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Abstract: Learning invariant (causal) features for out-of-distribution (OOD) generalization have
attracted extensive attention recently, and among the proposals, invariant risk minimization (IRM) is
a notable solution. In spite of its theoretical promise for linear regression, the challenges of using IRM
in linear classification problems remain. By introducing the information bottleneck (IB) principle into
the learning of IRM, the IB-IRM approach has demonstrated its power to solve these challenges. In
this paper, we further improve IB-IRM from two aspects. First, we show that the key assumption of
support overlap of invariant features used in IB-IRM guarantees OOD generalization, and it is still
possible to achieve the optimal solution without this assumption. Second, we illustrate two failure
modes where IB-IRM (and IRM) could fail in learning the invariant features, and to address such
failures, we propose a Counterfactual Supervision-based Information Bottleneck (CSIB) learning algorithm
that recovers the invariant features. By requiring counterfactual inference, CSIB works even when
accessing data from a single environment. Empirical experiments on several datasets verify our
theoretical results.

Keywords: out-of-distribution generalization; information bottleneck; causal learning

1. Introduction

Modern machine learning models are prone to catastrophic performance loss during
deployment when the test distribution is different from the training distribution. This
phenomenon has been repeatedly witnessed and intentionally exposed in many exam-
ples [1–5]. Among the explanations, shortcut learning [6] is considered as a main factor
causing this phenomenon. A good example is the classification of images of cows and
camels—a trained convolutional network tends to recognize cows or camels by learning
spurious features from image backgrounds (e.g., green pastures for cows and deserts for
camels), rather than learning the causal shape features of the animals [7]; decisions based
on the spurious features would make the learned models fail when cows or camels appear
in unusual or different environments. Machine learning models are expected to have the
capability of out-of-distribution (OOD) generalization and avoid shortcut learning.

To achieve OOD generalization, recent theories [8–12] are motivated by causality liter-
ature [13,14] and resort to extraction of the invariant, causal features and establishing the
relevant conditions under which machine learning models have guaranteed generalization.
Among these works, invariant risk minimization (IRM) [8] is a notable learning paradigm
that incorporates the invariance principle [15] into practice. In spite of the theoretical
promise of IRM, it is only applicable to problems of linear regression. For other problems,
such as linear classification, Ahuja et al. [12] first show that for OOD generalization, linear
classification is more difficult (see Theorem 1) and propose a new learning method of infor-
mation bottleneck-based invariant risk minimization (IB-IRM) based on the support overlap
assumption (Assumption 7). In this work, we closely investigate the conditions identified
in [12] and propose improved results for OOD generalization of linear classification.
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Our technical contributions are as follows. In [12], a notion of support overlap of in-
variant features is assumed in order to make the OOD generalization of linear classification
successful. In this work, we first show that this assumption is strong, but it is still possible
to achieve such goal without this assumption. Then, we examine whether the IB-IRM
proposed in [12] is sufficient to learn invariant features for linear classification and find
that IB-IRM (and IRM) could fail in two modes. We then analyze two failure modes of
IB-IRM and IRM, in particular when the spurious features in training environments capture
sufficient information for the task of interest but have less information than the invariant
features. Based on the above analyses, we propose a new method, termed counterfactual
supervision-based information bottleneck (CSIB), to address such failures. We prove that
without the need of the support overlap assumption, CSIB is theoretically guaranteed for
the success of OOD generalization in linear classification. Notably, CSIB works even when
accessing data from a single environment. Finally, we design three synthetic datasets and a
colored MINST dataset based on our examples; experiments demonstrate the effectiveness
of CSIB empirically.

The rest of this article is organized as follows. The learning problem of out-of-
distribution (OOD) generalization is formulated in Section 2. In Section 3, we study
the learnability of the OOD generalization with different assumptions to the training and
test environments. Using these assumptions, two failure modes of previous methods (IRM
and IB-IRM) are analysed in Section 4. Based on the above analysis, our method is then
proposed in Section 5. The experiments are reported in Section 6. Finally, we discuss the
related works in Section 7 and provide some conclusions and limitations of our work in
Section 8. All the proofs and details of experiments are given in the Appendices A and B.

