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Abstract: To address the problem that traditional spectral clustering algorithms cannot obtain the
complete structural information of networks, this paper proposes a spectral clustering community
detection algorithm, PMIK-SC, based on the point-wise mutual information (PMI) graph kernel.
The kernel is constructed according to the point-wise mutual information between nodes, which is
then used as a proximity matrix to reconstruct the network and obtain the symmetric normalized
Laplacian matrix. Finally, the network is partitioned by the eigendecomposition and eigenvector
clustering of the Laplacian matrix. In addition, to determine the number of clusters during spectral
clustering, this paper proposes a fast algorithm, BI-CNE, for estimating the number of communities.
For a specific network, the algorithm first reconstructs the original network and then runs Monte
Carlo sampling to estimate the number of communities by Bayesian inference. Experimental results
show that the detection speed and accuracy of the algorithm are superior to other existing algorithms
for estimating the number of communities. On this basis, the spectral clustering community detection
algorithm PMIK-SC also has high accuracy and stability compared with other community detection
algorithms and spectral clustering algorithms.

Keywords: community detection; spectral clustering; graph kernel; Bayesian inference; number of
communities estimation

1. Introduction

A complex network is an important cross-cutting research branch of computer science,
statistical physics, and systems science and an indispensable tool for analyzing and study-
ing interaction events in many real systems. Various kinds of networks and network-like
systems are ubiquitous in real life, such as interpersonal networks [1], infectious disease net-
works, biological systems [2], and so on. In complex networks, the independent individuals
in the system are usually referred to as nodes; the connections between these individuals
are called edges, and clusters of closely connected nodes are called communities.

Community structure is an important feature of complex networks, and how to
effectively perform community detection has attracted many scholars in various fields.
Watts et al. first proposed a small-world network model by observing and studying the
“small-world phenomenon” in real-world complex networks (known as the six-degree
separation theory) [3]. Barabási et al. found that the degree distribution of real-world
complex networks obeys a power-law distribution, indicating the scale-free nature of
complex networks [4]. The study and analysis of the community structure help to uncover
the laws of the dynamic evolution of the network, to find the weak points of the system,
or to verify the corresponding functions of the system, which are of great importance to
predict the future development of the network and its possible dynamic behavior.

Community detection is the process of revealing the latent community structure in
complex networks, which has important applications in real life, such as mining social
groups with common interests and similar social backgrounds in social networks for
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accurate content recommendation and building dynamics models in infectious disease
networks to predict the development of epidemic trends and facilitate accurate measures
for epidemic prevention and control.

Since Newman et al. proposed the classical GN algorithm [5], research on community
detection algorithms has been enduring, and the spectral clustering algorithm based on
spectral graph partitioning theory is one of the classical community detection algorithms.
Through the comparative study of various community detection algorithms, including
LPA-based, modularity-based, and information-entropy-based approaches, we found that,
compared with these algorithms, spectral clustering-based algorithms can obtain higher
accuracy on the condition that a suitable proximity matrix and the exact number of clus-
ters are provided. However, traditional spectral-clustering-based algorithms can hardly
handle community detection on complex networks, mainly for the following two reasons:
First, most spectral clustering community detection algorithms cannot effectively work
on complex networks with an unknown number of communities; second, limited by the
singularity of structural features extracted from proximity matrixes, the generalization
capability is not strong enough to effectively reflect the complex structural information
in the network. Aiming at these two aspects, the BI-CNE algorithm and the PMIK-SC
algorithm are proposed.

BI-CNE is a fast number of communities (or CN for short) estimation algorithm based
on Bayesian inference. It is used to solve the problem that spectral clustering algorithms
require prior knowledge about CN, while the traditional CN estimation methods are slow
and inaccurate. The algorithm first performs a fast pruning reconstruction of the network,
then performs Bayesian inference based on the degree-corrected stochastic block model,
and finally obtains the CN estimated by Monte Carlo sampling. Meanwhile, in order to
speed up the sampling process, the network reconstruction result is used as the initial
state of sampling, and the overall sampling acceptance rate is improved by controlling the
node transfer direction in the sampling procedure. Experiments show that the algorithm
outperforms existing CN estimation algorithms.

Our preliminary research indicates that mutual information can effectively measure the
relationships between communities in a network. Mutual-information-based community
detection methods, such as MINC-NRL [6] and AMI-MLPA [7], can achieve accurate
community detection. Similarly, the relationships between nodes can also be measured
within an information-theoretic framework. We constructed a Laplacian kernel based on
point-wise mutual information, referred to as the PMI kernel, and proposed a spectral
clustering algorithm, PMIK-SC. The PMI kernel proves to be effective in addressing the
problem that the proximity matrix used by the traditional spectral clustering algorithm
cannot obtain the complete structure information for a specific network. This enhancement
contributes to the accuracy of community detection tasks. Experiments show that the
algorithm achieves better performance compared with state-of-the-art graph-kernel-based
spectral clustering algorithms.

The rest of the article is organized as follows: Section 2 summarizes the current re-
search progress in estimating the number of communities and graph-kernel-based spectral
clustering algorithms. Section 3 introduces a large number of community estimation algo-
rithms based on Bayesian inference. Section 4 derives the definition of a point-wise mutual
information graph kernel and introduces the spectral clustering community detection
algorithm based on the kernel. Section 5 conducts corresponding experiments to verify the
effectiveness of the algorithm for the above two algorithms, and finally, Section 6 concludes
the article with a summary of its contents.

2. Related Work
2.1. Traditional Algorithms for Estimating the Number of Communities

Most of the current spectral clustering community detection algorithms cannot effi-
ciently partition complex networks with an unknown number of communities [8]. If infor-
mation on the number of communities (CN) is included, the accuracy of these community
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detection algorithms can be greatly improved. Many scholars have proposed community
structure estimation algorithms for this purpose, among which the most well-known is the
modularity optimization method, which is essentially a class of algorithms that combines
community size selection and performs community partitioning operations [9]. Modularity
is an evaluation metric to measure the quality of community detection, proposed by New-
man et al. in 2004 and updated by definition in 2006 [10]. The basic idea is that since there
is no community structure in a random network, a community partition is better if it has a
larger difference compared with a rule-based random network.

Although the modularity method is widely used, there are still two problems: first,
for most of the real-world complex networks, the modularity value of ground-truth com-
munity partition does not reach optimal modularity; second, the modularity metric has a
resolution limit problem [11], i.e., modularity-based methods cannot detect the very small
communities in complex networks but prefer to divide the network into multiple large
communities. Therefore, when estimating the CN in large-scale complex networks, such
methods tend to obtain a smaller value, which may differ greatly from the actual CN.

The topological potential method is another common type of CN estimation algorithm.
The basic idea is to extend the concept of potential and field in physics to complex networks
and partition the network by high and low potential values to estimate the number. With
the help of node topological potential, scholars propose a number of community estimation
algorithms based on the hill-climbing method to search for local extrema. After calculating
the topological potential of nodes in a complex network, the hill-climbing method traverses
the nodes in the direction of rising potential and uses the local extremal points searched as
community centers to obtain the number of communities.

The traditional hill-climbing method needs to calculate the topological potential of
nodes, where the complexity of calculating the shortest path of any two nodes in the
network is O(n3), and the complexity of searching all the locally extremely potential nodes
in the end is O(n2), which is not reasonable, especially for large-scale networks. Secondly,
the number of locally extremely potential nodes obtained by the algorithm is not necessarily
the final CN because a community centroid may connect other community centroids and
result in more than one community hiding at one local potential extreme point. To address
this, scholars improved the algorithm by introducing a network concavity parameter
by definition to search for potential local potential maximal nodes [12]. However, the
improved algorithm can hardly handle the following two cases: First, multiple extreme
points detected in the same community need to be identified and merged. Furthermore,
the potential extreme points of different communities need to be split if they are covered
by an edge to a larger extreme point. Therefore, the topological-potential-based algorithm
for estimating the number of communities cannot be applied well to large-scale complex
network analysis.

