barbara〉 is shown in Table 2. The majority
of the same symbols are placed together in the obtained result Y = 〈rbbbbrrr|aaaaaa〉.
The position of X, iBWT = 9, should be stored for reconstruction.

Table 2. BWT: an example.

i Step 1 Step 2 Step 3 Step 4

0 barbara|barbara abarbara|barbar r
1 arbara|barbarab arabarbara|barb b
2 rbara|barbaraba ara|barbarabarb b
3 bara|barbarabar arbarabarbara|b b
4 ara|barbarabarb arbara|barbarab b
5 ra|barbarabarba a|barbarabarbar r
6 a|barbarabarbar barabarbara|bar r
7 |barbarabarbara bara|barbarabar r
8 barbarabarbara| barbarabarbara| |
9 arbarabarbara|b barbara|barbara a ←

10 rbarabarbara|ba rabarbara|barba a
11 barabarbara|bar ra|barbarabarba a
12 arabarbara|barb rbarabarbara|ba a
13 rabarbara|barba rbara|barbaraba a
14 abarbara|barbar |barbarabarbara a

iBWT = 9 is needed to reconstruct X from Y. The first column C of the sorted array
of permutations is obtained from Y straightforwardly by sorting (see Table 3). The first
symbol is easily obtained from C, as it is pointed by iBWT = 9, C9 = ’b’ and X = 〈b〉.
The symbol ’b’ is the fourth ’b’ in C, and, therefore, it can be found in Y at the position 4.
C4 = ’a’ is inserted into X = 〈ba〉. The found symbol was the fifth ’a’ in C, so the fifth ’a’ is
searched for in Y. It is found at position 13, where the corresponding C13=’r’ is added into
X = 〈bar〉. The process continues until index iBWT is reached again.

Table 3. Reconstructing BWT.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Y r b b b b r r r | a a a a a a
C a a a a a a b b b b r r r r |

3. Materials and Methods

Continuous-tone greyscale raster images (i.e., photographs) are used in our study,
and therefore, the new transformation technique, introduced in Section 3.1, is designed
accordingly. There are various transformations commonly applied to images among with
Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) among the most
widely used. These transformations are most frequently used for the spectral analysis of the
image for the quantification of higher frequencies for lossy compression. The rare exception
is JPEG2000 with LGT 5/3 wavelet which enables lossless compression. However, previ-
ous studies demonstrate higher compression ratios for more advanced prediction-based
encoders for lossless compression, such as JPEG-LS [24,25], FLIF, and JPEG XL lossless [26].
Prediction methods are more commonly used for reducing information entropy for lossless
image compression [27]. However, these methods are domain-dependent, whereas the
proposed transformation methods are general.

Images are 2D structures that should be rearranged into 1D sequences to apply the
aforementioned transformation techniques. However, this rearrangement can be performed
in different ways, as discussed in Section 3.2.

Entropy 2023, 25, 1591 5 of 13

3.1. Move with Interleaving

Let I be a greyscale raster image consisting of pixels px,y, 0 ≤ x < N, 0 ≤ y < M,
where N ×M is the image resolution, and px,y ∈ [0, 255]. The pixels are arranged in the
sequence X = 〈xi〉, xi ∈ [0, 255], |X| = N×M, on which transformation is applied in order
to reduce the information entropy.

Neighbouring pixels px,y ∈ I, and therefore also consecutive symbols xi ∈ X, often re-
veal local correlations. However, in the majority of cases in photographs, these correlations
do not manifest as the sequences of the same values or repeated patterns; instead, these
values tend to be just similar enough within a certain tolerance δ. It can be assumed that
the suitable value for δ depends on the specific image, and therefore, it is experimentally
determined in Section 4. The values of xi change importantly only when the scene in I
changes drastically (for example, such as during the transition from a branch of a tree
the image background [28]). MTF would, in such a case (see Section 2.1), issue a long
sequence of large indices to bring enough similar values near to the beginning of the list.
Unfortunately, this means that the values in Y would be considerably dispersed, which is
undesirable from the information entropy perspective.

The proposed transformation is based on the idea of MTF and, therefore, utilises list
L with random access. Let xi ∈ X represent the value to be transformed. The position l
of xi in L should be found and l is sent to Y. The updating process of the L operates in
two modes:

Mode 1: MTF is applied when l ≤ δ.