2. OOD Generalization: Background and Formulations
2.1. Background on Structural Equation Models

Before introducing our formulations of OOD generalization, we provide a detailed
background on structural equation models (SEMs) [8,13].

Definition 1 (Structural Equation Model (SEM)). A structural equation model (SEM) C :=
(S , N) governing the random vector X = (X1, . . . , Xd) is a set of structural equations:

Si : Xi ← fi(Pa(Xi), Ni),

where Pa(Xi) ⊆ {X1, . . . , Xd} \ {Xi} are called the parents of Xi, and Ni are independent noise
random variables. For every SEM, we yield a directed acyclic graph (DAG) G by adding one vertex
for each Xi and directed edges from each parent in Pa(Xi) (the causes) to child Xi (the effect).

Definition 2 (Intervention). Consider an SEM C = (S , N). An intervention e on C consists of
replacing one or several of its structural equations to obtain an intervened SEM Ce = (S e, Ne),
with structural equations:

S e
i : Xe

i ← f e
i (Pae(Xe

i ), Ne
i ),

The variable Xe is intervened if Si 6= S e
i or Ni 6= Ne

i .

In an SEM C, we can draw samples from the observational distribution P(X) according
to the topological ordering of its DAG G. We can also manipulate (intervene) a unique
SEM C in different ways, indexed by e, to different but related SEMs Ce, which results in
different interventional distributions P(Xe). Such family of interventions are used to model
the environments.

2.2. Formulations of OOD Generalization

In this paper, we study the OOD generalization problem by following the linear
classification structural equation model below [12].
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Assumption 1 (Linear classification SEM Cood).

Y ← 1(w∗inv · Zinv)⊕ N, N ∼ Bernoulli(q), q <
1
2

;

X ← S(Zinv, Zspu),
(1)

where w∗inv ∈ Rm is the labeling hyperplane, Zinv ∈ Rm, Zspu ∈ Ro, X ∈ Rd, ⊕ is the XOR
operator, S ∈ Rd×(m+o) is invertible (d = m + o), · is the dot product function, and 1(a) = 1 if
a ≥ 0 otherwise 0.

The SEM Cood governs four random variables {X, Y, Zinv, Zspu}, and its directed acyclic
graph (DAG) is illustrated in Figure 1a, where the exogenous noise variable N is omitted.
Following Definition 2, each intervention e generates a new environment e with interven-
tional distribution P(Xe, Ye, Ze

inv, Ze
spu). We assume only the variables of Xe and Ye are

observable. In OOD generalization, we are interested in a set of environments Eall defined
as below.

(a) (b) (c) (d)

Figure 1. (a) DAG of the SEM Cood (Assumption 1); (b–d) DAGs of the interventional SEM Ce
ood in the

training environments Etr with respect to different correlations between Zinv and Zspu. Grey nodes
denote observed variables, and white nodes represent unobserved variables. Dashed lines denote the
edges which might vary across the interventional environments and even be absent in some scenarios,
whilst solid lines indicate that they are invariant across all the environments. All exogenous noise
variables are omitted in the DAGs.

Definition 3 (Eall). Consider the SEM Cood (Assumption 1) and the learning goal of predicting
Y from X. Then, the set of all environments Eall(Cood) indexes all the interventional distributions
P(Xe, Ye) obtainable by valid interventions e. An intervention e ∈ Eall(Cood) is valid as long
as (i) the DAG remains acyclic, (ii) P(Ye|Ze

inv) = P(Y|Zinv), and (iii) P(Xe|Ze
inv, Ze

spu) =
P(X|Zinv, Zspu).

Assumption 1 shows that Zinv is the cause of the response Y. We name Zinv the
invariant features or causal features because P(Ye|Ze

inv) = P(Y|Zinv) always holds among
all valid interventional SEMs Ce

ood, as defined in Definition 3. The Zspu is called spurious
features because P(Ye|Ze

spu) may vary in different environments of Eall .
Let D = {De}e∈Etr be the training data gathered from a set of training environments