Neither modularity optimization algorithms nor heuristic algorithms, such as topolog-
ical potential-based methods, can give satisfactory estimates of the number of communities.
Therefore, some scholars tried to derive the actual number of communities by maximiz-
ing the approximation to the data likelihood from generative network graph models [13].
Among these methods, the most commonly used generative graph model is the stochastic
block model (SBM) [14,15]. The estimation based on SBM mainly focuses on how to sample
the probability space of the parameters and, therefore, needs to determine the likelihood
of the parameters. Newman et al. proposed an algorithm for estimating the number of
communities based on statistical inference using the SBM [8] to estimate the number of com-
munities by Monte Carlo sampling. However, this method cannot be applied to large-scale
networks due to computational speed limitations. Riolo et al. performed sampling accelera-
tion optimization based on this method. They used an improved Chinese restaurant process
to determine the parameters prior, which can be applied in large-scale networks, but the
sampling speed is still far from satisfactory, and the estimation in large-scale networks is
not completely accurate [16].
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2.2. Graph-Kernel-Based Spectral Clustering Algorithm

To address the shortcomings of traditional clustering algorithms, especially the prob-
lem that the clustering algorithms are easily trapped in local optima, researchers proposed
spectral clustering algorithms to solve the problem by introducing the spectral graph theory.
In a spectral clustering algorithm, a suitable proximity matrix or similarity matrix needs to
be constructed, which directly affects the final result of spectral clustering [17]. There are
several methods to construct a proximity matrix; one of them is the kernel method. The
core idea is to map the linearly inseparable data onto a linearly separable kernel space.
The kernel function directly calculates the inner product of the mapping to represent the
similarity among data without finding specific mapping relationships; the latter are usually
difficult or impossible to solve.

The study of kernel methods in complex network structures falls into two main
categories: graph embedding, which uses kernel functions to embed network structures
into vector spaces, and graph kernels, which are mainly used as a way to measure the
similarity of structures. Graph embedding yields a vectorized representation of the network
structure, which is then processed by applying a vector-based kernel function. However,
because the network data are downscaled to vector space, much structural information
in the network cannot be preserved. In contrast, the graph kernel is directly oriented to
the network structure data, and by defining a suitable kernel, the input network data are
mapped from the original space to a high or infinite dimensional feature space, and the
structured information in Hilbert space is preserved efficiently and completely. In the
following, graph kernels or feature extraction methods based on the adjacency matrix,
Laplacian matrix, and path length are briefly described, respectively.

The communicability kernel [18] is a graph kernel based on the adjacency matrix and
belongs to the symmetric exponential diffusion kernel. In complex networks, the commu-
nicability between nodes is usually considered the shortest path length. The strategy of
the communicability kernel is that a node can communicate with another node through
all paths, but the longer the path, the lower the contribution to the node’s communica-
tion function.

The heat kernel [19,20] is a graph kernel based on the Laplacian matrix and belongs
to a symmetric exponential diffusion kernel-like communicability kernel. Since the decay

coefficient of the heat kernel is (−t)k

k! , of which the decay rate is higher, some scholars have
applied it to large-scale networks for community detection and obtained better results [20].

The commute time kernel [21] is a kind of path-length-based graph kernel. The
commute time from the node vi to vj is usually defined as the expected time to start
from the node vi, randomly wander to node vj and back to node vj. The commute time
kernel is proved to be equal to the pseudo-inverse of the Laplacian matrix, and since the
Laplacian matrix must have eigenvalues 0, L is irreducible, and the pseudo-inverse is
usually computed using the Moore–Penrose generalized inverse.

All the graph kernels or methods mentioned above can extract some aspects of the
structural features of graphs and combine them with community detection algorithms to
analyze specific types of networks. However, limited by the singularity of the extracted
structural features, the generalization ability is not strong, so it is necessary to design a
graph kernel that can effectively reflect the complex structural information inside the graph
and, at the same time, have strong generalization.

3. BI-CNE Algorithm
3.1. Network Pruning Reconstruction

For real-world complex networks, especially large-scale networks, it is hard to quickly
estimate the CN due to the large number of nodes and edges. If the original network can be
pruned by data pre-processing, such as removing unimportant nodes and edges, it will help
to improve the effectiveness of subsequent analysis. In addition, if the original network can
be quickly decomposed into several small connected graphs with sparse interconnections,
the computational complexity can be greatly reduced, and the amount of information lost
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in this network splitting method is smaller compared with the node compression method
(such as the Louvain algorithm [22]). Based on these two points, the original network will
be pruned and reconstructed according to the idea of common neighbors before estimating
the actual CN. First, consider the definition of a clique in a network: a clique is a subgraph
of a network in which any node has a contiguous edge with all the remaining nodes. That is,
a clique is a complete subgraph, but because the condition of a complete graph is too strict,
the size of a clique in a real network is often not large enough to use a clique for a reasonable
splitting of the original network. Therefore, we consider a relaxation of the condition of the
corpus and use common neighbors to transform the condition of the complete graph as
below: n− 2 common neighbors exist between any two nodes in a complete graph of n
nodes. The following section starts to consider pruning the nodes and edges in the network
graph using the number of common neighbors.

In a network graph, the number of common neighbors between two nodes is defined
as the cutoff value of these two nodes. A cutoff value of 0 indicates that there are no
common neighbors between nodes, which are usually reflected as peripheral nodes or
inter-community bridge nodes of the network, as shown in Figure 1, where node 3 and
node 4 are inter-community bridge nodes and node 5 and node 6 are peripheral nodes. At
this point, if the edges with cutoff values less than 1 are removed from the network, the
original network will be decomposed into three connected graphs, including two n = 3
complete subgraphs and one stray node, as shown in Figure 2.
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To use the cutoff value to relax the condition of the clique, it is necessary to determine
the appropriate range of cutoff values. The node connectivity in the network at cutoff in
[1, 4] is given below, as shown in Figure 3. The solid nodes are the observed objects, and the
hollow nodes are the common neighbors of the two solid nodes. The solid lines indicate
the real connected edges, and the dashed lines indicate the connected edges that need to be
added to form a clique. It can be found that as the cutoff value increases, the proportion of
dashed edges to be replenished is larger, the relaxation condition is stricter, and the degree
of network decomposition is higher. Assuming that the cutoff value is k, the number of
real edges in the network is 2k + 1, and the number of supplementary edges is k(k− 1)/2,
and when k = 6, the number of supplementary edges is higher than the number of real
edges. In other words, the number of supplementary edges required to restore the edges
from two real nodes to a clique in a local network exceeds the number of existing edges.
Moreover, real-world complex networks are usually sparse, i.e., the average degree is low,
and partitioning the network with a high cutoff value will result in a large number of free
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nodes, which is not consistent with the original idea of network reconstruction. Therefore,
the network should be pruned by a reasonable value of k selected in the range of [0, 6].
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3.2. Bayesian Inference

After completing the pruning reconstruction of the network, the BI-CNE algorithm
uses the degree-corrected stochastic block model to fit real-world complex networks, and
the generation process of a random network by the original stochastic block model is shown
in Figure 4. Firstly, given the number of nodes n and the number of communities k of
the network, nodes are randomly assigned to k communities with community assignment
probability γ =

{
γr | r ∈ [1, . . . , k], ∑k

r=1 γr = 1
}

. In turn, the second step randomly
assigns nodes to k communities according to the connected edge probability matrix ω
connects nodes, i.e., the probability that there exists a connected edge between node vi
located in community r and node vj located in community s is ωrs. In an undirected graph,
ωrs = ωsr. Since the probability of connecting edges between nodes in the process of
connecting edges depends only on the community to which they belong, and the specific
node attributes have no effect on the probability of connecting edges, the original stochastic
block model can only fit networks whose degrees obey Poisson distributions. This is the
reason why the original stochastic block model for CN estimation or community detection
does not give good results in real-world networks.
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The degree-corrected stochastic block model makes it possible to fit a network with
an arbitrary degree distribution by differentiating the node connectivity probabilities,
and the process of generating a random graph is shown in Figure 5. The main difference
between it and the original stochastic block model is that in the second step, the connectivity
probability between nodes depends not only on the community to which they belong but
also on the degree distribution of the nodes, i.e., the connectivity probability between a
node vi located in community r and a node vj located in community s is θiθjωrs. As the
degree sequence of the four nodes of the red community in Figure 5 is [1, 2, 3, 3], which
represents the expected degree of each node, the ratio of the edges connected into the red
community to the nodes in the community will be controlled as 1 : 2 : 3 : 3. Since the size
of each community node is not consistent, the parameter θ within each community needs
to be normalized.
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On the basis of the degree-corrected stochastic block model, consider the inverse
process of its generation of random networks, i.e., deriving the number of real communities
of the network backward from the existing network structure. The specific derivation
process is given below. Given an undirected network G = (V, E), the number of nodes
is |V|= n, and the number of edges is |E|= m . Let the adjacency matrix be A, then Aij
denotes the number of connected edges between nodes i and j, and the diagonal element
Aii is equal to twice the number of self-looping edges of node i. A community partition
is defined as g = {gi | i ∈ [1, . . . , n]}, where gi denotes the number of the community to
which node i belongs. The connected edges between nodes vi and vj located in community
r and community s, respectively, obey a Poisson distribution with mean θiθjωgi ,gj , and {θi}
and {ωrs} are the model parameters. For computational convenience, the parameters θ are
constrained and normalized:

1
nr

n

∑
i=1

θiδ(r, gi) = 1 (1)

where nr is the number of nodes within the denoted community r, δ(r, gi) is the Kronecker
function defined as:

δ(s, t) =
{

1, i f s = t
0, otherwise

(2)

Given the number of communities k, community partition g, parameters θ, ω, the
probability of generating the specified network with adjacency matrix A is:

P(A | ω, θ, g, k) = ∏
i<j

(
θiθjωgi gj

)Aij
e−θiθjωgi gj

×∏
i

(
1
2 θ2

i ωgi gi

)Aii/2
e−θ2

i ωgi gi /2
(3)

where the first concatenated part represents the inter-community edge probability between
nodes, and the second concatenated part represents the edge probability between nodes
within the same community. Substituting Equation (1) into Equation (3) and neglecting the
constant multiplier, we obtain:

P(A | ω, θ, g, k) = ∏
i

θ
di
i ∏

r<s
ωmrs

rs e−nrnsωrs∏
r

ωmrr
rr e−n2

r ωrr/2 (4)

where di denotes the degree of node vi and mrs denotes the total number of connected
edges between community r and community s. Since the intermediate parameters θ and ω
are irrelevant to the problem modeling, their priori selection and integral elimination are
considered. Here, the reference [16] for the priori selection of parameters θ and ω yields
the final likelihood function as shown in Equation (5), where κr = ∑i diδr,gi is the sum of
the degrees of all nodes within the community r.

P(A|g, k) = ∏
r

nκr
r

(nr − 1)!
(nr + κr − 1)!

×∏
r<s

mrs!

(pnrns + 1)mrs+1 ∏
r

mrr!(
1
2 pn2

r + 1
)mrr+1 (5)
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On the basis of determining the parameter prior and obtaining the likelihood function,
the Bayesian model can be used for the task of inferring the number of communities k.
Given the network adjacency matrix A, the probability distribution P(g, k | A) is shown in
Equation (6).

P(g, k | A) =
P(g, k)P(A | g, k)

P(A)
(6)

where the likelihood function P(A|g, k) has been determined. The joint probability distri-
bution P(g, k) can be calculated using Equation (7) as in [16]. At this point, the Bayesian
inference process for the degree-corrected stochastic block model has been completed,
providing a theoretical basis for Monte Carlo sampling in the next subsection.

P(g, k) = (n− 2)−k
k

∏
r=1

nr! (7)

3.3. Monte Carlo Sampling

After completing the priori derivation of the key parameters, the complete expression
of the conditional probability P(g, k|A) is determined by ignoring the observed data
P(A). The posterior probability P(k|A) of the number of communities k can be obtained by
counting all community partition cases g, so that the most probable number of communities
k can be deduced for the purpose of estimation. However, since the total number of all
possible cases of partitions is kn, which are impossible to exhaustively traversed. Here, the
Monte Carlo method is introduced to sample these cases. The pair (k, g) is considered as
the “state” of the network to be sampled, and k is counted during sampling; finally, the k
corresponding to the maximum value of P(k|A) is the estimated number of communities.
The sampling process consists of two main types of sampling steps:

• Move node vi from community r to an existing community s, then

k =

{
k− 1, i f r = {vi}
k, otherwise

(8)

• Move node vi to a new community, then k = k + 1.

An effective Monte Carlo sampling algorithm needs to satisfy ergodicity and detailed
balance. Ergodicity requires that each state of the system be accessible to each other through
a finite sequence of Monte Carlo steps. For this reason, the above process of moving a single
node from one community to another satisfies this condition. And for careful equilibrium
needs to be satisfied: the ratio R(g, k→ g′, k′) of traversing from the current state (g, k) to
another state (g′, k′) and the ratio R(g′, k′ → g, k) of returning back must satisfy:

R(g, k→ g′, k′)
R(g′, k′ → g, k)

=
P(g′, k′)
P(g, k)

× P(A | g′, k′)
P(A | g, k)

(9)

A traditional acceptance/rejection pattern is used in each step, where the move op-
eration is performed with probability π, and the operation is accepted with probability α.

R(g, k→ g′, k′)
R(g′, k′ → g, k)

=
π(g, k→ g′, k′)
π(g′, k′ → g, k)

× α(g, k→ g′, k′)
α(g′, k′ → g, k)

(10)

The final Monte Carlo sampling process is as follows:

(1) Initialization: Disorder the nodes and assign them to the given maximum kmax com-
munities; note that there is no empty community here.

(2) Sampling: Execute Operation 1 with probability 1− 1/(n− 1) or Operation 2 with
probability 1/(n− 1).

• Operation 1: Randomly select communities r,s. Randomly select a node vi
from community r and move it to community s. If node vi is the last node of
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community r, then delete community r and renumber the communities, and that
makes k = k− 1.

• Operation 2: Randomly select a community r. Randomly select a node vi from
community r and move it to a new empty community k + 1. If node vi is the
last node of community r, this operation is rejected, and k remains unchanged.
Otherwise, it makes k = k + 1.

(3) Accept the operation: The operation in Step 2 will be accepted following the accep-
tance probability:

α
(

g, k→ g′, k′
)
= min

(
1,

P(A|g′, k′)
P(A | g, k)

)
(11)

(4) Repeat steps 2 and 3.

3.4. Sampling Acceleration

Experiments on the Monte Carlo sampling proposed in the previous section reveal
that there are some points that can be optimized in the initialization step and the sampling
Operation 1 of the sampling process. For the initialization in Step (1), nodes are randomly
assigned to kmax communities, and there is a high probability that nodes assigned to the
same community are not connected to each other, so the subsequent sampling process
requires a large number of iterations to reach a more reasonable community partition state.
To address this problem, the network reconstruction method in Section 3.1 can be applied
to assign nodes belonging to the same connected clique after reconstruction to the same
initial community and all free nodes to their own separate communities.

For Operation 1, i.e., randomly selecting communities r, s and randomly moving a
node vi from community r to community s, the problem is the low sampling acceptance
rate. Since the selection of community s is random and only a few communities have
edges linked to node vi, this node-transfer community operation will be rejected with high
probability. This leads to a slow rate of sampling, so it is necessary to control the selection of
community s. First, if a node’s community transfer operation is accepted, it means that the
new partition state of the node’s community is more likely to reflect the original network
topology information than that before the change. Therefore, in the case that the node
vi is not connected to the other nodes of the original community r, it is considered that
there is a high probability that it will transfer to any other community, so we still select
the community s equiprobably; while in the case that node vi is connected to the other
parts of community r, a certain weight is assigned to each community according to the
nodes’ connectedness to determine the probability of selecting community s. The weight
of the node vi to transfer from the community r to community s is calculated as shown in
Equation (12):

w
(

g′i = s | gi = r
)
= ∑

t
βit

mts + α

nt + α · k (12)

where mrs denotes the number of connected edges between community r and community s,
nt denotes the total number of nodes in community t, and k is the number of current com-
munities. The communities that are connected to the node vi are called node-neighboring
communities, and the control parameter α ensures that each community has a certain
probability of being selected, regardless of whether the number of connected edges mts of
the community with node-neighboring communities is 0, and α can be set to 1. βit denotes
the weight of the number of contiguous edges between node vi and community t in its own
degree, which is calculated as:

βit =
∑ j Aijδ(gi, t)

di
(13)

where Aij is the number of edges connecting node vi and node vj. δ(gi, t) is the Kronecker
function. di is the degree of node vi. The main idea of the community transfer weight
formula Equation (12) is that the weight of node vi transferring to community s will be
greater if:
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• Node vi is more closely connected to its neighboring communities;
• Community s is more closely connected to the neighboring communities of node vi;
• The size of the community s is smaller.

The final node transfer probability is calculated as shown in Equation (14).