Mode 2: The temporal array T is filled with 2 · δ interleaved values, starting with xi when
l > δ. The values from T are then inserted at the front of L, shifting all the
remaining values in L accordingly. This is why we named this transformation
Move with Interleaving (MwI).

Algorithm 1 presents a pseudocode for the MwI transform, which is demonstrated by
an example, where the alphabet ΣX ∈ [0, 15]. Given X = 〈7, 9, 11, 10, 2, · · · 〉 as the first five
elements of X, and let δ = 3, the following steps are performed:

1. Function InitialiseL in Line 4 of Algorithm 1 obtains the first element from X (x0 = 7)
and δ = 3 as input, and populates the list L. The first element in L becomes x0,
while 2 · δ elements from interval [7 − 3, 7 + 3] are interleaved around this value.
The remaining elements of L are then filled from the smallest up to the largest possible
value from the interval [0, 15], according to the alphabetical order in ΣX. x0 also
becomes the first element in Y (see Line 5) to enable the same initialisation of L during
the decoding phase. The situation after the initialisation is therefore:

i = 0
X = 〈7, 9, 11, 10, 2, · · · 〉
L = 〈7, 8, 6, 9, 5, 10, 4, 0, 1, 2, 3, 11, 12, 13, 14, 15〉.
Y = 〈7〉

2. The remaining elements from X are then transformed within the For-loop starting at
Line 6 and ending in Line 15. Let us follow the algorithm for some elements from X.

i = 1: Function in Line 7 finds the position l = 3 for x1 = 9. l is inserted into Y
in Line 8. The MTF transform in Line 10 is applied as l ≤ δ to obtain the
following situation:

i = 1
X = 〈7, 9, 11, 10, 2, · · · 〉
L = 〈9, 7, 8, 6, 5, 10, 4, 0, 1, 2, 3, 11, 12, 13, 14, 15〉.
Y = 〈7, 3〉

Entropy 2023, 25, 1591 6 of 13

i = 2: For x2 = 11, function GetPosition returns l = 11, which is inserted into Y.
As l > δ, function FillT in Line 12 generates the interleaved values around
x2 = 11. It returns T = 〈11, 12, 10, 13, 9, 14, 8〉. Function ModifyL in Line 13
moves T in front of L, while other values are placed after it. We obtained:

i = 2
X = 〈7, 9, 11, 10, 2, · · · 〉
T = 〈11, 12, 10, 13, 9, 14, 8〉
L = 〈11, 12, 10, 13, 9, 14, 8, 7, 6, 5, 4, 0, 1, 2, 3, 15〉.
Y = 〈7, 3, 11〉

i = 3: GetPosition returns l = 2 for x3 = 10 and inserts l into Y. Function MTF is
applied because l < δ. The obtained situation is:

i = 3
X = 〈7, 9, 11, 10, 2, · · · 〉
L = 〈10, 11, 12, 13, 9, 14, 8, 7, 6, 5, 4, 0, 1, 2, 3, 15〉.
Y = 〈7, 3, 11, 2〉

i = 4: x4 = 2, l = 13, l > δ. Sequence T = 〈2, 3, 1, 4, 0, 5〉 contains only 6 elements
this time, as the values being outside [0, 15] are not inserted. The obtained
situation is therefore:

i = 4
X = 〈7, 9, 11, 10, 2, · · · 〉
T = 〈2, 3, 1, 4, 0, 5〉
L = 〈2, 3, 1, 4, 0, 5, 10, 11, 12, 13, 9, 14, 8, 7, 6, 15〉.
Y = 〈7, 3, 11, 2, 13〉

Algorithm 1 Transformation MwI

1: function MwI(X, δ) . Returns transformed sequence Y
2: . X: input sequence; δ: tolerance
3: i = 0
4: L = InitialiseL(xi, δ) . Initialisation of L is done according to xi=0
5: Y0 = xi . The first entry in Y is xi=0
6: for i← 1 to |X| do . For all other xi
7: l =GetPosition(L, xi) . Find the position of xi in L
8: Y = AddToY(Y, l) . Store the position in Y
9: if l ≤ δ then . If position is smaller that δ