Etr ⊂ Eall , where De = {(xe
i , ye

i )}
ne
i=1 is the dataset from environment e with each instance

(xe
i , ye

i ) i.i.d. drawn from P(Xe, Ye). Let X e ⊆ Rd and Y ⊆ {0, 1} be the support sets of Xe

and Y, respectively. Given observed data D, the goal of OOD generalization is to find a
predictor f : Rd → Y such that it can perform well across a set of OOD environments (test
environments) Eood of interest, where Eood ⊆ Eall . Formally, it is expected to minimize

max
e∈Eood

Re( f ), (2)

where Re( f ) := EXe ,Ye [l( f (Xe), Ye)] is the risk under the environment e with l(·, ·) the 0-1
loss function. Since Eood may be different from Etr, this learning problem is called OOD
generalization. We assume the predictor f = w ◦Φ includes a feature extractor Φ : X → H
and a classifier w : H → Y . With a slight abuse of notation, we also let the classifier w



Entropy 2023, 25, 193 4 of 24

and feature extractor Φ be parameteried by themselves, respectively, as w ∈ Rc+1 and
Φ ∈ Rc×d with c the number of feature dimension.

2.3. Background on IRM and IB-IRM

To minimize Equation (2), two notable solutions of IRM [8] and IB-IRM [12] are listed
as follows:

IRM: min
w,Φ

1
|Etr| ∑

e∈Etr

Re(w ◦Φ), s.t. w ∈ arg min
w̃

Re(w̃ ◦Φ), ∀e ∈ Etr, (3)

IB-IRM: min
w,Φ

∑
e∈Etr

he(Φ), s.t.
1
|Etr| ∑

e∈Etr

Re(w ◦Φ) ≤ rth, w ∈ arg min
w̃

Re(w̃ ◦Φ), ∀e ∈ Etr, (4)

where Re(w ◦Φ) = EXe ,Ye [l(w ◦Φ(Xe), Ye)], and he(Φ) = H(Φ(Xe)) with H the Shannon
entropy (or a lower bounded differential entropy), and rth is the threshold on the average
risk. If we drop the invariance constraint from IRM and IB-IRM, we obtain standard empiri-
cal risk minimization (ERM) and information bottleneck-based empirical risk minimization
(IB-ERM), respectively. The use of an entropy constraint in IB-IRM is inspired from the
information bottleneck principle [16] where mutual information I(X; Φ(X)) is used for
information compression. Since the representation Φ(X) is a deterministic mapping of X,
we have

I(X; Φ(X)) = H(Φ(X))− H(Φ(X)|X) = H(Φ(X)), (5)

thus minimizing the entropy of Φ(X) is equivalent to minimizing the mutual information
I(X; Φ(X)). In brief, the optimization goal of IB-IRM is to select the one that has the least
entropy among all highly predictive invariant predictors.

3. OOD Generalization: Assumptions and Learnability

To study the learnability of OOD generalization, we make following definition.

Definition 4. Given Etr ⊂ Eall and Eood ⊆ Eall . We say an algorithm succeeds to solve OOD
generalization with respect to (Etr, Eood) if the predictor f ∗ ∈ F returned by this algorithm satisfies
the following equation:

max
e∈Eood

Re( f ∗) = min
f∈F

max
e∈Eood

Re( f ), (6)

where F is the learning hypothesis (a function set including all possible linear classifier). Otherwise
we say it fails to solve OOD generalization.

So far, we have omitted how different environments of Etr and Eood exactly are to
enable OOD generalization. Different assumptions about Etr and Eood make the OOD
generalization problem different.

3.1. Assumptions about the Training Environments Etr

Define the support set of the invariant (resp., spurious) features Ze
inv (resp., Ze

spu) in
environment e as Z e

inv (resp., Z e
spu). In general, we make following assumptions to the

invariant features Z e
inv in the training environments Etr.

Assumption 2 (Bounded invariant features). ∪e∈EtrZ e
inv is a bounded set. (A set Z is bounded

if ∃M < ∞ such that ∀z ∈ Z , ‖z‖ ≤ M).

Assumption 3 (Strictly separable invariant features). ∀z ∈ ∪e∈EtrZ e
inv, w∗inv · z 6= 0.
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The difficulties of OOD generalization are due to the spurious correlations between
Zinv and Zspu in the training environments Etr. In this paper, we consider three modes
induced by different correlations between Zinv and Zspu as shown below.