P
(

g′i = s | gi = r
)
=

w
(

g′i = s | gi = r
)

∑ t w
(

g′i = t | gi = r
) (14)

So far, the derivation and algorithm design of a large number of community estimation
algorithms based on Bayesian inference have been completed. Figure 6 shows the main
procedure of the algorithm. The specific experimental results are shown in Section 5.2.
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4. PMIK-SC Algorithm
4.1. PMI-Kernel Derivation

One of the key problems in spectral clustering algorithms is how to construct a suitable
proximity matrix, and graph kernel is one of the methods to construct such a matrix. For
structural information, graph kernels of different construction methods can extract different
structural features of networks, such as kernels based on the shortest path, which may
give more weight to short edges in the network, while kernels based on sub-tree structure
can obtain richer information about the graph structure but also have the defect of path
backtracking, etc. Currently, many graph kernels are defined based on R-convolution
theory for construction, but such kernels have three drawbacks:

• A large amount of structural information in non-isomorphic subgraphs is ignored.
• The positions of isomorphic sub-structures in the original network cannot be reflected

by the kernels.
• The kernels only deal with small-size sub-structures, which cannot fully reflect the

structural information of the network.

From the perspective of information theory, we introduce point-wise mutual informa-
tion (PMI) and design the PMI-Kernel based on the exponentially decaying diffusion model.
Point-wise mutual information is used to measure the information-theoretical correlation
between two variables.

Compared to R-convolution-based kernels, PMI-based kernels have the following
features: First, instead of directly extracting the features of nodes, it aims to reveal the
correlation between nodes. This transforms the community detection problem into a node
clustering problem and minimizes the information loss during the clustering process as
much as possible. In addition to this, the point-wise mutual information matrix constructed
based on the infinite-order transition probability matrix can not only express the local
information of each node’s neighborhood but also retain the global information of the
target network.

Therefore, graph kernels based on PMI avoid the drawbacks of R-convolution-based
kernels. PMI-based kernels no longer need to consider the isomorphism and position
of the substructure, and the neighborhood substructure information of a specific node is
directly stored in the corresponding row of the PMI matrix in the form of multiple-order
accumulation. In addition, since the PMI matrix is constructed based on the infinite-
order transition probability matrix, the global information of the network is preserved, so
PMI-based kernels can more fully reflect the structural information of a network.

For a pair of discrete random variables x and y, the point-wise mutual information is
defined as the logarithm of the ratio of the product of the joint probability distribution and
the marginal probability distribution, as shown in Equation (15):

pmi(x; y) = log
p(x, y)

p(x)p(y)
(15)

The value range of PMI is:

−∞ ≤ pmi(x; y) ≤ min[−log p(x),−log p(y)] (16)

The PMI value indicates the correlation between two random variables. If x and y
are independent, pmi(x; y) is 0; if there is a negative correlation between x and y, pmi(x; y)
will be negative.

In order to apply PMI to the network structure, it is necessary to select suitable
probabilities as edge probabilities and joint probabilities in Equation (15). First, consider
the first-order transfer probability matrix, P1:

P1 = D−1 A (17)
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where D and A are, respectively, the degree matrix and the adjacency matrix of the network.
Experiments show that if the first-order transfer probability matrix is used to calculate the
PMI values of a network with a lower average degree, the accuracy of community detection
is low. This is due to the fact that global information cannot be obtained by the first-order
transfer probability matrix in a sparse network. To address this problem, the exponen-
tially decaying diffusion model based on the transfer probability matrix is introduced to
calculate the infinite-order transfer probability matrix P of a specific network, as shown in
Equation (18).

P =
∞

∑
k=0

e−kP1
k =

∞

∑
k=0

(
P1

e

)k
=

[
I − P1

e

]−1
(18)

The exponentially decaying diffusion model follows the principle that the influence
between nodes decays with the increase in their distance in the network. Such information
on pairwise influence contributes to finding the closely connected nodes in a network, and
that is exactly the goal of community detection.

The sum of the elements in each row of matrix P is not necessary 1; here, it needs to be
row normalized by:

∼
P = D−

1
2

P PD−
1
2

P (19)

where DP is a diagonal matrix in which elements on the diagonal are the sum of the elements
of the corresponding row in matrix P, and other elements 0, as shown in Equation (20):

DP(i, i) = ∑
j

P(i, j) (20)

In the normalized transfer probability matrix
∼
P, each element

∼
P(i, j) is equal to the

sum of the 1st, 2nd, . . ., and h-th order transfer probabilities from node i to node j. Then,

the elements of the PMI matrix MPMI can be calculated by substituting each
∼
P(i, j) into

Equation (15):

MPMI(i, j) = log

∼
P(i,j)
V∼

P
∼
P(i,·)
V∼

P

∼
P(·,j)

V∼
P

= log

∼
P(i, j) ·V∼

P
∼
P(i, ·)

∼
P(·, j)

(21)

where V∼
P

denotes the flux of the
∼
P matrix, i.e., the sum of the values of all elements of

matrix V∼
P

.
∼
P(i, ·) and

∼
P(·, j), respectively, denote the sum of all elements of a row and that

of a column in matrix
∼
P.

Note that the PMI matrix obtained at this point cannot be directly used as a proximity
matrix or kernel matrix for spectral clustering. That is because:

• The matrix is not symmetric since the transfer probability from node i to node j is
not necessarily equal but determined by the degree of the two nodes and all possible
paths starting from node i and node j.

• From the range of PMI values: [−∞, min[−log p(x),−log p(y)]], we know that there
may be negative elements in the matrix.

To address the above two issues, the following equation is first used to symmetrize
the matrix:

M′PMI =
1
2

(
MPMI + MT

PMI

)
(22)

Then, for the negative values, the elements of matrix M′PMI are normalized to 0 ∼ 1
in order to retain the original structural information of networks with different average
degrees, as shown in Equation (23):

KPMI(i, j) =
M′PMI(i, j)−min(M′PMI)

max(M′PMI)
(23)
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4.2. Implementation

Based on the BI-CNE algorithm and PMI-Kernel, the implementation of the spectral
clustering community detection algorithm based on the point-wise mutual information
graph kernel (PMIK-SC) will be described in detail in terms of the number of communities,
graph reconstruction, and graph cut criterion.

4.2.1. Number of Communities

For the input requirement of the number of communities k for the PMIK-SC algorithm,
the BI-CNE algorithm proposed in Section 3 is used to quickly estimate the number of
communities k for the network. This is conducted by Monte Carlo sampling various
community partition states of the network and selecting the k value corresponding to the
maximum value of P(k | A) as the number of communities; in short, the k value with the
most frequency. Since the time complexity of the BI-CNE algorithm is only O(kn), and
the number of iterations required for the algorithm to converge is greatly reduced by the
acceleration of sampling, the number of communities k can be quickly obtained as the
input to the PMIK-SC algorithm.

4.2.2. Graph Reconstruction

The PMI-Kernel matrix KPMI derived in the previous section is used as the proximity
matrix for spectral clustering. For small-scale and medium-scale networks, the infinite-
order transfer probability matrix can extract rich topology information from the network,
and the similarity between any two nodes can be represented by the corresponding ele-
ment values in the PMI-Kernel matrix. This helps the spectral clustering algorithm better
delineate the community structure, as shown in Figure 7. In contrast, for large-scale sparse
networks, the computational cost can be reduced by limiting the influence range of nodes.
For example, if the influence range of each node is set to l hops, the topological structural
information of the network can be extracted by an l-order transfer probability matrix. This
can be simply implemented by replacing ∞ by l in Equation (18). The impact of replacing
the infinite-order transition probability matrix with an l-order transfer probability matrix is
experimentally analyzed, as in Section 5.3.1.
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To reconstruct the graph for spectral clustering using the PMI-Kernel matrix KPMI , a
distance matrix S is constructed first by using the proximities to distances formula [23]:

S(i, j) =
1
2
(KPMI(i, i) + KPMI(j, j))−KPMI(i, j) (24)

where S(i, j) is the elements of S. The distance matrix is then used to construct a weight
adjacency matrix W, using the K-nearest neighborhood (KNN) construction:

W(i, j) = W(j, i) =

{
exp

(
− S(i,j)

2σ2

)
, i f i ∈ KNN(j) or j ∈ KNN(i)

0, otherwise
(25)

where KNN(i) denotes the KN neighbor nodes of node i, in which the distances between
nodes are measured using S. σ is the variance of the Gaussian distribution, which is set to
1.0 on implementation.

Finally, a graph cut criterion is used to partition the reconstructed graph to obtain the
result of spectral clustering.