10: L = MTF(l, L) . Then rearrange L according to MTF
11: else . otherwise
12: T = FillT(xi, δ) . Fill temporal sequence T
13: L = ModifyL(L, T) . Place symbols in T in front of L
14: end if
15: end for
16: return Y . Returns transformed sequence
17: end function

The inverse MwI transformation (IMwI) is shown in Algorithm 2. As can be seen,
it completely mimics the transformation procedure. The first element in Y represent the
absolute value of x0, and it is obtained in Line 3. x0 is utilised to populate the list L in
Line 4, and depended on the output sequence X in Line 5. All other elements in Y are
processed with the for-loop starting in Line 6. The specific position l is obtained from Y
(Line 7), the value v is retrieved from L at the position l (Line 8), and stored in X in Line 9.
After that, the algorithm evaluates l with regard to δ and applies either MTF (Line 11) or
resets the content of L in Lines 13 and 14. When all indices from X have been processed,
the reconstructed values are returned in Line 17.

Entropy 2023, 25, 1591 7 of 13

Algorithm 2 Inverse MwI transformation

1: function IMwI(Y, δ) . Returns restored sequence X
2: . Y: input sequence of indices; δ: tolerance
3: x0 = Y0 . The first entry in X is Y0
4: L = InitialiseL(x0, δ) . Initialisation of L is done according to first element
5: AddToX(X, x0) . x0 is sent to the reconstructed sequence X
6: for i← 1 to |Y| − 1 do . For all other yi
7: l = Yi . Get the position from Y
8: v = Ll . Get the value from L
9: X = AddToX(X, v) . Store the value in X

10: if l ≤ δ then . If position is smaller that δ
11: L = MTF(l, L) . Then rearrange L according to MTF
12: else . Otherwise
13: T = FillT(v, δ) . Fill temporal sequence T
14: L = ModifyL(L, T) . Place symbols in T in front of L
15: end if
16: end for
17: return X . Returns restored sequence
18: end function

3.1.1. Time Complexity Estimation

The worst-case time complexity analysis for the considered transformation techniques
is performed in this subsection.

MTF: In the worst-case scenario, the last element of L should always be moved to the
front. There are |ΣX | elements in L and consequently, TMTF(X) = |ΣX | · |X|.
Since |ΣX | << |X|, TMTF(X) = O(|X|).

IF: For each xi ∈ ΣX , all elements in X are always visited, resulting in TIF(X) =
|ΣX | · |X|. Again, since |ΣX | << |X|, TIF(X) = O(|X|).

BWT: The algorithm presented in Section 2.3 has, unfortunately, A time complexity
of O(|X|2 log |X|), which limits its practical use for longer sequences. Later,
it was shown that BWT can be constructed from the suffix array in linear
time [23], and since there are known algorithms for constructing the suf-
fix array in linear time [29,30], BWT itself can be obtained in TBWT(X) =
O(|X|) time.

BWT+MTF: Based on the above analysis, the combination BWT, followed by MTF, works
in TBWT+MTF(X) = TBWT(X) + TMTF(X) = O(|X|).

BWT+IF: Similarly, as above, the combination BWT, followed by IF, operates in time
complexity TBWT+IF(X) = TBWT(X) + TIF(X) = O(|X|).

MwI: MwI operates in two modes. In mode 1, then TMwI(X) = TMTF(X) = O(|X|).
In mode 2, the algorithm performs two tasks. Firstly, it fills the auxiliary
sequence T with ∆ = 1 + 2 · δ elements. After that, it applies MTF ∆ times
resulting in a total of TMwI(X) = ∆ · |ΣX | · |X| operations. Since ∆ ≤ |ΣX | <<
|X|, TMwI(X) = O(|X|).

3.2. Rearranging Raster Data in the Sequence

Images are typically rearranged into sequences using a Scan-line order, which is a heritage
of television (see Figure 1a). Three other possibilities shall be used for our experiments:

• Left-right scan (Figure 1b);
• Strip scan (Figure 1c);
• Hilbert scan (Figure 1d).

The Strip arrangement requires a user-defined parameter h for the width of the strip.
Its value is evaluated in Section 4. A well-established approach for transforming multi-
dimensional data into a one-dimensional form is through the use of space-filling curves.

