
Citation: Yahalom, A. Pauli’s

Electron in Ehrenfest and Bohm

Theories, a Comparative Study.

Entropy 2023, 25, 190. https://

doi.org/10.3390/e25020190

Academic Editor: Rosario Lo Franco

Received: 21 December 2022

Revised: 10 January 2023

Accepted: 15 January 2023

Published: 18 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Pauli’s Electron in Ehrenfest and Bohm Theories,
a Comparative Study
Asher Yahalom 1,2

1 Department of Electrical & Electronic Engineering, Faculty of Engineering, Ariel University,
Ariel 40700, Israel; asya@ariel.ac.il; Tel.: +972-54-7740294

2 Center for Astrophysics, Geophysics, and Space Sciences (AGASS), Ariel University, Ariel 40700, Israel

Abstract: Electrons moving at slow speeds much lower than the speed of light are described by a wave
function which is a solution of Pauli’s equation. This is a low-velocity limit of the relativistic Dirac
equation. Here we compare two approaches, one of which is the more conservative Copenhagen’s
interpretation denying a trajectory of the electron but allowing a trajectory to the electron expectation
value through the Ehrenfest theorem. The said expectation value is of course calculated using a
solution of Pauli’s equation. A less orthodox approach is championed by Bohm, and attributes
a velocity field to the electron also derived from the Pauli wave function. It is thus interesting
to compare the trajectory followed by the electron according to Bohm and its expectation value
according to Ehrenfest. Both similarities and differences will be considered.
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1. Introduction

Quantum mechanics is usually interpreted by the Copenhagen approach. This ap-
proach objects to the physical reality of the quantum wave function and declares it to be
epistemological (a tool for estimating probability of measurements) in accordance with
the Kantian [1] depiction of reality, and its denial of the human ability to grasp any thing
in its reality (ontology). However, we also see the development of another approach of
prominent scholars that think about quantum mechanics differently. This school believes
in the ontological existence of the wave function. According to this approach the wave
function is an element of reality much like an electromagnetic field. This was supported by
Einstein and Bohm [2–4] has resulted in different understandings of quantum mechanics
among them the fluid realization championed by Madelung [5,6] which stated that the
modulus square of the wave function is a fluid density and the phase is a potential of the
velocity field of the fluid.

A non-relativistic quantum equation for a spinor was first introduced by Wolfgang
Pauli in 1927 [7], this was motivated by the need to explain the Stern–Gerlach experiments.
Later it was shown that the Pauli equation is a low-velocity limit of the relativistic Dirac
equation (see for example [8] and references therein). This equation is based on a two
dimensional operator matrix Hamiltonian. Two-dimensional operator matrix Hamiltonians
are common in the literature [9–22] and describe many types of quantum systems. A
Bohmian analysis of the Pauli equation was given by Holland and others [3,4], however,
the analogy of the Pauli theory to fluid dynamics and the notion of spin vorticity were not
considered. In [23] spin fluid dynamics was introduces for a single electron with a spin.
One thus must contemplate where do those internal energies originate? The answer to this
question seems to come from measurement theory [24,25]. Fisher information is a basic
notion of measurement theory, and is a figure of merit of a measurement quality of any
quantity. It was shown [25] that this notion is the internal energy of a spin less electron (up
to a proportionality constant) and can be used to partially interpret the internal energy of
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an electron with spin. An attempt to derive most physical theories from Fisher information
is due to Frieden [26]. It was suggested [27] that there exists a velocity field such that the
Fisher information will give a complete explanation for the spin fluid internal energy. It
was also suggested that one may define comoving scalar fields as in ideal fluid mechanics,
however, this was only demonstrated implicitly but not explicitly. A common feature of
previous work on the fluid and Fisher information interpretation of quantum mechanics, is
the negligence of electromagnetic interaction thus setting the vector potential to zero. This
was recently corrected in [28].