4.2.3. Graph Cut Criterion

The normalized cut (NCut) is selected as the cut criterion to partition the reconstructed
graph. This criterion can measure both the degree of similarity between nodes within the
same community and the degree of difference between nodes in different communities,
which performs better on spectral clustering compared with other graph-cut criteria. Note
that the NCut criterion requires an eigendecomposition and eigenvector clustering of a
symmetric normalized Laplacian matrix Lsym, which is constructed by the following definition:

WLsym = DW
− 1

2 LDW
− 1

2 (26)

where Dw is the degree matrix of W in which elements on the diagonal are the sum
of the elements of the corresponding row in matrix W, and other elements 0, as:
DW(i, i) = ∑ j W(i, j). L is the Laplacian matrix constructed by L = DW −W.

On this basis, the community partition results are obtained by calculating the eigen-
vectors corresponding to the smallest k eigenvalues of Lsym, and finally, clustering using
the k-means algorithm.

The procedure of the algorithm is as follows:
Input: adjacency matrix A of network G, the number of communities k

(1) Calculate the first-order transfer probability matrix P1 = D−1 A and the infinite-order
transfer probability matrix P according to Equation (18).

(2) Calculate the PMI matrix MPMI , according to Equation (21).
(3) Symmetrize and normalize MPMI to obtain the PMI-Kernel matrix KPMI .
(4) Calculate the distance matrix S using Equation (24).
(5) Reconstruct the network based on S by Equation (25) and obtain the weight adjacency

matrix W.
(6) Construct the symmetric normalized Laplacian matrix Lsym using Equation (26).
(7) Eigendecompose the Laplacian matrix Lsym to obtain the first k smallest eigenvalues

and the corresponding eigenvectors to form the feature matrix.
(8) Perform k-means clustering on the row vectors of the feature matrix to obtain the final

community partitioning result g.

The pseudo-code of the algorithm is shown in Algorithm 1.
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Algorithm 1. PMIK-SC algorithm

Require: Adjacency matrix A, number of communities k
Ensure: Community partition g
1: D← diag(∑ j Aij)

2: P1 ← D−1 A
3: P← [I − P1/e]−1

4: DP ← diag(∑ j Pij)

5:
∼
P← DP

− 1
2 PDP

− 1
2

6: for i, j← 0 to n do

7: MPMI(i, j)← log
((∼

P(i, j)V∼
P

)
/
(∼

Pi·[i]
∼
P·j[j]

))
8: end for
9: KPMI ← symmetrize and normalize MPMI
10: S← proximities_to_distances(MPMI)
11: for i, j← 0 to n do
12: if i in KNN(j) or j in KNN(j) then
13: W(i, j)← exp (−S(i, j)/2σ2)
14: else
15: W(i, j)← 0
16: end if
17: end for
18: DW ← diag(∑ j Wij)

19: L← DW −W
20: Lsym ← Dw

− 1
2 LDw

− 1
2

21: values, vectors← eig(Lsym)
22: sort_ascending(values, vectors)
23: g← k−means(vectors[: k], n_clusters = k)
24: return community partition result g

5. Experiment
5.1. Preparation of the Experiments
5.1.1. Datasets

The experiments are conducted on both real-world network datasets and the LFR
synthetic network datasets [24]. The main properties of them are shown in Tables 1 and 2,
respectively, where n is the number of nodes, m is the number of edges, K is the ground-
truth number of communities, d is the average degree of nodes, and µ is the mixing
parameter for LFR networks.

Table 1. Main properties of real-world networks.

Dataset n m K

Karate 34 78 2
Dolphins 62 162 2
Polbooks 105 441 3
Football 115 613 12

Table 2. Main properties of LFR synthetic networks.

Dataset n m K d µ

L1 1000 7395 51 15 0.1
L2 1000 7646 47 15 0.2
L3 1000 7692 54 15 0.3
L4 1000 7549 44 15 0.4
L5 500 14,086 3 30 0.3
L6 1000 30,288 7 30 0.3
L7 2000 60,306 4 30 0.3
L8 5000 143,972 17 30 0.3
L9 10,000 302,282 87 30 0.3
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Among them, L1–L4 have the same scale, which is used to compare the accuracy
of BI-CNE and PMIK-SC algorithms under different mixing parameters (µ). L5–L9 are
generated using the same d and µ, but with different numbers of nodes, to measure the
performance of PMIK-SC under different network scales.

5.1.2. Evaluation Indexes

For the CN estimation, the ground-truth number of communities is used as the eval-
uation index. It is better that the CN estimated by the algorithms is closer to the ground
truth. For the community detection task, the evaluation indexes are the normalized mutual
information (NMI) and modularity (Q). NMI [25] can be used to measure the difference
between the partitions obtained by the community detection algorithm and the ground-
truth partitions. The larger the NMI value, the closer the community partition result is to
the ground-truth partitions.

NMI =
−2∑CA

i=1 ∑CB
j=1 Cijlog2

(
CijN/Ci.C.j

)
∑CA

i=1 Ci.log2 (Ci./N) + ∑CB
j=1 C.jlog2

(
C.j/N

) (27)

where A represents the ground-truth partition, and B represents the partition obtained by a
community detection algorithm; CA and CB represent the numbers of communities of A
and B respectively; C is a confusion matrix, in which the element Cij represents the number
of nodes both in community i in A and in community j in B. Ci. and C.j are respectively
the sum of the elements in the ith row and in jth column of C, and N represents the total
number of nodes of the network.

Modularity is an evaluation index to measure the quality of partition given a parti-
tioned network [5,10], which can be calculated by Equation (28):

Q =
1

2m∑
uv

[
Auv −

kukv

2m

]
δ(cu, cv) (28)

where u, v denotes a pair of nodes, and ku, kv are the degrees of them. m denotes the total
number of edges in the network. A is the adjacency matrix of the network, in which the
element Auv denotes the number of edges connecting node u and node v. cu, cv denote the
communities to which nodes u and v belong. δ(cu, cv) is the Kronecker delta defined as
Equation (2).

Conductance has been widely used in the study of graph cuts before it was applied to
community detection [26,27]. For a cluster c, conductance is defined as:

f (c) =
mext

c
2mext

c + mint
c

(29)

where mint
c is the number of intra-cluster edges of cluster c, and mext

c is the external edges
link the cluster to other parts of the network. Here, we use the average conductance (AC)
of all communities to evaluate the result of community detection:

Φc = avg
c∈C

f (c) (30)

Intra-cluster density [28] is used to measure the density of edges within a cluster,
which is defined as:

δint(c) =
mc

nc(nc − 1)/2
(31)

where nc and mc is respectively the number of nodes and edges of cluster C. The de-
nominator denotes the number of possible edges within the cluster, which is equal to
nc(nc − 1)/2.
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Similarly, we use the average intra-cluster density (AICD) to measure the quality of
a partition, which is exactly the average of the intra-cluster density of all communities in
a partition:

∆int(C) = avg
c∈C

δint(c) (32)

5.1.3. Hardware Information

The experiments are conducted single-threaded on a PC with the following technical
details in Table 3.

Table 3. Hardware Information.

CPU Intel(R) Core(TM) i7-9700

Cores 8
Frequency 3.0 GHz
Memory 8 GB

5.2. BI-CNE Algorithm Experiments
5.2.1. Network Pruning Reconstruction

To test the effect of network pruning reconstruction, experiments are conducted on
four real-world network datasets and four artificially generated network datasets. The
range of cutoff values used in the experiments is [0, 6], and the pruning reconstruction of
the network with different cutoff values, including the number of nodes, the number of
connected edges, and the number of connected graphs after reconstruction, are shown in
Tables 4 and 5, where cutoff = 0 corresponds to the original network and cutoff = k means
only the edges between nodes with a cutoff ≥ k are retained.

Table 4. Reconstruction results of real-world networks.

Karate Dolphins Polbooks Football
Cutoff Node Edge Part Node Edge Part Node Edge Part Node Edge Part

0 34 78 1 62 159 1 105 441 1 115 613 1
1 32 67 1 46 121 1 104 423 1 115 517 1
2 17 32 1 40 84 2 98 364 1 115 449 2
3 11 18 2 25 45 4 84 289 4 113 411 8
4 6 7 2 16 21 3 65 221 4 108 393 10
5 6 4 2 9 8 3 48 128 4 105 327 13
6 4 2 2 8 5 3 33 81 2 95 219 18

Table 5. Reconstruction results of LFR synthetic networks.