Entropy 2023, 25, 1591 8 of 13

The Hilbert curve [31] has been frequently applied to images [10,32,33]. An implementation
based on the state diagram [34] has been used for mapping between 2D images and 1D
sequences, and vice versa. The complete Hilbert curve can only be constructed on images
with resolutions equal to powers of 2 in both directions. However, images of different
resolutions are quite common. Therefore, the Hilbert curve is cut off accordingly, as shown
in Figure 1d.

(a) (b)

h

(c) (d)

Figure 1. Different arrangements of pixels into a sequence: (a) Scan-line; (b) Left-right; (c) Strip; and
(d) Hilbert.

4. Experiments

Figure 2 shows 32 benchmark 8-bit greyscale images used in the performed exper-
iments. Table 4 gives the resolutions of these images in the second column, and their
information entropies in the third one.

The information about the proposed transformation MwI is given in the fourth and
fifth columns: firstly, the best values of δ, and secondly, the achieved information entropies.
On average, the best value of δ is 12. However, δ = 11 was used for further experiments,
since 17 out of the 32 images achieved the best reduction in entropy with δ < 12. The de-
crease in information entropy is shown in columns 6, 7, and 8 of Table 4 for MTF, IF,
and MwI, respectively. MwI considerably outperformed MTF and IF.

BWT was used before MTF, IF, and MwI in the last three columns of Table 4. BWT
had a considerably positive effect only on MTF and IF, but not on MwI. MwI, with its
transformation mechanism, is capable of entirely replacing BWT. The last row of Table 4
shows the rank achieved by all the considered transformations. The ranking was as follows:
BWT in front of IF was in the first place, MwI was in the second, BWT followed by MTF
was in the third, while MwI after BWT, IF, and MWI were in the fourth, fifth, and the sixth
places, respectively.

Entropy 2023, 25, 1591 9 of 13

(1) Baboon (2) Ballons (3) Barb (4) Barbara

(5) Bark (6) Board (7) Boats (8) Cameraman

(9) Earth (10) Flower (11) Flowers (12) Fruits

(13) Girl (14) Gold (15) Lena (16) Malamute

(17) Maltese (18) Man (19) Mango (20) Mercury

(21) Monarch (22) Mosaic (23) Mushrooms (24) Parrots

(25) Pens (26) Peppers (27) Rainier (28) Sailing

(29) Sun (30) Sunrise (31) Yachts (32) Zelda

Figure 2. Testing raster images.

Entropy 2023, 25, 1591 10 of 13

Table 4. Information about the images’ resolutions and their entropies H, and the entropies obtained
by different transformations—all for the Scan-line order.