Assumption 4 (Spurious correlation 1). Assume each e ∈ Etr,

Ze
spu ← AZe

inv + We; (7)

where A ∈ Ro×m, and We ∈ Ro is a continuous (or discrete with each component supported on at
least two distinct values), bounded, and zero mean noise variable.

Assumption 5 (Spurious correlation 2). Assume each e ∈ Etr,

Ze
inv ← AZe

spu + We; (8)

where A ∈ Rm×o, and We ∈ Rm is a continuous (or discrete with each component supported on at
least two distinct values), bounded, and zero mean noise variable.

Assumption 6 (Spurious correlation 3). Assume each e ∈ Etr,

Ze
spu ←We

1Ye + We
0(1−Ye); (9)

where We
0 ∈ Ro and We

1 ∈ Ro are independent noise variables.

For each e ∈ Etr, the DAGs of its corresponding interventional SEMs Ce
ood with re-

spect to Assumptions 4–6 are illustrated in Figure 1b–d, respectively. It is worth noting
that although the DAGs are identical across all training environments in each mode of
Assumptions 4–6, the interventional SEMs Ce

ood among different training environments are
different due to the interventions on the exogenous noise variables.

3.2. Assumptions about the OOD Environments Eood

Theorem 1 (Impossibility of guaranteed OOD generalization for linear classification [12]).
Suppose Eood = Eall . If for all the training environments Etr, the latent invariant features are
bounded and strictly separable, i.e., Assumptions 2 and 3 hold, then every deterministic algorithm
fails to solve the OOD generalization.

The above theorem shows that it is impossible to solve OOD generalization if
Eood = Eall . To make it learnable, Ahuja et al. [12] propose the support overlap assumption
(Assumption 7) to the invariant features.

Assumption 7 (Invariant feature support overlap). ∀e ∈ Eood,Z e
inv ⊆ ∪e′∈EtrZ e′

inv.

However, Assumption 7 is strong, and we would show that it is still possible to
solve OOD generalization without this assumption. For better illustration, consider an
OOD generalization task from P(Xe1 , Ye2) to P(Xe2 , Ye2) with Etr = {e1} and Eood = {e2},
and the support sets of the corresponding invariant features Ze1

inv and Ze2
inv are intuitively

illustrated in Figure 2c (assume dim(Zinv) = 2 in this example). From Figure 2c, it is clear
that although the support sets of invariant features between the two environments are
different, it is still possible to solve OOD generalization if the learned feature extractor Φ
only captures the invariant features, e.g., Φ(X) = Zinv.
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(a) (b) (c)

Figure 2. (a) Example 1; (b) example 2; (c) example illustration. Here, dim(Zinv) = 2 and
Zinv = (Z1, Z2). The blue and black regions represent the support sets of Ze1

inv and Ze2
inv, corresponding

to the environments e1 and e2, respectively. Etr = {e1} is the training environment and Eood = {e2}
is the OOD environment. Although Assumption 7 does not hold in this example, any zero-error
classifier with Φ(X) = Zinv on the e1 environment data would clearly make the classification error
zero in e2, thus succeeding to solve OOD generalization.

To make Assumption 7 weaker, we propose the following assumption.

Assumption 8. Let P(Ztr
inv, Ytr) = 1

|Etr | ∑e∈Etr P(Ze
inv, Ye) be the mixture distribution of in-

variant features in the training environments. Denote A be a hypothesis set including all linear
classifiers mapping from Rm to Y . ∀e ∈ Eood, assume Fl(P(Ztr

inv, Ytr)) ⊆ Fl(P(Ze
inv, Ye)), where l

is the 0-1 loss function and Fl(P(Z, Y)) = arg min f∈A EZ,Y[l( f (Z), Y)].

Clearly, under the assumption of separable invariant features (Assumption 3), for any
e ∈ Eood, Assumption 7 holds ⇒ Z e

inv ⊆ Z tr
inv ⇒ Fl(P(Ztr

inv, Ytr)) ⊆ Fl(P(Ze
inv, Ye)) ⇒.

Assumption 8 holds, but not vice versa. Therefore, Assumption 8 is weaker than
Assumption 7. We show that Assumption 8 could be substituted for Assumption 7 for
the success of OOD generalization in our proposed method in Section 5.

