Bradycardia May Decrease Cardiorespiratory Coupling in Preterm Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Processing Pipeline
2.2. Information Theory Measures
2.2.1. Notation and Preliminaries
2.2.2. Entropy
2.2.3. Cross-Entropy
2.2.4. Mutual Information
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Children: Improving Survival and Well-Being. Available online: https://www.who.int/news-room/fact-sheets/detail/children-reducing-mortality (accessed on 1 September 2023).
- Sobiech, T.; Buchner, T.; Krzesiński, P.; Gielerak, G. Cardiorespiratory Coupling in Young Healthy Subjects. Physiol. Meas. 2017, 38, 2186–2202. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.J.; Koschnitzky, J.E.; Dashevskiy, T.; Ramirez, J.-M. Cardiorespiratory Coupling in Health and Disease. Auton. Neurosci. 2013, 175, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Bassani, T.; Bari, V.; Tobaldini, E.; Takahashi, A.C.; Catai, A.M.; Montano, N. Model-Based Assessment of Baroreflex and Cardiopulmonary Couplings during Graded Head-up Tilt. Comput. Biol. Med. 2012, 42, 298–305. [Google Scholar] [CrossRef] [PubMed]
- de Abreu, R.M.; Catai, A.M.; Cairo, B.; Rehder-Santos, P.; da Silva, C.D.; Signini, D.F.; Sakaguchi, C.A.; Porta, A. A Transfer Entropy Approach for the Assessment of the Impact of Inspiratory Muscle Training on the Cardiorespiratory Coupling of Amateur Cyclists. Front. Physiol. 2020, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Hasenstab-Kenney, K.A.; Sanchez, J.B.; Prabhakar, V.; Lang, I.M.; Shaker, R.; Jadcherla, S.R. Mechanisms of Bradycardia in Premature Infants: Aerodigestive–Cardiac Regulatory–Rhythm Interactions. Physiol. Rep. 2020, 8, e14495. [Google Scholar] [CrossRef]
- Eichenwald, E.C.; Watterberg, K.L.; Aucott, S.; Benitz, W.E.; Cummings, J.J.; Goldsmith, J.; Poindexter, B.B.; Puopolo, K.; Stewart, D.L.; Wang, K.S.; et al. Apnea of Prematurity. Pediatrics 2016, 137, e20153757. [Google Scholar] [CrossRef] [PubMed]
- Pichler, G.; Urlesberger, B.; Ller, W.M. Impact of Bradycardia on Cerebral Oxygenation and Cerebral Blood Volume during Apnoea in Preterm Infants. Physiol. Meas. 2003, 24, 671–680. [Google Scholar] [CrossRef]
- Yee, A.K.; Siriwardhana, L.S.; Nixson, G.M.; Walter, L.M.; Wong, F.Y.; Horne, R.S.C. Developmental Consequences of Short Apneas and Periodic Breathing in Preterm Infants. J. Perinatol. 2023, 43, 1420–1428. [Google Scholar] [CrossRef]
- Pillekamp, F.; Hermann, C.; Keller, T.; von Gontard, A.; Kribs, A.; Roth, B. Factors Influencing Apnea and Bradycardia of Prematurity—Implications for Neurodevelopment. Neonatology 2007, 91, 155–161. [Google Scholar] [CrossRef]
- Janvier, A.; Khairy, M.; Kokkotis, A.; Cormier, C.; Messmer, D.; Barrington, K.J. Apnea Is Associated with Neurodevelopmental Impairment in Very Low Birth Weight Infants. J. Perinatol. 2004, 24, 763–768. [Google Scholar] [CrossRef]