I N × M H δopt MwI(δopt) MTF IF MwI 1 BWT
MTF BWT IF BWT

MwI 1

(1) 512× 512 7.357 25 6.471 7.308 7.415 6.567 6.656 6.680 6.661
(2) 720× 576 7.346 5 4.074 5.649 5.497 4.172 3.989 3.920 4.008
(3) 720× 576 7.484 13 6.033 6.936 6.868 6.037 6.285 6.112 6.248
(4) 512× 512 7.343 16 5.351 6.769 6.888 6.370 6.156 6.020 6.518
(5) 512× 512 7.325 40 6.757 7.517 7.849 7.016 6.792 6.873 6.786
(6) 720× 576 6.828 9 4.526 5.454 5.364 4.535 4.617 4.459 4.625
(7) 720× 576 7.088 11 5.043 6.008 5.909 5.043 5.266 5.095 5.271
(8) 256× 256 6.904 11 5.551 6.349 6.323 5.551 5.834 5.667 5.799
(9) 512× 512 7.155 17 5.544 6.740 6.702 5.598 5.569 5.511 5.555
(10) 512× 480 7.410 8 4.764 6.375 6.288 4.803 4.553 4.463 4.515
(11) 500× 362 7.305 17 5.608 6.832 6.668 5.641 5.823 5.629 5.808
(12) 512× 480 7.366 10 4.840 6.294 6.218 4.844 4.805 4.657 4.740
(13) 720× 576 7.288 12 5.111 6.489 6.455 5.114 5.166 5.067 5.178
(14) 720× 576 7.530 14 5.262 6.485 6.308 5.268 5.516 5.382 5.547
(15) 512× 512 7.348 10 5.184 6.629 6.720 5.189 5.240 5.118 5.233
(16) 1616× 1080 7.792 14 5.427 6.994 6.865 5.439 5.326 5.153 5.321
(17) 2238× 2446 6.964 6 3.912 5.056 4.932 4.036 3.927 3.961 4.051
(18) 1024× 1024 7.524 15 5.480 6.900 6.834 5.511 5.662 5.523 5.682
(19) 1360× 732 7.729 6 4.138 5.739 5.673 4.204 4.060 3.930 4.083
(20) 732× 529 4.711 16 3.707 4.352 4.313 3.728 3.850 3.687 3.854
(21) 768× 512 7.18 8 4.770 6.082 5.935 4.787 4.770 4.632 4.768
(22) 512× 512 2.983 0 0.125 0.125 0.173 0.133 0.133 0.126 0.143
(23) 481× 321 7.585 12 6.042 7.230 7.095 6.042 5.961 5.788 5.875
(24) 768× 512 7.256 7 4.460 5.842 5.652 4.482 4.590 4.455 4.638
(25) 512× 480 7.482 13 5.203 6.977 6.845 5.216 4.908 4.819 4.846
(26) 512× 512 7.594 14 5.258 6.840 6.967 5.288 5.459 5.373 5.451
(27) 1920× 1080 7.088 21 4.632 5.127 5.022 4.658 4.732 4.510 4.711
(28) 512× 768 7.131 9 4.774 5.865 5.677 4.775 4.966 4.845 5.039
(29) 2100× 2034 6.950 5 3.599 4.533 4.261 3.641 3.551 3.360 3.713
(30) 6000× 2908 7.328 8 4.290 4.741 4.523 4.310 4.411 4.269 4.493
(31) 512× 480 7.560 8 5.093 6.421 6.473 5.105 5.098 4.976 5.025
(32) 720× 576 7.334 11 4.830 6.536 6.436 4.830 4.941 4.889 4.975

Average 7.102 12.2 4.870 6.039 5.973 4.935 4.949 4.842 4.974
Rank 6 5 2 3 1 4

1 δ = 11 was used.

Table 5 presents the average entropy of all 32 benchmark images when different
pixel arrangements were used to obtain sequence X. The results are quite intriguing,
and deserve further analysis. For example, MTF significantly benefited from the Strip order,
but performed poorly on the Scan-line and Left-right orders. The same pattern also applies
to IF. On the other hand, the effect of the arrangement type was reduced when BWT was
used in front of MTF or IF. Even more, BWT followed by MTF or IF was the best when the
Scan-line order was applied. The pipeline BWT followed by MwI yielded worse results
compared to using MwI alone. Therefore, it can be concluded that MwI efficiently replaced
BWT. It can be observed that MwI was also not very sensitive to the data arrangements.
However, the Hilbert arrangement was the most suitable, as, in this case, MwI achieved the
best result between all the tested transformation and data arrangements.

Entropy 2023, 25, 1591 11 of 13

Table 5. Average entropies achieved for different arrangements of the pixels in sequences.

Order MTF IF MwI BWT MTF BWT IF BWT MwI

Scan-line 6.039 5.973 4.935 4.949 4.842 4.974
Left-right 6.004 5.905 4.925 4.959 4.843 4.977
Strips 5.111 1 5.036 2 4.962 3 5.118 4 5.000 4 5.149 1

Hilbert 5.349 5.905 4.754 5.012 4.889 5.050
1 width of the strip h = 4. 2 width of the strip h = 12. 3 width of the strip h = 8. 4 width of the strip h = 16.

Besides the formal analysis provided in Section 3.1.1, it is even more important to
consider how efficient the algorithm is in practice. Table 6 shows the CPU time spent on
three techniques, all achieving a similar reduction in information entropy for seven images
ranging from the smallest to the largest. The Scan-line order was used, and MwI was
consistently the fastest in all cases.

Table 6. The CPU time spent in seconds for three transformation techniques, all achieving similar
reductions in information entropy.