L1 L2 L3 L4
Cutoff Node Edge Part Node Edge Part Node Edge Part Node Edge Part

0 1000 7652 1 1000 15,354 1 1000 7603 1 1000 15,078 1
1 1000 5899 9 1000 12,688 1 994 4835 1 1000 11,559 1
2 999 5410 28 1000 11,281 1 951 3576 10 1000 8918 1
3 995 5131 36 1000 10,840 5 814 2667 25 1000 7650 1
4 964 4656 46 1000 10,759 22 606 1845 38 998 6919 2
5 791 3749 48 1000 10,720 27 472 1309 41 996 6290 15
6 658 3057 42 1000 10,654 29 367 962 37 977 5564 29

As can be observed from the experiment results, the number of connected sub-graphs
is the actual CN when pruning reconstruction is performed for small-scale networks with
obvious community structure. For other small-scale networks with complex community
structures, the number of connected sub-graphs obtained by pruning reconstruction is
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related to the average node degree, node degree distribution, and actual community size
distribution of the network itself, which can be more easily observed in the experiments of
LFR synthetic networks. The node degree distribution and community size distribution of
the LFR synthetic network both obey a power-law distribution, such as dataset L1, which
has a mixing parameter of 0.3, and its community structure is clearer compared with the
network with a mixing parameter of 0.5; its average node degree is 15, and the number
of connected sub-graphs obtained by pruning reconstruction at a cutoff value of 5 is 48,
which is close to the actual CN 49. For a dataset with a large average degree, such as the
L4 dataset, the network still cannot be split at a cutoff value lower than 4, and the number
of connected graphs is 1. But accordingly, fewer nodes are removed when pruning such a
network, and the obtained connected sub-graphs can preserve more information about the
original community structure. In a word, the pruned network is more similar to the real
community partition, and as the initial state of the system for Monte Carlo sampling, it will
help to reduce the number of iterations required to reach the equilibrium state.

5.2.2. Comparison Results

The following algorithms are selected to compare with our CN estimation algorithm:

• Algorithm A1: the topological potential-based CN estimation algorithm [12].
• Algorithm A2: the statistical inference-based CN estimation algorithm [8].
• Algorithm A3: the statistical inference-based fast CN estimation algorithm [16]

Ten 10,000-round Monte Carlo sampling experiments are conducted on each of the four
real-world network datasets, and the one with the highest average likelihood P(A|g, k)
is selected, and the frequency of the number of communities k during their sampling is
counted, as shown in Figure 8. The value with the highest frequency, i.e., the k value
corresponding to the highest posterior probability P(A|g, k) , is taken as the estimated
number of communities. The results of the estimation on four real-world networks are
shown in Table 6, compared with Algorithms A1, A2, and A3. The estimated number is
considered better if it is closer to the ground-truth number of communities K.
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It shows that the BI-CNE algorithm is able to exactly estimate the number of real
communities on the first three datasets, including Karate, Dolphins, and Polbooks. For the
Football dataset, the number of real communities is 12, which contains 11 communities
corresponding to 11 soccer federations, and the 12th community is actually the soccer
teams that do not belong to any soccer federations. The number of communities estimated
by the BI-CNE algorithm is 11, which is the closest to the ground-truth number of com-
munities among the existing community estimation algorithms. The experiments show
that the BI-CNE algorithm generally outperforms the other comparative algorithms on
real-world networks.

To verify the generalization capability of the BI-CNE algorithm, 10 times 100,000 rounds
of Monte Carlo sampling experiments were conducted on each of the LFR synthetic net-
work datasets. In the same way, the k value with the highest frequency was taken as the
final estimated number of communities. The results of the comparison on LFR synthetic
networks are shown in Table 7.

Table 7. Number of communities estimated on LFR networks.

Dataset K A1 A2 A3 BI-CNE

L1 49 11 - 47 49
L2 29 6 - 54 29
L3 49 11 - 72 63
L4 31 8 - 80 51

The experimental results show that Algorithm A1, based on topological potential,
can only estimate a small number of communities on a synthetic network of 1000 nodes,
which is caused by the lack of a rigorous theoretical basis for the heuristic operation of the
algorithm itself and the simple secondary processing of the results. Algorithm A2 cannot
converge on the synthetic networks and fails to estimate the number of communities due to
its low sampling acceptance rate and slow operation speed. Algorithm A3 estimates a close
number on L1, but if the average degree is lower or the mixing parameter is higher, it tends
to overestimate the number of communities. That is because the community structure will
be more obscure with a lower average degree and a higher mixing parameter.

The BI-CNE algorithm accurately estimates the number of communities on L1 and L2
with the same mixing parameter of 0.3 and obtains the closest results compared to the other
algorithms on L3 and L4.

5.2.3. Sampling Acceleration

To verify the effectiveness of Monte Carlo sampling acceleration, the number of
iterations required to converge to a smooth distribution and the sampling acceptance rate
during the convergence process are counted separately on the BI-CNE algorithm before
and after the acceleration is applied. For statistical convenience, the state of convergence
is defined as the final estimated CN being sampled 10 times consecutively. For the LFR
synthetic network datasets, a comparison of the number of iterations needed to converge
before and after applying acceleration is shown in Figure 9.

Figure 9 shows that the number of iterations needed for convergence increases if the
network has a lower average node degree and a higher mixing parameter, which usually
means the structure of the network is more obscure. It also shows that after applying the
acceleration to sampling, the number of iterations needed is far less, and the algorithm
can quickly enter a smooth state for parameter probability sampling. There are two main
reasons for the significant acceleration effect. First, the Monte Carlo sampling without
acceleration starts with a random initial probability distribution to iterate, while the one
with acceleration uses the connected sub-graphs after network pruning and reconstruction
as the initial state. The initial probability distribution of the pruned network is closer to the
final converged target probability distribution, thereby reducing the number of redundant
iterations. Secondly, more effective operations are achieved in each round of sampling after
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applying the acceleration, which raises the sampling acceptance rate of the operations and
makes Monte Carlo sampling reach the smooth state faster.
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In order to observe the improvement of the sampling acceptance rate more intuitively,
a sampling acceleration comparison experiment is conducted on a large-scale network
dataset, Amazon, which has 334,863 nodes and 925,872 edges. To facilitate the observation,
the statistics are counted from the twentieth iteration until the sampling acceptance rate is
as low as five percent, and the results are shown in Figure 10.
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5.2.4. Complexity Analysis

The time complexity of pruning and reconstructing the network is O(m), where m
is the total number of edges in the network. In each iteration of Monte Carlo sampling,
the ratio of P(A|g, k) before and after the operation needs to be calculated. To reduce the
computational cost, it can be obtained by calculating the change of log P(A|g, k) , so as to
achieve a time complexity of O(k), where k is the number of communities. If sampling
acceleration is performed on Operation 1, the weights between the current community r
and all other communities need to be calculated in each iteration of sampling to obtain the
probability of selecting a specific community as community s. The time complexity required
for this process is also O(k). Therefore, the time complexity of the BI-CNE algorithm is
O(Rk) in summary, where R is the number of iterations. In practice, the algorithm runs
much faster than other comparative algorithms.
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5.3. PMIK-SC Algorithm Experiments
5.3.1. l-Order Transfer Probability Matrix for Approximating the Infinite-Order One

As mentioned in Section 4.2.2, when the target network is large, the time of calcu-
lating the PMI matrix can be reduced by using an l-order transfer probability matrix to
approximate the infinite-order one. According to Equation (18), the infinite-order transfer
probability matrix is essentially the weighted sum of transition probability matrices from
0-th order to h-th order, where h approaches infinity, and the weight for the h-th order is
e−h. When h goes large, the weight becomes very small, which means that by setting a
threshold l, one can ignore the transfer probability matrices beyond the l-th order to obtain
an approximate matrix Pa for the infinite-order one.

Pa =
l+1

∑
h=0

e−hP1
h ≈

∞

∑
h=0

e−hP1
h = P (33)

In order to avoid the occurrence of zero values in the cumulative transfer probability
matrix, which would result in the inability to compute PMI, we assume that for the
(l + 1)-th and larger orders, the probability for any node to reach other nodes in the
network is equal. Therefore, when computing the (l + 1)-th order transition probability
matrix, we replace P1

l+1 with a matrix where each element has a value of 1/n, where n is
the size of the matrix.