Ehrenfest [29] published his paper in 1927 as well with the title: “Remark on the ap-
proximate validity of classical mechanics within quantum mechanics”. Using this approach
we can accept the orthodox Copenhagen’s interpretation denying a trajectory of the electron
but at the same time accept the existence of a trajectory of the electron’s position vector
expectation value through Ehrenfest theorem. The Ehrenfest approach is thus independent
of interpretation, and can be applied according to both the Copenhagen and Bohm schools.
However, only in the Bohm approach may one compare the trajectory of the electron to
that of its expectation value.

We will begin this paper by reminding the reader of the basic equation describing the
motion of a classical electron. This will be followed by a discussion of Schrödinger equation
with a non trivial vector potential and its interpretation in terms of Bohmian equation of
motion with a quantum force correction. Then we introduce Pauli’s equation with a vector
potential and interpret it in terms a Bohmian equation of motion with a quantum force
correction which is different from the Schrödinger case. Finally we derive an equation for
Pauli’s electron position vector expectation value using Ehrenfest theorem and compare
the result to the results obtained in Bohm’s approach, similarities and differences will arise,
a concluding section will follow discussing the Stern–Gerlach experiment.

2. A Classical Charged Particle

Consider a classical particle with the coordinates ~x(t), mass m and charge e interacting
with a given electromagnetic vector potential ~A(~x, t) and scalar potential ϕ(~x, t). We will
not be interested in the effects of the particle on the field and thus consider the field as
“external”. The action of said particle is:

A =
∫ t2

t1
Ldt, L = L0 + Li

L0 ≡ 1
2

mv2, Li ≡ e(~A ·~v− ϕ), ~v ≡ d~x
dt
≡ ~̇x, v = |~v|. (1)

The variation of the two parts of the Lagrangian are given by:

δL0 = m~̇x · δ~̇x =
d(m~v · δ~x)

dt
−m~̇v · δ~x (2)

δLi = e
(

δ~A ·~v + ~A · δ~̇x− δϕ
)

= e

(
∂k ~A ·~vδxk +

d(~A · δ~x)
dt

− δ~x · d~A
dt
− ~∇ϕ · δ~x

)
, (3)

in the above ∂k ≡ ∂
∂xk

and ~∇ ≡ ( ∂
∂x , ∂

∂y , ∂
∂z ) ≡ ( ∂

∂x1
, ∂

∂x2
, ∂

∂x3
). We use the Einstein summation

convention in which a Latin index (say k, l) takes one of the values k, l ∈ [1, 2, 3]. We may
write the total time derivative of ~A as:

d~A(~x(t), t)
dt

= ∂t ~A + vl∂l ~A, ∂t ≡
∂

∂t
. (4)
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Thus, the variation δLi can be written in the following form:

δLi =
d(e~A · δ~x)

dt
+ e[(∂k Al − ∂l Ak)vl − ∂t Ak − ∂k ϕ]δxk, (5)

Defining the electric and magnetic fields in the standard way:

~B ≡ ~∇× ~A, ~E ≡ −∂t ~A− ~∇ϕ, (6)

it follows that:
εklnBn = ∂k Al − ∂l Ak, Ek = −∂t Ak − ∂k ϕ, (7)

in which εkln is the three-index antisymmetric tensor. Thus, we may write δLi as:

δLi =
d(e~A · δ~x)

dt
+ e[εklnvl Bn + Ek]δxk =

d(e~A · δ~x)
dt

+ e
[
~v× ~B + ~E

]
· δ~x. (8)

We use the standard definition of the Lorentz force (MKS units):

~FL ≡ e
[
~v× ~B + ~E

]
(9)

to write:

δLi =
d(e~A · δ~x)

dt
+ ~FL · δ~x. (10)

Combining the variation of Li given in Equation (10) and the variation of L0 given in
Equation (2), it follows from Equation (1) that the variation of L is:

δL = δL0 + δLi =
d
(
(m~v + e~A) · δ~x

)
dt

+ (−m~̇v + ~FL) · δ~x. (11)

Thus, the variation of the action is:

δA =
∫ t2

t1
δLdt = (m~v + e~A) · δ~x

∣∣∣t2
t1
−
∫ t2

t1
(m~̇v− ~FL) · δ~xdt. (12)

Since the classical trajectory is such that the variation of the action on it vanishes for a
small modification of the trajectory δ~x that vanishes at t1 and t2 but is otherwise arbitrary
it follows that:

m~̇v = ~FL = e
[
~v× ~B + ~E

]
⇒ ~̇v =

e
m

[
~v× ~B + ~E

]
. (13)

Thus, the dynamics of a classical particle in a given electric and magnetic field is described
by a single number, the ratio between its charge and mass:

k ≡ e
m

⇒ ~̇v = k
[
~v× ~B + ~E

]
. (14)

The reader is reminded that the connection between the electromagnetic potentials and
the fields is not unique. Indeed performing a gauge transformation to obtain a new set
of potentials:

~A′ = ~A + ~∇Λ, ϕ′ = ϕ− ∂tΛ. (15)

we obtain the same fields:

~B′ = ~∇× ~A′ = ~∇× ~A = ~B, ~E′ = −∂t ~A′ − ~∇ϕ′ = −∂t ~A− ~∇ϕ = ~E. (16)

3. Schrödinger’s Theory

Quantum mechanics according to the Copenhagen interpretation has lost faith in our
ability to predict precisely the whereabouts of even a single particle. What the theory
does predict precisely is the evolution in time of a quantity denoted “the quantum wave
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function”, which is related to a quantum particle whereabouts in a statistical manner. This
evolution is described by an equation suggested by Schrödinger [30]:

ih̄ψ̇ = ĤSψ, ĤS = − 1
2m

(
h̄~∇− ie~A

)2
+ eϕ (17)

in the above i =
√
−1 and ψ is the complex wave function. ψ̇ = ∂ψ

∂t is the partial time
derivative of the wave function. h̄ = h

2π is Planck’s constant divided by 2π and m is the
particles mass. However, this presentation of quantum mechanics is rather abstract and
does not give any physical picture regarding the meaning of the quantities involved. Thus
we write the quantum wave function using its modulus a and phase φ:

ψ = aeiφ. (18)

We define the velocity field:

~vS =
h̄
m
~∇φ− e

m
~A (19)

and the mass density is defined as:
ρ̂ = ma2. (20)

It is easy to show from Equation (17) that the continuity equation is satisfied:

∂ρ̂

∂t
+ ~∇ · (ρ̂~vS) = 0 (21)

Hence ~vS field is the velocity associated with mass conservation. However, it is also the
mass associate with probability a2 (by Born’s interpretational postulate) and charge density
ρ = ea2. The equation for the phase φ derived from Equation (17) is as follows:

h̄
∂φ

∂t
+

1
2m

(
h̄~∇φ− e~A

)2
+ eϕ =

h̄2∇2a
2ma

(22)

In term of the velocity defined in Equation (19) one obtains the following equation of
motion (see Madelung [5] and Holland [3]):

d~vS
dt

=
∂~vS
∂t

+ (~vS · ~∇)~vS = −~∇Q
m

+ k(~E +~v× ~B) (23)

The right hand side of the above equation contains the “quantum correction”:

Q = − h̄2

2m

~∇2√ρ̂√
ρ̂

. (24)

For the meaning of this correction in terms of information theory see: [23,25,27]. These
results illustrate the advantages of using the two variables, phase and modulus, to obtain
equations of motion that have a substantially different form than the familiar Schrödinger
equation (although having the same mathematical content) and have straightforward
physical interpretations [2].

The quantum correction Q will of course disappear in the classical limit h̄ → 0, but
even if one intends to consider the quantum equation in its full rigor, one needs to take
into account the expansion of an unconfined wave function. As Q is related to the typical
gradient of the wave function amplitude it follows that as the function becomes smeared
over time and the gradient becomes small the quantum correction becomes negligible. To
put in quantitative terms:

~FQ = −~∇Q ' h̄2

2mL3
R

, LR '
R
|~∇R|

(25)
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in which LR is the typical length of the amplitudes gradient. Thus:

|FQ| << |FL| ⇒ LR >> LRc =

(
h̄2

2mFL

) 1
3

. (26)

in which ~FL is the classical Lorentz force given in Equation (9). If an electron transverses a
macroscopic length this terms seems unimportant.