Image No. of Pixels BWT and MTF BWT and IF MwI

(8) 65,536 0.042 0.068 0.037
(1) 262,144 0.260 0.308 0.162
(6) 414,720 0.432 0.465 0.217

(18) 1,048,576 1.365 1.589 0.616
(16) 1,745,280 2.554 2.781 0.992
(27) 2,073,600 8.910 9.451 2.901
(30) 17,448,000 31.966 32.669 9.331

Personal computer with AMD Ryzen 5 5500 processor clocked at 3.60 GHz and
equipped with 32 GB of RAM, running the Windows 11 operating system, was used
in the experiments. The algorithms were programmed in C++ using MS Visual Studio,
version 17.4.2.

5. Discussion

This paper introduces a transformation technique named Move with Interleaving (MwI).
It operates in two modes. The first mode is the classical Move-To-Front, where the con-
sidered symbol xi from the alphabet ΣX is moved to the front of the list L. In the second
mode, MwI moves 2 · δ symbols interleaved around xi in front of L. As a result of MwI,
less oscillating transformed values are obtained, which exhibit lower information entropy.
The approach proves to be especially beneficial in the sequences of symbols where local
correlations are manifested as similar symbols within a certain tolerance, rather than as
completely identical symbols, or symbols that reveal repeating patterns. Continuous-tone
raster images are typical examples of such data, and were used in this paper to illustrate
the concept.

Pixels, which define a raster image, can be arranged into a sequence in various ways,
with Scan-order being used the most frequently. Three other possibilities have been tried
in this study: Left–right, Strip, and the Hilbert arrangement. The proposed MwI was
compared against Move-To-Front (MTF) and Inversion Frequencies (IF) transformations,
both individually, and after applying the Burrows–Wheeler transform (BWT).

A total of 32 benchmark 8-bit greyscale raster images with different resolutions and
contexts were used in the experiments. The effect of the aforementioned transformations
on the information entropy can be summarised as follows:

• When BWT is not used before MwI, it is considerably more efficient than MTF and IF.
• MwI is as efficient as BWT, followed by MTF or IF.
• BWT followed by MwI yields worse results in comparison to the results obtained by

MwI alone.

Entropy 2023, 25, 1591 12 of 13

• MwI is less sensitive to the arrangements on the input data compared to MTF and IF.
• MwI is the most efficient transformation technique when the Hilbert data arrangement

is used.
• BWT, for its operations, requires the knowledge of the whole sequence in advance,

while MwI operates incrementally and can, therefore, also be used in streaming
applications.

• Implementing MwI is easier compared to BWT, as it does not require the implementa-
tion of a prefix array for computational efficiency.

At this point, it is worth mentioning that string transformation techniques are less
efficient than the modern prediction methods in the domain of 2D continuous-tone raster
images [27,35]. In future work, it would be interesting to investigate the combination
of prediction-based methods and the proposed MwI transformation. A comprehensive
comparison with other string transformation techniques and data domains, such as audio,
should be conducted. And finally, open challenges remain: how to set δ for each individual
data sequence, or even better, how to dynamically modify it during the processing of the
considered data sequences.

Author Contributions: Conceptualisation, B.Ž.; methodology, D.S., Š.K. and N.L.; software, B.Ž.
and K.R.Ž.; validation I.K. and D.P.; formal analysis, D.P. and Š.K.; investigation, B.Ž., D.P. and I.K.;
resources, I.K.; data curation, Š.K. and L.L.; writing—original draft preparation, B.Ž.; writing—review
and editing, D.S., I.K., Š.K., N.L., S.K. and K.R.Ž.; visualisation, L.L. and S.K.; supervision, I.K. and
B.Ž.; project administration, I.K. and D.P.; funding acquisition, I.K. and B.Ž. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research and Innovation Agency under Re-
search Project J2-4458, Research Programme P2-0041, and the Czech Science Foundation under
Research Project 23-04622L.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006.
2. Shannon, C.E. A Mathematical Theory of Communication. AT&T Tech. J. 1948, 27, 379–423.
3. Liu, S.; Xu, M.; Qin, Y.; Lukać, N. Knowledge Graph Alignment Network with Node-Level Strong Fusion. Appl. Sci. 2022, 12, 9434.