4. Failures of IRM and IB-IRM

Under Spurious Correlation 1 (Assumption 4), the IB-IRM algorithm has been shown
to enable OOD generalization, while IRM fails [12]. In this section, we would show that both
IRM and IB-IRM could fail under Spurious Correlations 2 and 3 (Assumptions 5 and 6).

4.1. Failure under Spurious Correlation 2

Example 1 (Counter-Example 1). Under Assumption 5, let Ze
inv ← Ze

spu + We with dim(Ze
inv)

= dim(Ze
spu) = dim(We) = 1 and w∗inv = 1 be the generated classifier in Assumption 1. We

assume two training environments and a OOD environment as:

Etr = {e1, e2}; Eood = {e3};
e1 : P(Ze1

spu = −2) = 1,P(We1 = −1) = 0.5,P(We1 = 1) = 0.5;

e2 : P(Ze2
spu = 2) = 1,P(We2 = −1) = 0.5,P(We2 = 1) = 0.5;

e3 : P(Ze3
spu = 1) = 1,P(We3 = −2) = 0.5,P(We3 = 2) = 0.5.

Figure 2a shows the support points of these features in the training environments.
Then, by applying any algorithm to solve the above example with rth = q, we would obtain
a predictor of f ∗ = w∗ ◦Φ∗. Consider the prediction made by this model as (we ignore the
classifier bias for convenience)

f ∗(Xe) = f ∗(S(Ze
inv, Ze

spu)) = 1(Φ∗invZe
inv + Φ∗spuZe

spu). (10)

It is trivial to show that the f ∗ of Φ∗inv = 0 and Φ∗spu = 1 is an invariant predictor across
training environments with classification error Re1 = Re2 = q, and it achieves the least
entropy of he(Φ∗) = 0 for each training environment e. Therefore, it is a solution of IB-IRM
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and IRM. However, the predictor of f ∗ relies on spurious features and has the test error
Re3 = 0.5; thus, it fails to solve the OOD generalization.

4.2. Failure under Spurious Correlation 3

Example 2 (Counter-Example 2). Under Assumption 6, let Ze
spu ←We

1Ye + We
0(1−Ye) with

dim(Zinv) = dim(Zspu) = dim(We
0) = dim(We

1) = 1, Ze
inv be a discrete variable supported uni-

formly on six points {−4,−3,−2, 2, 3, 4} among all environments, and w∗inv = 1 be the generated
classifier in Assumption 1. We assume two training environments and a OOD environment as:

Etr = {e1, e2}; Eood = {e3}
e1 : P(We1

0 = −1) = 1,P(We1
1 = 1) = 1;

e2 : P(We2
0 = −0.5) = 1,P(We2

1 = 0.5) = 1;

e3 : P(We3
0 = 1) = 1,P(We3

1 = −1) = 1;

Figure 2b shows the support points of these features in the training environments.
Then, by applying any algorithm to solve the above example with rth = q, we would obtain
a predictor of f ∗ = w∗ ◦Φ∗. Consider the prediction made by this model as (we ignore the
classifier bias for convenience):

f ∗(Xe) = f ∗(S(Ze
inv, Ze

spu)) = 1(Φ∗invZe
inv + Φ∗spuZe

spu). (11)

It is trivial to show that the f ∗ of Φ∗inv = 0 and Φ∗spu = 1 is an invariant predictor across
training environments with classification error Re1 = Re2 = 0, and it achieves the least
entropy of he(Φ∗) = 1 among all highly predictive predictors for each training environ-
ment e. and Therefore, it is a solution of IB-IRM and IRM. However, the predictor of
f ∗ relies on spurious features and has the test error Re3 = 1; thus, it fails to solve the
OOD generalization.

4.3. Understanding the Failures

From the illustrations of the above simple examples, we can conclude that the failure of
the invariance constraint for removing the spurious features is because the spurious features
among all training environments are strictly linearly separable by their corresponding labels.
This would make the predictor rely only on spurious features to achieve minimum training
error and also be the invariant predictor across training environments. Since the label set
is finite (with only two values in binary classification) in classification problems, such a
phenomenon may exist. We state such failure mode formally as below.