4. Pauli’s Theory

Schrödinger’s quantum mechanics is limited to the description of spin less particles.
Indeed the need for spin became necessary as Schrödinger equation could not account for
the result of the Stern–Gerlach experiments, predicting a single spot instead of the two spots
obtained for hydrogen atoms. Thus Pauli introduced his equation for a non-relativistic
particle with spin, given by:

ih̄ψ̇ = ĤPψ, ĤP = − h̄2

2m
[~∇− ie

h̄
~A]2 + µ~B ·~σ + eϕ = ĤS I + µ~B ·~σ (27)

ψ here is a two dimensional complex column vector (also denoted as spinor), ĤP is a two
dimensional Hermitian operator matrix, µ is the magnetic moment of the particle, and I is
a two dimensional unit matrix. ~σ is a vector of two dimensional Pauli matrices which can
be represented as follows:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (28)

The ad hoc nature of this equation was later amended as it became clear that this is the non
relativistic limit of the relativistic Dirac equation. A spinor ψ satisfying Equation (27) must
also satisfy a continuity equation of the form:

∂ρp

∂t
+ ~∇ ·~j = 0. (29)

In the above:
ρp = ψ†ψ, ~j =

h̄
2mi

[ψ†~∇ψ− (~∇ψ†)ψ]− k~Aρp. (30)

The symbol ψ† represents a row spinor (the transpose) whose components are equal to the
complex conjugate of the column spinor ψ. Comparing the standard continuity equation to
Equation (29) suggests the definition of a velocity field as follows [3]:

~v =
~j
ρp

=
h̄

2miρp
[ψ†~∇ψ− (~∇ψ†)ψ]− k~A. (31)

Holland [3] has suggested the following representation of the spinor:

ψ = Rei χ
2

 cos
(

θ
2

)
ei φ

2

i sin
(

θ
2

)
e−i φ

2

 ≡ ( ψ↑
ψ↓

)
. (32)

In terms of this representation the density is given as:

R2 = ψ†ψ = ρp ⇒ R =
√

ρp. (33)

The mass density is given as:

ρ̂ = mψ†ψ = mR2 = mρp. (34)
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The probability amplitudes for spin up and spin down electrons are given by:

a↑ =
∣∣ψ↑∣∣ = R

∣∣∣∣cos
θ

2

∣∣∣∣, a↓ =
∣∣ψ↓∣∣ = R

∣∣∣∣sin
θ

2

∣∣∣∣ (35)

Let us now look at the expectation value of the spin:

<
h̄
2
~σ >=

h̄
2

∫
ψ†~σψd3x =

h̄
2

∫ (
ψ†~σψ

ρp

)
ρpd3x (36)

The spin density can be calculated using the representation given in Equation (32) as:

ŝ ≡ ψ†~σψ

ρp
= (sin θ sin φ, sin θ cos φ, cos θ), |ŝ| =

√
ŝ · ŝ = 1. (37)

This gives an easy physical interpretation to the variables θ, φ as angles which describe
the projection of the spin density on the axes. θ is the elevation angle of the spin density
vector and φ is the azimuthal angle of the same. The velocity field can now be calculated
by inserting ψ given in Equation (32) into Equation (31):

~v =
h̄

2m
(~∇χ + cos θ~∇φ)− k~A. (38)

We are now in a position to calculate the material derivative of the velocity and obtain the
equation of motion for a particle with ([3], p. 393, Equation (9.3.19)):

d~v
dt

= −~∇(Q
m
)−

(
h̄

2m

)2 1
ρp

∂k(ρp~∇ŝj∂k ŝj) + k(~E +~v× ~B)− µ

m
(~∇Bj)ŝj. (39)