[CrossRef]
4. Gray, R.M. Entropy and Information Theory, 2nd ed.; Springer: New York, NY, USA, 2011.
5. Sabirov, D.S.; Shepelevich, I.S. Information Entropy in Chemistry: An Overview. Entropy 2021, 23, 1240. [CrossRef] [PubMed]
6. Vasco-Olmo, J.M.; Díaz, F.A.; García-Collado, A.; Dorado-Vicente, R. Experimental evaluation of crack shielding during fatigue

crack growth using digital image correlation. Fatigue Fract. Eng. Mater. Struct. 2013, 38, 223–237. [CrossRef]
7. Ben-Naim, A. Entropy, Shannon’s Measure of Information and Boltzmann’s H-Theorem. Entropy 2017, 19, 48. [CrossRef]
8. Sayood, K. Introduction to Data Compression, 4th ed.; Morgan Kaufman: Waltham, MA, USA, 2012.
9. Rahman, M.A.; Hamada, M. Lossless Image Compression Techniques: A State-of-the-Art Survey. Symmetry 2019, 11, 1274.

[CrossRef]
10. Salomon, D.; Motta, G. Handbook of Data Compression, 5th ed.; Springer: London, UK, 2010.
11. Ryabko, B.Y. Data compression by means of a ‘book stack’. Probl. Pereda. Inform. 1980, 16, 265–269.
12. Arnavut, Z.; Magliveras, S.S. Block sorting and compression. In Proceedings of the IEEE Data Compression Conference, DCC’97,

Snowbird, UT, USA, 25–27 March 1997; Storer, J.A., Cohn, M., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1997;
pp. 181–190.

13. Abel, J. Improvements to the Burrows-Wheeler Compression Algorithm: After BWT Stages. 2003. Available online: https:
//api.semanticscholar.org/CorpusID:16110299 (accessed on 1 November 2023).

14. Bentley, J.L.; Sleator, D.D.; Tarjan, R.E.; Wei, V.K. A Locally Adaptive Data Compression Scheme. Commun. ACM 1986, 29, 320–330.
[CrossRef]

15. Deorowicz, S. Improvements to Burrows-Wheeler Compression Algorithm. Softw. Pract. Exper. 2000, 30, 1465–1483. [CrossRef]

http://doi.org/10.3390/app12199434
http://dx.doi.org/10.3390/e23101240
http://www.ncbi.nlm.nih.gov/pubmed/34681964
http://dx.doi.org/10.1111/ffe.12136
http://dx.doi.org/10.3390/e19020048
http://dx.doi.org/10.3390/sym11101274
https://api.semanticscholar.org/CorpusID:16110299
https://api.semanticscholar.org/CorpusID:16110299
http://dx.doi.org/10.1145/5684.5688
http://dx.doi.org/10.1002/1097-024X(20001110)30:13<1465::AID-SPE345>3.0.CO;2-D

Entropy 2023, 25, 1591 13 of 13

16. Binder, E. Distance Coding. 2000. Available online: https://groups.google.com/g/comp.compression/c/96DHNJgf0NM/m/
Ep15oLxq1CcJ (accessed on 14 November 2023).

17. Albers, S. Improved randomized on-line algorithms for the list update problem. SIAM J. Comput. 1998, 27, 682–693. [CrossRef]
18. Burrows, M.; Wheeler, D.J. A Block-Sorting Lossless Data Compression Algorithm; Technical Report No. 124; Digital Systems Research

Center: Palo Alto, CA, USA, 1994.
19. Abel. J. Post BWT stages of the Burrows-Wheeler compression Algorithm. Softw. Pract. Exper. 2010, 40, 751–777. [CrossRef]
20. Dorrigiv, R.; López-Ortiz, A.; Munro, J.I. An Application of Self-organizing Data Structures to Compression. In Experimental

Algorithms, Proceedings of the 8th International Symposium on Experimental Algorithms, SEA 2009, Dortmund, Germany, 3–6 June 2009;
Vahrenhold, J., Ed.; Lecture Notes in Computer Science 5526; Springer: Berlin, Germany, 2009; pp. 137–148.

21. Žalik, B.; Lukač, N. Chain code lossless compression using Move-To-Front transform and adaptive Run-Length Encoding. Signal
Process. Image Commun. 2014, 29, 96–106. [CrossRef]

22. Arnavut, Z. Move-To-Front and Inversion Coding. In Proceedings of the IEEE Data Compression Conference, DCC’2000, Snowbird, UT,
USA, 28–30 March 2000; Cohn, M., Storer, J.A., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 2000; pp. 193–202.

