Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis
Abstract
:1. Introduction
2. Models and Methods
2.1. Statement of the Research
2.2. Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis
3. Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebrahimi, B.; Dellnitz, A.; Kleine, A.; Tavana, M. A novel method for solving data envelopment analysis problems with weak ordinal data using robust measures. Expert Syst. Appl. 2021, 164, 113835. [Google Scholar] [CrossRef]
- Kovtun, V.; Kovtun, O.; Semenov, A. Entropy-Argumentative Concept of Computational Phonetic Analysis of Speech Taking into Account Dialect and Individuality of Phonation. Entropy 2022, 24, 1006. [Google Scholar] [CrossRef] [PubMed]
- Viacheslav, K.; Kovtun, O. System of methods of automated cognitive linguistic analysis of speech signals with noise. Multimedia Tools Appl. 2022, 81, 43391–43410. [Google Scholar] [CrossRef]
- Angeles, K.; Kijewski-Correa, T. Advancing building data models for the automation of high-fidelity regional loss estimations using open data. Autom. Constr. 2022, 140, 104382. [Google Scholar] [CrossRef]
- Hao, R.; Zheng, H.; Yang, X. Data augmentation based estimation for the censored composite quantile regression neural network model. Appl. Soft Comput. 2022, 127, 109381. [Google Scholar] [CrossRef]
- Garza-Ulloa, J. Methods to develop mathematical models: Traditional statistical analysis. In Applied Biomechatronics Using Mathematical Models; Elsevier: Amsterdam, The Netherlands, 2018; pp. 239–371. [Google Scholar]
- Gao, Y.; Shi, Y.; Wang, L.; Kong, S.; Du, J.; Lin, G.; Feng, Y. Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles. Comput. Methods Programs Biomed. 2020, 184, 105106. [Google Scholar] [CrossRef]
- Yang, X.-S.; He, X.-S.; Fan, Q.-W. Mathematical framework for algorithm analysis. In Nature-Inspired Computation and Swarm Intelligence; Academic Press: Cambridge, MA, USA, 2020; pp. 89–108. [Google Scholar] [CrossRef]
- Wang, X.; Liu, A.; Kara, S. Machine learning for engineering design toward smart customization: A systematic review. J. Manuf. Syst. 2022, 65, 391–405. [Google Scholar] [CrossRef]
- Khan, T.; Tian, W.; Zhou, G.; Ilager, S.; Gong, M.; Buyya, R. Machine learning (ML)-centric resource management in cloud computing: A review and future directions. J. Netw. Comput. Appl. 2022, 204, 103405. [Google Scholar] [CrossRef]
- Gonçales, L.J.; Farias, K.; Kupssinskü, L.S.; Segalotto, M. An empirical evaluation of machine learning techniques to classify code comprehension based on EEG data. Expert Syst. Appl. 2022, 203, 117354. [Google Scholar] [CrossRef]
- Sholevar, N.; Golroo, A.; Esfahani, S.R. Machine learning techniques for pavement condition evaluation. Autom. Constr. 2022, 136, 104190. [Google Scholar] [CrossRef]
- Alam, J.; Georgalos, K.; Rolls, H. Risk preferences, gender effects and Bayesian econometrics. J. Econ. Behav. Organ. 2022, 202, 168–183. [Google Scholar] [CrossRef]
- Cladera, M. Assessing the attitudes of economics students towards econometrics. Int. Rev. Econ. Educ. 2021, 37, 100216. [Google Scholar] [CrossRef]
- Joubert, J.W. Accounting for population density in econometric accessibility. Procedia Comput. Sci. 2022, 201, 594–600. [Google Scholar] [CrossRef]
- MacKinnon, J.G. Using large samples in econometrics. J. Econ. 2022. [Google Scholar] [CrossRef]
- Nazarkevych, M.; Voznyi, Y.; Hrytsyk, V.; Klyujnyk, I.; Havrysh, B.; Lotoshynska, N. Identification of Biometric Images by Machine Learning. In Proceedings of the 2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 19–21 May 2021. [Google Scholar] [CrossRef]
- Yusuf, A.; Qureshi, S.; Shah, S.F. Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators. Chaos Solitons Fractals 2020, 132, 109552. [Google Scholar] [CrossRef]
- Balbás, A.; Balbás, B.; Balbás, R. Omega ratio optimization with actuarial and financial applications. Eur. J. Oper. Res. 2021, 292, 376–387. [Google Scholar] [CrossRef]
- Giua, A.; Silva, M. Petri nets and Automatic Control: A historical perspective. Annu. Rev. Control 2018, 45, 223–239. [Google Scholar] [CrossRef]
- Sleptsov, E.S.; Andrianova, O.G. Control Theory Concepts: Analysis and Design, Control and Command, Control Subject, Model Reduction. IFAC-PapersOnLine 2021, 54, 204–208. [Google Scholar] [CrossRef]
- Knorn, S.; Varagnolo, D. Automatic control: The natural approach for a quantitative-based personalized education. IFAC-PapersOnLine 2020, 53, 17326–17331. [Google Scholar] [CrossRef]