The Pauli equation of motion differs from the classical equation motion and the Schrödinger
equation of motion. In addition to the Schrödinger quantum force correction we have an
additional spin quantum force correction:

~FQS ≡ −
h̄2

4m
1
ρp

∂k(ρp~∇ŝj∂k ŝj) = −
h̄2

4m

[
∂k(~∇ŝj∂k ŝj) +

∂kρp

ρp
~∇ŝj∂k ŝj

]
(40)

as well as a term characterizing the interaction of the spin with a gradient of the magnetic
field.

~FgradBS ≡ −µ(~∇Bj)sj (41)

As both the upper and lower spin components of the wave function are expanding in
free space the gradients which appear in ~FQS will tend to diminish for any macroscopic
scale making this force negligible. To estimate the condition qualitatively we introduce the
typical spin length:

Ls = min i∈{1,2,3} |~∇ŝi|−1 (42)

Using the above definition we may estimate the spin quantum force:

FQS ≈
h̄2

4m
[

1
L3

s
+

1
L2

s LR
] =

h̄2

4mL2
s
[

1
Ls

+
1

LR
] (43)

this suggested the definition of the hybrid typical length:

LsR = [
1
Ls

+
1

LR
]−1 =

{
Ls Ls � LR
LR LR � Ls

. (44)

In terms of this typical length we may write:
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FQS ≈
h̄2

4mL2
s LsR

(45)

Thus the conditions for a classical trajectory become:

FQS � FL ⇒ L2
s LsR �

h̄2

4mF
⇒ Ls �


(

h̄2

4mFL

) 1
3 Ls � LR(

h̄2

4mFL LR

) 1
2 LR � Ls

. (46)

Another important equation derived from Equation (27) is the equation of motion for the
spin orientation vector ([3], p. 392, Equation (9.3.16)):

dŝ
dt

=
2µ

h̄
~Be f f × ŝ, ~Be f f = ~B− h̄2

4µmR2 ∂i(ρ∂i ŝ) (47)

The quantum correction to the magnetic field explains [3] why a spin picks up the orienta-
tion of the field in a Stern–Gerlach experiment instead of precessing around it as a classical
magnetic dipole would.

Finally we remark that despite the fact that the electron is (as far as the empirical
evidence suggests) a point particle and thus cannot rotate with respect to its center of mass
as a rigid finite body would, there is a long and respectable tradition of attributing to the
electron a “classical” spin [31–34], as if it was rigid body. Despite some success of this
approach we regard it as highly non-intuitive.

5. Ehrenfest Theorem

According to the Copenhagen school of quantum mechanics, no attribute can be given
to the electron unless it can be measured (see for example [35]). Now according to the
Heisenberg uncertainty rule, one cannot measure both the position and momentum (which
are complementary attributes and do not commute) of the electron at the same time. Hence,
two attributes that are needed to define a trajectory: position and direction of propagation
cannot be attributed to the electron simultaneously. Thus the above electron equations
of motion are not accepted by all quantum physicists. In fact, physicists who follow the
Copenhagen school of quantum mechanics declare that a quantum electron does not have
a trajectory.

Of course, not all quantum physicists follow the Copenhagen school, as many follow
Bohm’s [2] school of thought (Einstein, Holland [3], Durr & Teufel [4] etc.) which do assign
a trajectory to the electron, despite the fact that velocity and position cannot be measured
at the same time. According to this school of thought a trajectory is an ontological property
of the electron and it exists regardless of our ability to measure it (in general it is believed
that reality exists regardless of our ability to observe it). The reader is also referred to [36]
which study proton trajectories. Those differ from the subject of the current paper which is
electrons. Protons are not point particles like electrons and thus they can “spin” also in a
classical sense.