Calculating the matrix Pa just requires performing l − 1 matrix multiplications. If
the Coppersmith–Winograd algorithm [29] is used for matrix multiplication, the time
complexity can be reduced to O(l·n2.3729). In the case of large network scales, replacing
the infinite-order transfer probability matrix P with the l-th order cumulative transfer
probability matrix Pa can accelerate the computation of generating the PMI matrix.

In order to analyze the impact of using an l-order transition probability matrix for
approximating the infinite-order one, we measure the difference between the PMI matrices
produced by the two methods and the corresponding computation time on synthetic
networks of different scales.

The difference between the two PMI matrices is quantified using average square error
(ASE), defined as:

ASE(PMI1, PMI2) = ∑
i

∑
j
[PMI1(i, j)− PMI2(i, j)]2/n2 (34)

where n is the size of the two matrices PMI1 and PMI2. Table 8 shows the ASE values of
the PMI matrix generated by l-order transition probability matrices with different l values
and that generated by the infinite-order ones.

Table 8. ASE of the PMI matrices generated by the two methods.

Orders (l) L5 L6 L7 L8 L9

1 0.038 0.035 0.035 0.010 0.031
2 0.012 0.024 0.011 0.004 0.022
3 0.004 0.014 0.001 0.008 0.007
4 0.001 0.008 0.000 0.009 0.002
5 0.000 0.002 0.000 0.003 0.000
6 0.000 0.000 0.000 0.001 0.000
7 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000

The results show that it is feasible to use the l-order transition probability matrix to
approximate the infinite-order one. This will introduce a certain error related to l and the
network itself. In general, the larger l is, the smaller the error is. When l is large enough,
the error can be negligible. For most datasets, choosing l = 6 is appropriate.
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The impact on the calculation time of using l-order instead of infinite-order is also
analyzed. Table 9 shows the time taken to generate a PMI matrix using infinite-order and
l-order transition probability matrices.

Table 9. Time spent (seconds) to generate a PMI matrix.

Orders (l) L5 L6 L7 L8 L9

infinite 0.606 2.389 9.843 61.675 272.757
1 2.750 2.722 3.109 8.035 36.333
2 2.758 2.765 3.201 9.465 49.704
3 2.773 2.758 3.332 9.992 51.951
4 2.779 2.789 3.371 10.816 56.247
5 2.777 2.844 3.424 12.063 63.485
6 2.792 2.883 3.538 13.263 75.159
7 2.729 2.765 3.662 14.160 82.486
8 2.815 2.851 3.724 15.348 86.140
9 2.830 2.875 3.725 16.142 92.631

The results show that, in general, when using an l-order transition probability matrix,
more time is needed for more orders. It can also be inferred from the results that using
l-order instead of infinite-order has a time advantage only when the scale of the network is
large (for example, more than 1000 nodes). The larger the network is, the more obvious the
time advantage will be.

5.3.2. Complexity Analysis

First, the algorithm needs to compute the PMI matrix for the given network. An
approximate calculation is performed using the l-th order cumulative transfer probability
matrix, with a time complexity of O(l·n2.3729). Then, the PMI is computed using the
cumulative transfer probability matrix with a time complexity of O(n2). Next is the use
of KNN for network reconstruction and Laplacian matrix generation, with complexities
of O(nKN) and O(n2), respectively. In the process of spectral clustering, the complexity
of finding the top k eigenvectors of the matrix is O(kn2). The value of k can be set to the
estimated maximum possible number of communities. Therefore, the time complexity of
clustering using k-means is O(knT). Since l, T, and k are all constants much smaller than n,
the overall time complexity of the algorithm is O(kn2).

5.3.3. Community Detection Tasks

To evaluate the effectiveness of the PMIK-SC algorithm, we applied it to the community
detection task and compared it with multiple benchmark algorithms. Since PMIK-SC
is essentially a spectral clustering algorithm, we first incorporate some typical spectral
clustering algorithms into the benchmark algorithms, including Comm [30], Heat [20],
Katz [31], SCCT [32], and PPR [33]. Secondly, the kernel of PMIK-SC, which measures the
relationships between nodes, is generated within the information-theoretic framework. We
have also introduced some mutual information-based algorithms, including MINC-NRL [6]
and AMI-MLPA [7]. Finally, we have also considered some state-of-the-art community
detection algorithms, including the node-embedding-based algorithm GEMSEC [34], Ego-
net-based algorithms DEMON [35], and Ego-splitting [36], as well as the motif-enhanced
algorithm EdMot [37]. The theoretical time and space complexity of these algorithms are
shown in Table 10.

To evaluate the accuracy and efficiency of the PMIK-SC algorithm on community
detection, we run the algorithm on real-world networks Karate, Dolphins, Football, Pol-
books, and synthetic networks L1, L2, L3, and L4, comparing them with the benchmark
algorithms. Tables 11–14, respectively, show the NMI, modularity, average conductance,
and average intra-cluster density of the results, and Table 15 shows the time required for
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the execution of each algorithm. The bold numbers emphasize the best experimental results
within each dataset.

Table 10. Time and space complexity of the algorithms.

Algorithm Time Complexity Space Complexity

PMIK-SC O(kn2) O(n2) n is the number of nodes of the network.
Comm O(n3) O(n2)
Heat O(n3) O(n2)
Katz O(n3) O(n2)
SCCT O(n3) O(n2)
PPR O(n3) O(n2)

MINC-NRL O(kn2) O(nL) k is the max number of communities. L is the max number
of levels in overlapping hierarchical clustering.

AMI-MLPA O(nk2) O(np) p is the max number of the labels for each node.
GEMSEC O(n) O(nq) q is the dimension of the embeddings for each node.
EdMot O(m1.5 + nlog n) O(n2) m is the number of edges of the network.
DEMON O(n) O(nd) d is the average degree of the nodes
Ego-splitting O(m

3
2 ) O(nd)

Table 11. NMI of PMIK-SC results compared with the other algorithms.

Karate Dolphins Football Polbooks L1 L2 L3 L4 Avg.

PMIK-SC 1.000 0.889 0.924 0.589 0.999 0.997 0.994 0.990 0.923
Comm 0.836 0.655 0.728 0.360 0.873 0.816 0.755 0.662 0.711
Heat 0.836 0.889 0.924 0.601 1.000 0.913 0.869 0.630 0.833
Katz 1.000 0.704 0.718 0.319 0.835 0.786 0.716 0.616 0.712
SCCT 1.000 0.889 0.927 0.563 1.000 0.982 0.963 0.961 0.911
PPR 0.580 0.407 0.731 0.424 0.808 0.737 0.700 0.575 0.620
MINC-NRL 1.000 0.889 0.927 0.523 0.926 0.886 0.804 0.122 0.760
AMI-MLPA 1.000 0.889 0.924 0.545 1.000 0.999 0.984 0.815 0.895
GEMSEC 0.442 0.337 0.822 0.408 0.473 0.35 0.315 0.305 0.432
Edmot 0.579 0.493 0.904 0.472 0.995 0.981 0.965 0.974 0.795
DEMON 0.244 0.362 0.632 0.466 0.989 0.905 0.860 0.792 0.656
Ego-splitting 0.545 0.496 0.911 0.500 0.995 0.981 0.963 0.974 0.796

Table 12. Modularity of PMIK-SC results compared with the other algorithms.

Karate Dolphins Football Polbooks L1 L2 L3 L4 Avg.

PMIK-SC 0.371 0.379 0.601 0.496 0.874 0.759 0.655 0.563 0.587
Comm 0.345 0.377 0.456 0.432 0.7 0.554 0.431 0.321 0.452
Heat 0.360 0.379 0.601 0.485 0.875 0.67 0.519 0.279 0.521
Katz 0.371 0.364 0.438 0.382 0.652 0.529 0.373 0.278 0.423
SCCT 0.371 0.379 0.601 0.502 0.875 0.751 0.619 0.541 0.580
PPR 0.334 0.289 0.426 0.402 0.609 0.405 0.339 0.234 0.380
MINC-NRL 0.371 0.379 0.601 0.46 0.872 0.759 0.654 0.069 0.521
AMI-MLPA 0.371 0.379 0.601 0.493 0.875 0.762 0.633 0.436 0.569
GEMSEC 0.436 0.495 0.583 0.543 0.458 0.349 0.305 0.211 0.423
Edmot 0.514 0.602 0.650 0.579 0.887 0.787 0.702 0.615 0.667
DEMON 0.130 0.311 0.450 0.390 0.852 0.578 0.44 0.301 0.432
Ego-splitting 0.502 0.598 0.651 0.565 0.887 0.787 0.702 0.615 0.663
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Table 13. AC of PMIK-SC results compared with the other algorithms (smaller values are better).