- Rubio-Fernández, P.; Mollica, F.; Ali, M.O.; Gibson, E. How do you know that? Automatic belief inferences in passing conversation. Cognition 2019, 193, 104011. [Google Scholar] [CrossRef] [Green Version]
- Aljohani, M.D.; Qureshi, R. Proposed Risk Management Model to Handle Changing Requirements. Int. J. Educ. Manag. Eng. 2019, 9, 18–25. [Google Scholar] [CrossRef]
- Arefin, M.A.; Islam, N.; Gain, B. Roknujjaman Accuracy Analysis for the Solution of Initial Value Problem of ODEs Using Modified Euler Method. Int. J. Math. Sci. Comput. 2021, 7, 31–41. [Google Scholar] [CrossRef]
- Ramadan, I.S.; Harb, H.M.; Mousa, H.M.; Malhat, M.G. Reliability Assessment for Open-Source Software Using Deterministic and Probabilistic Models. Int. J. Inf. Technol. Comput. Sci. 2022, 14, 1–15. [Google Scholar] [CrossRef]
- Nayim, A.M.; Alam, F.; Rasel; Shahriar, R.; Nandi, D. Comparative Analysis of Data Mining Techniques to Predict Cardiovascular Disease. Int. J. Inf. Technol. Comput. Sci. 2022, 14, 23–32. [Google Scholar] [CrossRef]
- Goncharenko, A.V. Specific Case of Two Dynamical Options in Application to the Security Issues: Theoretical Development. Int. J. Comput. Netw. Inf. Secur. 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Padmavathi, C.; Veenadevi, S.V. An Automated Detection of CAD Using the Method of Signal Decomposition and Non Linear Entropy Using Heart Signals. Int. J. Image Graph. Signal Process. 2019, 11, 30–39. [Google Scholar] [CrossRef]
- Mwambela, A. Comparative Performance Evaluation of Entropic Thresholding Algorithms Based on Shannon, Renyi and Tsallis Entropy Definitions for Electrical Capacitance Tomography Measurement Systems. Int. J. Intell. Syst. Appl. 2018, 10, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Dronyuk, I.; Fedevych, O.; Poplavska, Z. The generalized shift operator and non-harmonic signal analysis. In Proceedings of the 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), Lviv, Ukraine, 21–25 February 2017. [Google Scholar] [CrossRef]
- Hu, Z.; Tereykovskiy, I.A.; Tereykovska, L.O.; Pogorelov, V.V. Determination of Structural Parameters of Multilayer Perceptron Designed to Estimate Parameters of Technical Systems. Int. J. Intell. Syst. Appl. 2017, 9, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Izonin, I.; Tkachenko, R.; Shakhovska, N.; Lotoshynska, N. The Additive Input-Doubling Method Based on the SVR with Nonlinear Kernels: Small Data Approach. Symmetry 2021, 13, 612. [Google Scholar] [CrossRef]
- Hu, Z.; Mashtalir, S.V.; Tyshchenko, O.K.; Stolbovyi, M.I. Clustering Matrix Sequences Based on the Iterative Dynamic Time Deformation Procedure. Int. J. Intell. Syst. Appl. 2018, 10, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Khokhlachova, Y.; Sydorenko, V.; Opirskyy, I. Method for Optimization of Information Security Systems Behavior under Conditions of Influences. Int. J. Intell. Syst. Appl. 2017, 9, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Pineda, S.; Morales, J.M.; Wogrin, S. Mathematical programming for power systems. In Encyclopedia of Electrical and Electronic Power Engineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 722–733. [Google Scholar] [CrossRef]
- Kharchenko, V.S.; Tarasyuk, O.M.; Sklyar, V.V.; Dubnitsky, V.Y. The method of software reliability growth models choice using assumptions matrix. In Proceedings of the 26th Annual International Computer Software and Applications Conference (COMPSAC), Oxford, UK, 26–29 August 2002; pp. 541–546. [Google Scholar]
- Babeshko, E.; Kharchenko, V.; Leontiiev, K.; Ruchkov, E. Practical Aspects of Operating and Analytical Reliability Assessment of Fpga-Based I&C Systems. Radioelectron. Comput. Syst. 2020, 3, 75–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisikalo, O.; Kharchenko, V.; Kovtun, V.; Krak, I.; Pavlov, S. Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis. Entropy 2023, 25, 184. https://doi.org/10.3390/e25020184
Bisikalo O, Kharchenko V, Kovtun V, Krak I, Pavlov S. Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis. Entropy. 2023; 25(2):184. https://doi.org/10.3390/e25020184
Chicago/Turabian StyleBisikalo, Oleh, Vyacheslav Kharchenko, Viacheslav Kovtun, Iurii Krak, and Sergii Pavlov. 2023. "Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis" Entropy 25, no. 2: 184. https://doi.org/10.3390/e25020184
APA StyleBisikalo, O., Kharchenko, V., Kovtun, V., Krak, I., & Pavlov, S. (2023). Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis. Entropy, 25(2), 184. https://doi.org/10.3390/e25020184