However, all quantum physicists agree that one can describe the trajectory of the
expectation value of various operators such as position and momentum associated with
the electron’s trajectory. This calculation is carried out through the Ehrenfest Theorem [37].
The theorem states that for every quantum operator Ao with expectation value:

< Ao >=
∫

d3xψ† Aoψ (48)

the following equality holds:

d < Ao >

dt
=<

∂Ao

∂t
> +

1
ih̄

< [Ao, Ĥ] >, [Ao, Ĥ] ≡ Ao Ĥ − ĤAo. (49)
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The position and velocity operators defined as [37]:

~xo ≡ ~x, ~vo ≡
1
m
(~po − e~A) =

1
m
(−ih̄~∇− e~A) (50)

For a Schrödinger’s electron (that is without spin) the following results are obtained by
Griffiths [37] by inserting the above operators into Equation (49):

d < ~xo >

dt
=

1
ih̄

< [~x, ĤS] >=< ~vo >

d < ~vo >

dt
= <

∂~vo

∂t
> +

1
ih̄

< [~vo, ĤS] >

=
k
2
< ~vo × ~B− ~B×~vo > +k < ~E > (51)

Thus the electron position expectation value satisfies the equation:

d2 < ~xo >

dt2 =
k
2
< ~vo × ~B− ~B×~vo > +k < ~E > (52)

this equation resembles the classical and quantum equations of motion but also differs
from them in many important aspects. First let us compare it with Equation (13), let us also
assume that ~B = 0. In this case:

d2 < ~x >

dt2 = k < ~E(~x, t) > 6= k~E(< ~x >, t), (53)

thus as noted by many authors, even in this case the expectation value equations differ
from the classical equation of motion except for a very restrictive class of linear electric
fields. The difference is even more pronounced for the case ~B 6= 0 which only takes a
conventional “Lorentz force” form for a constant magnetic field ~B [37]:

d2 < ~x >

dt2 = k(< ~vo > ×~B+ < ~E >). (54)

Comparing Equation (52) with the quantum motion Equation (23), we see that the expecta-
tion value equation does not contain a quantum force term, which is a further justification
to our assumption that this term may be neglected on macroscopic scales.

Let us now turn our attention to the more realistic Pauli electron which does possess
spin, Equation (51) now take the form:

d < ~xo >

dt
=

1
ih̄

< [~x, ĤP] >=
1
ih̄

< [~x, ĤS] >=< ~vo >

d < ~vo >

dt
=<

∂~vo

∂t
> +

1
ih̄

< [~vo, ĤP] >

=<
∂~vo

∂t
> +

1
ih̄

< [~vo, ĤS] > +
1
ih̄

< [~vo, µ~B ·~σ] >

=
k
2
< ~vo × ~B− ~B×~vo > +k < ~E > +

µ

ih̄
< [~vo, Bi]σi >, (55)

in which in the last term we use the Einstein summation convention. However:

[~vo, Bi] =
1
m
[−ih̄~∇− e~A, Bi] = −

ih̄
m
[~∇, Bi] (56)

The value of this commutation relation can be deduced by operating with the above
operator on an arbitrary wave function ψ.

[~vo, Bi]ψ = − ih̄
m
[~∇, Bi]ψ = − ih̄

m

(
~∇(Biψ)− Bi~∇ψ

)
= − ih̄

m
(~∇Bi)ψ (57)
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Or in operator jargon:

[~vo, Bi] = −
ih̄
m
(~∇Bi) (58)

It thus follows that:

µ

ih̄
< [~vo, Bi]σi >= − µ

m
< (~∇Bi)σi >= − µ

m
< (~∇Bi)ŝi > (59)

in which we have used Equation (37). Inserting Equation (59) into Equation (55):

d2 < ~xo >

dt2 =
d < ~vo >

dt
=

k
2
< ~vo × ~B− ~B×~vo > +k < ~E > − µ

m
< ŝi~∇Bi > (60)

comparing the above equation to Equation (39) it follows that the only quantum force
surviving the expectation value averaging is the one describing the effect of the magnetic
field gradient on the spin vector which is in accordance with what should be expected in
the macroscopic limit thus leading to the Stern–Gerlach experiment.