- Williamson, M.; Poorun, R.; Hartley, C. Apnoea of Prematurity and Neurodevelopmental Outcomes: Current Understanding and Future Prospects for Research. Front. Pediatr. 2021, 9, 755677. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sánchez, P.J.; Van Meurs, K.P.; Wyckoff, M.; et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA-J. Am. Med. Assoc. 2015, 314, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Sadoughi, A.; Shamsollahi, M.B.; Fatemizadeh, E.; Beuchée, A.; Hernández, A.I.; Ghahjaverestan, N.M. Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model. Ann. Biomed. Eng. 2021, 49, 2159–2169. [Google Scholar] [CrossRef] [PubMed]
- Doyen, M.; Hernández, A.I.; Flamant, C.; Defontaine, A.; Favrais, G.; Altuve, M.; Laviolle, B.; Beuchée, A.; Carrault, G.; Pladys, P. Early Bradycardia Detection and Therapeutic Interventions in Preterm Infant Monitoring. Sci. Rep. 2021, 11, 10486. [Google Scholar] [CrossRef]
- Sbrollini, A.; Mancinelli, M.; Marcantoni, I.; Morettini, M.; Burattini, L. Bradycardia Assessment in Preterm Infants. In Proceedings of the IFMBE, Portorož, Slovenia, 29 November–3 December 2020; Volume 76. [Google Scholar]
- Gee, A.H.; Barbieri, R.; Paydarfar, D.; Indic, P. Predicting Bradycardia in Preterm Infants Using Point Process Analysis of Heart Rate. IEEE Trans. Biomed. Eng. 2017, 64, 2300–2308. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, L.; Su, Z.; Liu, C. Cardiorespiratory Coupling Analysis Based on Entropy and Cross-Entropy in Distinguishing Different Depression Stages. Front. Physiol. 2019, 10, 359. [Google Scholar] [CrossRef]
- Veerappan, S.; Rosen, H.; Craelius, W.; Curcie, D.; Hiatt, M.; Hegyi, T. Spectral Analysis of Heart Rate Variability in Premature Infants with Feeding Bradycardia. Pediatr. Res. 2000, 47, 659–662. [Google Scholar] [CrossRef]
- Behrman, R.E.; Butler, A.S. Mortality and Acute Complications in Preterm Infants. In Preterm Birth: Causes, Consequences & Prevention; National Academy of Sciences: Bethesda, MD, USA, 2006. [Google Scholar]
- Dick, T.E.; Morris, K.F. Quantitative Analysis of Cardiovascular Modulation in Respiratory Neural Activity. J. Physiol. 2004, 556, 959–970. [Google Scholar] [CrossRef]
- Acampa, M.; Voss, A.; Bojić, T. Editorial: Cardiorespiratory Coupling-Novel Insights for Integrative Biomedicine. Front. Neurosci. 2021, 15, 671900. [Google Scholar] [CrossRef]
- Joshi, R.; Kommers, D.; Long, X.; Feijs, L.; Van Huffel, S.; van Pul, C.; Andriessen, P. Cardiorespiratory Coupling in Preterm Infants. J. Appl. Physiol. 2019, 126, 202–213. [Google Scholar] [CrossRef]
- de Groot, E.R.; Knoop, M.S.; Hoogen, A.v.D.; Wang, X.; Long, X.; Pillen, S.; Benders, M.; Dudink, J. The Value of Cardiorespiratory Parameters for Sleep STATE classification in Preterm Infants: A Systematic Review. Sleep Med. Rev. 2021, 58, 101462. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, M.; Pini, N.; Fifer, W.P.; Burtchen, N.; Signorini, M.G. Characterization of Cardiorespiratory Phase Synchronization and Directionality in Late Premature and Full Term Infants. Physiol. Meas. 2018, 39, 064001. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Moody, G.B. An Open-Source Toolbox for Analysing and Processing PhysioNet Databases in MATLAB and Octave. J. Open Res. Softw. 2014, 2, e27. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [PubMed]