23. Adjeroh, D.; Bell, T.; Mukherjee, A. The Burrows-Wheeler Transform: Data Compression, Suffix Arrays, and Pattern Matching, 2nd ed.;
Springer Science + Business Media: New York, NY, USA, 2008.

24. Lee, Y.L.; Han, K.H.; Sullivan, G.J. Improved lossless intra coding for H. 264/MPEG-4 AVC. IEEE Trans. Image Process. 2006, 15,
2610–2615.
[PubMed]

25. Khademi, A.; Krishnan, S. Comparison of JPEG 2000 and other lossless compression schemes for digital mammograms. IEEE
Trans. Image Process. 2005, 25, 693–695.

26. Barina, D. Comparison of Lossless Image Formats. arXiv 2021, arXiv:2108.02557
27. Ulacha, G.; Łazoryszczak, M. Lossless Image Coding Using Non-MMSE Algorithms to Calculate Linear Prediction Coefficients.

Entropy 2023, 25, 156. [CrossRef] [PubMed]
28. Kohek, Š.; Strnad, D.; Žalik, B.; Kolmanič, S. Interactive synthesis and visualization of self-organizing trees for large-scale forest

succession simulation. Multimed. Syst. 2019 25, 213–227. [CrossRef]
29. Nong, G.; Zhang, S.; Chan, W.H. Two efficient algorithms for linear time suffix array construction. IEEE Trans. Comput. 2011, 60,

1471–1484. [CrossRef]
30. Kärkkäinen, J.; Sanders, P.; Burkhardt, S. Linear work suffix array construction. J. ACM 2017 53, 918–936. [CrossRef]
31. Bader, M. Space-Filling Curves—An Introduction with Applications in Scientific Computing; Springer: Berlin, Germany, 2013.
32. Chung, K.-L.; Huang, Y.-L.; Liu, Y.-W. Efficient algorithms for coding Hilbert curve of arbitrary-sized image and application to

window query. Inf. Sci. 2007 17, 2130–2151. [CrossRef]
33. Žalik, B.; Mongus, D.; Rizman Žalik, K.; Lukač, N. Boolean Operations on Rasterized Shapes Represented by Chain Codes Using

Space Filling Curves. J. Vis. Commun. Image Represent. 2017 49, 420–430. [CrossRef]
34. Lawder, J.K.; King, P.J.H. Using state diagrams for Hilbert curve mappings. Int. J. Comput. Math. 2001 78 327–342. [CrossRef]
35. Žalik, B.; Strnad, D.; Kohek, Š.; Kolingerová, I.; Nerat, A.; Lukač, N.; Lipuš, B.; Žalik, M.; Podgorelec, D. FLoCIC: A Few Lines of

Code for Raster Image Compression. Entropy 2023, 25, 533. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://groups.google.com/g/comp.compression/c/96DHNJgf0NM/m/Ep15oLxq1CcJ
https://groups.google.com/g/comp.compression/c/96DHNJgf0NM/m/Ep15oLxq1CcJ
http://dx.doi.org/10.1137/S0097539794277858
http://dx.doi.org/10.1002/spe.982
http://dx.doi.org/10.1016/j.image.2013.09.002
http://www.ncbi.nlm.nih.gov/pubmed/16948306
http://dx.doi.org/10.3390/e25010156
http://www.ncbi.nlm.nih.gov/pubmed/36673299
http://dx.doi.org/10.1007/s00530-018-0597-6
http://dx.doi.org/10.1109/TC.2010.188
http://dx.doi.org/10.1145/1217856.1217858
http://dx.doi.org/10.1016/j.ins.2006.12.003
http://dx.doi.org/10.1016/j.jvcir.2017.10.003
http://dx.doi.org/10.1080/00207160108805115
http://dx.doi.org/10.3390/e25030533

	Introduction
	Background
	Move-To-Front Transform
	Inversion Frequencies
	Burrows–Wheeler Transform

	Materials and Methods
	Move with Interleaving
	Time Complexity Estimation

	Rearranging Raster Data in the Sequence

	Experiments
	Discussion
	References