Karate Dolphins Football Polbooks L1 L2 L3 L4 Avg.

PMIK-SC 0.132 0.064 0.337 0.122 0.104 0.213 0.312 0.404 0.211
Comm 0.162 0.103 0.518 0.240 0.396 0.493 0.589 0.667 0.396
Heat 0.152 0.064 0.337 0.151 0.102 0.319 0.426 0.643 0.274
Katz 0.132 0.102 0.519 0.280 0.428 0.534 0.631 0.702 0.416
SCCT 0.132 0.064 0.340 0.143 0.102 0.280 0.383 0.447 0.236
PPR 0.182 0.175 0.543 0.285 0.438 0.578 0.642 0.754 0.450
MINC-NRL 0.132 0.064 0.340 0.246 0.088 0.176 0.254 0.445 0.218
AMI-MLPA 0.132 0.064 0.337 0.163 0.102 0.203 0.433 0.643 0.260
GEMSEC 0.428 0.354 0.283 0.332 0.090 0.299 0.386 0.463 0.329
Edmot 0.270 0.230 0.263 0.254 0.088 0.172 0.257 0.344 0.235
DEMON 0.802 0.840 0.316 0.584 0.112 0.287 0.415 0.566 0.490
Ego-splitting 0.296 0.233 0.263 0.255 0.088 0.172 0.257 0.344 0.239

Table 14. AICD of PMIK-SC results compared with the other algorithms.

Karate Dolphins Football Polbooks L1 L2 L3 L4 Avg.

PMIK-SC 0.252 0.171 0.848 0.270 0.707 0.568 0.584 0.451 0.481
Comm 0.250 0.155 0.624 0.209 0.628 0.490 0.443 0.336 0.392
Heat 0.250 0.171 0.848 0.259 0.710 0.581 0.567 0.479 0.483
Katz 0.252 0.169 0.621 0.239 0.542 0.416 0.382 0.267 0.361
SCCT 0.252 0.171 0.860 0.240 0.710 0.486 0.496 0.398 0.452
PPR 0.251 0.192 0.594 0.211 0.585 0.428 0.396 0.238 0.362
MINC-NRL 0.252 0.171 0.860 0.176 0.558 0.463 0.412 0.290 0.398
AMI-MLPA 0.252 0.171 0.848 0.226 0.710 0.582 0.491 0.175 0.432
GEMSEC 0.626 0.609 0.841 0.616 0.459 0.626 0.620 0.556 0.619
Edmot 0.526 0.393 0.828 0.450 0.665 0.467 0.438 0.347 0.514
DEMON 0.144 0.052 0.316 0.083 0.699 0.516 0.465 0.267 0.318
Ego-splitting 0.464 0.387 0.817 0.546 0.667 0.467 0.426 0.347 0.515

Table 15. Time usage of PMIK-SC compared with the other algorithms.

Karate Dolphins Football Polbooks L1 L2 L3 L4

PMIK-SC 9.337 5.641 6.077 6.219 12.660 13.203 12.649 13.417
Comm 0.439 0.058 1.737 0.699 19.188 20.465 21.590 18.870
Heat 0.487 0.075 0.904 0.637 17.420 18.511 22.907 22.231
Katz 0.554 0.069 0.405 0.090 15.766 14.057 17.949 13.426

SCCT 0.647 0.083 0.298 0.203 16.246 32.359 31.506 37.175
PPR 0.461 0.647 2.268 2.033 19.787 19.341 21.555 19.339

MINC-NRL 0.138 0.245 0.687 0.482 11.137 11.474 10.910 12.077
AMI-MLPA 0.172 0.618 14.705 0.069 4.506 8.490 52.197 148.010

GEMSEC 13.564 26.322 48.974 42.578 349.881 298.914 297.126 297.421
Edmot 0.022 0.005 0.010 0.010 0.126 0.150 0.180 0.149

DEMON 0.018 0.019 0.076 0.049 1.649 1.166 1.000 0.871
Ego-splitting 0.030 0.006 0.018 0.014 0.153 0.193 0.187 0.161

As shown in the above tables, PMIK-SC achieved accurate results in community
detection. On average, the partitions obtained by PMIK-SC reach higher NMI and AC than
those obtained by the baseline algorithm. Although the performance of PMIK-SC is not as
good as that of algorithms such as Ego-Splitting and Edmot in terms of modularity and
AICD, it still maintains a high level on both real-world and synthetic networks. It can be
inferred from the results that on real-world networks and synthetic networks with small
mixing parameters, the results of spectral clustering methods, including Comm, Heat, and
Katz, are accurate. However, when the mixing parameter increases, the accuracy of these
algorithms drops significantly, except for PMIK-SC and SCCT. When µ = 0.4 (which means



Entropy 2023, 25, 1617 25 of 27

that the boundaries between a community and the other part of the network are blurred),
PMIK-SC can still reach an NMI of 0.990. The accuracy of the algorithms MINC-NRL and
AMI-MLPA based on mutual information has also reached a high level, but the accuracy
of MINC-NRL on synthetic networks is not perfect. It can be observed from Table 11
that even when µ = 0.1 on dataset L1 (which means the community boundaries are very
obvious), MINC-NRL can only achieve an NMI of 0.926. This may be caused by MINC-NRL
learning some information that is irrelevant to community structure in some dimensions of
the embeddings during the process of network representation learning. AMI-MLPA can
achieve an NMI of 1.0 on L1, but when µ increases, its accuracy also drops significantly.

As can be inferred from Table 12, when using modularity as the evaluation index,
the motif-enhancement-based algorithm EdMot performs best, and the Ego-net-based
algorithm Ego-splitting also achieves good results. The average modularity of the results
obtained by these two algorithms in the experimental datasets exceeds PMIK-SC, but their
NMI is not high. This also prompts us to think about whether modularity is more inclined
to consider the local density of the network than NMI, which represents the ground-truth
partition. We will conduct further research on this point in the future, trying to introduce
some local enhancement mechanisms to improve the performance of modularity for the
PMIK-SC algorithm.

In terms of running time, PMIK-SC and other spectral-clustering-based algorithms
are also less efficient than local-enhancement-based algorithms like EdMot, DEMON, and
Ego-splitting. However, compared with the other spectral clustering algorithms, PMIK-SC
is more efficient on larger networks with larger mixing parameters due to the approximate
acceleration used in generating PMI kernels and matrix decomposition.

6. Conclusions

In this article, a fast Bayesian inference-based number of communities estimation
algorithm (BI-CNE) based on a degree-corrected stochastic block model is proposed. The
algorithm first prunes and reconstructs the network, then performs Bayesian inference
and designs the corresponding Monte Carlo sampling process for obtaining the number of
community estimates. At the same time, the connectivity graph results of network pruning
and reconstruction are applied to the initial state of sampling, and the overall sampling
acceptance rate is improved by controlling the node transfer direction in sampling. Experi-
mental comparisons with other CN estimation algorithms in real-world networks and LFR
synthetic networks show that the estimation speed and accuracy of this algorithm outper-
form other existing CN estimation algorithms. The time complexity of O(Rk) also allows
the algorithm to be efficiently extended to large-scale complex networks for community
size estimation tasks.

With the premise of obtaining the CN estimation, a new graph kernel based on point-
wise mutual information is proposed and applied to the spectral clustering algorithm.
Experiments on real-world networks and synthetic networks show that the algorithm has
higher accuracy and stability compared with existing community detection algorithms. The
comparison results with the current optimal graph-kernel-based spectral clustering algo-
rithm also indicate that the point-wise information kernel can extract network topological
information more effectively.

The two algorithms are complementary to community detection. From one point
of view, PMIK-SC can reach high accuracy by providing an exact number of commu-
nities; from another perspective, taking the number of communities as a priori signifi-
cantly improves spectral-clustering-based community detection algorithms compared with
other approaches.

Due to the symmetry of the PMI matrix, one limitation of the current PMIK-SC
algorithm is that it can only be applied to undirected networks. The other limitation is the
relatively high time complexity of eigendecomposition, which affects the performance of
the PMIK-SC algorithm on large-scale networks.
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In future research, we will try to construct an asymmetric proximity matrix based
on the PMI matrix to solve the problem of community detection on directed graphs. We
will also consider improving the pruning judgment, the re-merging of communities after
pruning, and trying to introduce some local enhancement mechanisms to further reduce
the problem scale for higher efficiency.
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