- Wessel, N.; Voss, A.; Malberg, H.; Ziehmann, C.; Voss, H.U.; Schirdewan, A.; Meyerfeldt, U.; Kurths, J. Nonlinear Analysis of Complex Phenomena in Cardiological Data. Herzschrittmachertherapie + Elektrophysiologie 2000, 11, 159–173. [Google Scholar] [CrossRef]
- Faes, L.; Porta, A.; Nollo, G. Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory Dynamics. Entropy 2015, 17, 277–303. [Google Scholar] [CrossRef]
- Mallows, C.L.; Kullback, S. Information Theory and Statistics. J. R. Stat. Soc. Ser. A (General) 1959, 122, 380. [Google Scholar] [CrossRef]
- Cui, Y.; Zhai, J.; Wang, X. Extreme Learning Machine Based on Cross Entropy. In Proceedings of the International Conference on Machine Learning and Cybernetics, Jeju Island, Republic of Korea, 19–24 June 2016; Volume 2. [Google Scholar]
- Schulz, S.; Adochiei, F.-C.; Edu, I.-R.; Schroeder, R.; Costin, H.; Bär, K.-J.; Voss, A. Cardiovascular and Cardiorespiratory Coupling Analyses: A Review. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120191. [Google Scholar] [CrossRef]
- Furfey, P.H.; Siegel, S. Nonparametric Statistics for the Behavioral Sciences. Am. Cathol. Sociol. Rev. 1957, 18, 163. [Google Scholar] [CrossRef]
- Jiang, H.; Salmon, B.P.; Gale, T.J.; Dargaville, P.A. Prediction of Bradycardia in Preterm Infants Using Artificial Neural Networks. Mach. Learn. Appl. 2022, 10, 100426. [Google Scholar] [CrossRef]
- Zuzarte, I.; Sternad, D.; Paydarfar, D. Predicting Apneic Events in Preterm Infants Using Cardio-Respiratory and Movement Features. Comput. Methods Programs Biomed. 2021, 209, 106321. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Jiang, H.; Marshall, A.P.; Salmon, B.; Gale, T.J.; Dargaville, P.A. Predicting Apnoeic Events in Preterm Infants. Front. Pediatr. 2020, 8, 570. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, J.M.; Poets, C.F.; Gauda, E.; Martin, R.J.; MacFarlane, P. Cardiorespiratory Events in Preterm Infants: Etiology and Monitoring Technologies. J. Perinatol. 2016, 36, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Gauda, E.B.; McLemore, G.L. Premature Birth, Homeostatic Plasticity and Respiratory Consequences of Inflammation. Respir. Physiol. Neurobiol. 2020, 274, 103337. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample Entropy Analysis of Neonatal Heart Rate Variability. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [PubMed]
- Pravisani, G.; Beuchee, A.; Mainardi, L.; Carrault, G. Short Term Prediction of Severe Bradycardia in Premature Newborns. In Proceedings of the Computers in Cardiology, Thessaloniki, Greece, 21–24 September 2003; Volume 30. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal Dynamics in Physiology: Alterations with Disease and Aging. Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. S1), 2466–2472. [Google Scholar] [CrossRef]
- Lucchini, M.; Burtchen, N.; Fifer, W.P.; Signorini, M.G. Multi-Parametric Cardiorespiratory Analysis in Late-Preterm, Early-Term, and Full-Term Infants at Birth. Med. Biol. Eng. Comput. 2019, 57, 99–106. [Google Scholar] [CrossRef]
- Jost, K.; Datta, A.N.; Frey, U.P.; Suki, B.; Schulzke, S.M. Heart Rate Fluctuation after Birth Predicts Subsequent Cardiorespiratory Stability in Preterm Infants. Pediatr. Res. 2019, 86, 348–354. [Google Scholar] [CrossRef]