6. Conclusions: Spin Orientation and the Stern–Gerlach Experiment

We have seen how the Ehrenfest theorem approach causes “quantum forces” to disap-
pear. Those forces disappear also in Bohm’s approach if one consider macroscopic scales
of propagation.

The Stern–Gerlach experiment is an example of using the spin force term given in
Equation (41) to separate spin up and spin down particles thus obtaining from a single ray
of particles two spots. If the magnetic field gradient is dominant in a single direction (say z)
we may write Equation (41) as:

FgradBS z = −µ(∂zBj)ŝj (61)

hence depending on the values ŝj some particle will move up and some will move down
creating two spots (see Figure 1).

Figure 1. A schematics of Stern–Gerlach experiment. Neutral particles travelling through an inhomo-
geneous magnetic field, and being deflected up or down depending on their spin; (1) particle source,
(2) beam of particles, (3) inhomogeneous magnetic field, (4) classically expected result (neglecting the
quantum spin force), (5) observed result.

The Stern–Gerlach experiment is usually performed with a neutral particle, not with
charged particles such as electrons. The reason for this is that generally speaking the
classical Lorentz forces are much stronger than the quantum spin force and thus the two-
spot effect is not observed. Holland shows by simulating Equation (47) that the spins in
a Stern–Gerlach rotate in the direction or opposite to the direction of the magnetic field
depending on the trajectory of the particle, that is to which spot it belongs (see Holland [3]
Figure 9.13). Notice, however, that from an energy perspective the lowest energy belong to
the case in which the spin (and thus its related magnetic dipole) point at the direction of
the field.
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The energy value is given by the expectation value of the Hamiltonian:

E =< ĤP >=< ĤS > +µ < ~B ·~σ > . (62)

If the direction of the field ~B is defined as a z direction it follows that:

E =< ĤS > +µ < Bzσz >=< ĤS > +µ
∫

d3xBz(a2
↑ − a2

↓). (63)

So particles with a definite spin direction (up or down) may have an upper or lower energy
depending on the value of µ. For an electron µ is the Bohr magneton:

µ = µB =
|e|h̄
2m

. (64)

and thus lower spin electrons will have a lower energy, if Bz is constant we may write this
term in the “classical” form using a magnetic dipole:

E =< ĤS > −~µ · ~B, ~µ = −µ
∫

d3x(a2
↑ − a2

↓)ẑ = µ
∫

d3x(a2
↓ − a2

↑)ẑ. (65)

hence the magnetic dipole will point in the direction of the field for a lower energy configu-
rations (spin down) and in the opposite direction for the higher energy configuration (spin
up). As systems tend to relax to their lower energy state, one may ask why do the particles
in a Stern–Gerlach experiment do not relax to the spin down configuration and instead split
to beams of spin up and spin down with about the same size? The answer may be connected
to the fact that in this type of experiment the electrons feel the magnetic field for only a
short while and do not have enough time to relax to their minimum energy configurations.

This is not the case in NMR and MRI experiment in which the magnetic dipoles are
under the influence of a strong magnetic field, for a long duration. In those cases the
magnetization defined as:

~M = ρP~µ (66)

satisfies the Bloch phenomenological equations:

dMx

dt
= γgyro( ~M× ~B)x −

Mx

T2
dMy

dt
= γgyro( ~M× ~B)y −

My

T2
dMz

dt
= γgyro( ~M× ~B)z −

Mz −M0

T1
(67)

in the above T1 and T2 are typical relaxation times and γ is a gyromagnetic ratio which for
an electron takes the value:

γgyro =
2µB

h̄
(68)

The magnetization satisfying the above equation eventually relaxes to the direction of the
field which is the minimal energy configuration (Figure 2).

As a future direction to the current research it may be interesting to study the same
problem for a fully relativistic electron, however, this will require using a Dirac equation
rather than Pauli’s equation.
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Figure 2. The evolution of magnetization towards relaxation, the tip of the magnetization vector is
described by the orange line.
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