- Mialet-Marty, T.; Beuchée, A.; Ben Jmaa, W.; N’Guyen, N.; Navarro, X.; Porée, F.; Nuyt, A.M.; Pladys, P. Possible Predictors of Cardiorespiratory Events after Immunization in Preterm Neonates. Neonatology 2013, 104, 151–155. [Google Scholar] [CrossRef]
- Latremouille, S.; Bhuller, M.; Shalish, W.; Sant’anna, G. Cardiorespiratory Measures Shortly after Extubation and Extubation Outcomes in Extremely Preterm Infants. Pediatr. Res. 2023, 93, 1687–1693. [Google Scholar] [CrossRef]
- Faes, L.; Marinazzo, D.; Montalto, A.; Nollo, G. Lag-Specific Transfer Entropy as a Tool to Assess Cardiovascular and Cardiorespiratory Information Transfer. IEEE Trans. Biomed. Eng. 2014, 61, 2556–2568. [Google Scholar] [CrossRef] [PubMed]
- Rozo, A.; Morales, J.; Moeyersons, J.; Joshi, R.; Caiani, E.G.; Borzée, P.; Buyse, B.; Testelmans, D.; Van Huffel, S.; Varon, C. Benchmarking Transfer Entropy Methods for the Study of Linear and Nonlinear Cardio-Respiratory Interactions. Entropy 2021, 23, 939. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, M.; Pini, N.; Burtchen, N.; Signorini, M.G.; Fifer, W.P. Transfer Entropy Modeling of Newborn Cardiorespiratory Regulation. Front. Physiol. 2020, 11, 1095. [Google Scholar] [CrossRef] [PubMed]
- Pompe, B.; Blidh, P.; Hoyer, D.; Eiselt, M. Using Mutual Information to Measure Coupling in the Cardiorespiratory System. IEEE Eng. Med. Biol. Mag. 1998, 17, 32–39. [Google Scholar] [CrossRef]
- Hoyer, D.; Leder, U.; Hoyer, H.; Pompe, B.; Sommer, M.; Zwiener, U. Mutual Information and Phase Dependencies: Measures of Reduced Nonlinear Cardiorespiratory Interactions after Myocardial Infarction. Med. Eng. Phys. 2002, 24, 33–43. [Google Scholar] [CrossRef]
- Iyer, K.K.; Leitner, U.; Giordano, V.; Roberts, J.A.; Vanhatalo, S.; Klebermass-Schrehof, K.; Stevenson, N.J. Bedside Tracking of Functional Autonomic Age in Preterm Infants. Pediatr. Res. 2022, 94, 206–212. [Google Scholar] [CrossRef]
Subject | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
PCA | ||||||||||
Weight (kg) | 1.2 | 1.76 | 1.71 | 0.84 | 1.67 | 1.14 | 1.11 | 2.1 | 1.23 | 1.9 |
Mean heart rate (bpm) | 155 | 131 | 131 | 167 | 143 | 137 | 162 | 141 | 150 | 156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porta-García, M.Á.; Quiroz-Salazar, A.; Abarca-Castro, E.A.; Reyes-Lagos, J.J. Bradycardia May Decrease Cardiorespiratory Coupling in Preterm Infants. Entropy 2023, 25, 1616. https://doi.org/10.3390/e25121616
Porta-García MÁ, Quiroz-Salazar A, Abarca-Castro EA, Reyes-Lagos JJ. Bradycardia May Decrease Cardiorespiratory Coupling in Preterm Infants. Entropy. 2023; 25(12):1616. https://doi.org/10.3390/e25121616
Chicago/Turabian StylePorta-García, Miguel Ángel, Alberto Quiroz-Salazar, Eric Alonso Abarca-Castro, and José Javier Reyes-Lagos. 2023. "Bradycardia May Decrease Cardiorespiratory Coupling in Preterm Infants" Entropy 25, no. 12: 1616. https://doi.org/10.3390/e25121616
APA StylePorta-García, M. Á., Quiroz-Salazar, A., Abarca-Castro, E. A., & Reyes-Lagos, J. J. (2023). Bradycardia May Decrease Cardiorespiratory Coupling in Preterm Infants. Entropy, 25(12), 1616. https://doi.org/10.3390/e25121616