Theorem 2. Given any Etr ⊂ Eall and Eood ⊆ Eall satisfying Assumptions 2, 3, and 7, if two sets
∪e∈EtrZ e

spu(Ye = 1) and ∪e∈EtrZ e
spu(Ye = 0) are linearly separable and H(Ze

inv) > H(Ze
spu) on

each training environment e, then IB-IRM (and IRM, ERM, or IB-ERM) with any rth ∈ R fails to
solve the OOD generalization.

The understanding of Theorem 2 is intuitive since when the spurious features in the
training environments with respect to different labels are linearly separable, there is no
algorithm that can distinguish spurious features from invariant features. Although the
assumption of linear separation of the spurious features seems strong for this failure,
it is easy to hold in high-dimensional space when dim(Zspu) is large (common cases in
practice such as image data). We show one case in Appendix A.3 that if the number
of environments is |Etr| < dim(Zspu)/2 under Assumption 6, the spurious features in
the training environments are probably separable by their labels. This is because in o-
dimensional space there is a high probability that o randomly drawn distinct points are
linearly separable for any two subsets.
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5. Counterfactual Supervision-Based Information Bottleneck

In the above analyses, we have shown two failure modes of IB-IRM and IRM for
OOD generalization in the linear classification problem. The key reason for the failure is
due to the learned features Φ(X) that rely on spurious features. To prevent such failure,
we present the counterfactual supervision-based information bottleneck (CSIB) learning
algorithm for removing the spurious features progressively.

In general, the IB-ERM method is applied to extract features from the beginning of
each iteration:

min
w,Φ

∑
e∈Etr

he(Φ) s.t.
1
|Etr| ∑

e∈Etr

Re(w ◦Φ) ≤ rth (12)

Due to the information bottleneck, only a part of the information of the input X are exploited
in Φ(X). If the information of spurious features Zspu exists in the learned features Φ(X),
the idea of CSIB is to drop such information and meanwhile maintain the causal information
(represented by invariant features Zinv) as well. However, achieving such a goal faces two
challenges: (1) how to determine whether Φ(X) contains spurious information of Zspu?
and (2) how to remove the information of Zspu?

Fortunately, due to the orthogonality in the linear space, it is possible to disentangle
the features that are exploited by Φ(X) (denoted as X1) and the features that are not
exploited by Φ(X) (denoted as X2) via Singular Value Decomposition (SVD). Based on that,
we could construct an SEM Cnew governing three variables of X1, X2, and X. Therefore,
by conducting counterfactual interventions on X1 and X2 in Cnew, we could solve the first
challenge by requiring a single supervision on the counterfactual examples X′. For example,
if we intervene on X1 and find that the causal information remains in the resulting X′, then
the extracted features Φ(X) are definitely the spurious features. To address the second
challenge, we replace the input by X2 by filtering out the information of X1 and conduct
the same learning procedure from the beginning.

The learning algorithm of CSIB is illustrated in Algorithm 1, and Figure 3 shows the
framework of CSIB. We show in Theorem 3 that CSIB is theoretically guaranteed to succeed
to solve OOD generalization.

Figure 3. A simplified framework for the illustration of the proposed CSIB method.

Theorem 3 (Guarantee of CSIB). Given any Etr ⊂ Eall and Eood ⊆ Eall satisfying Assumptions 2,
3, and 8, then for every spurious correlation of Assumptions 4, 5, and 6 (in this correlation mode, as-
sume the spurious features are linearly separable in the training environments), the CSIB algorithm
with rth = q succeeds in solving the OOD generalization.



Entropy 2023, 25, 193 9 of 24

Algorithm 1 Counterfactual Supervision-based Information Bottleneck (CSIB)
Input: P(Xe, Ye), e ∈ Etr, rth > 0, c ≥ dim(Zinv), M � 0, and (x, y) is an example
randomly drawn from P(Xe, Ye).
Output: classifier w ∈ Rc+1, feature extractor Φ = Rc×d.
Begin:

1: Lv← []; Lr ← []; Φ′ ← Id×d

2: d′ ← dim(Xe)
3: Apply IB-ERM method (Equation (12)) to P(Xe, Ye) and obtain w∗ ∈ Rc+1 and Φ∗ ∈

Rc×d′

4: Apply SVD to Φ∗ as Φ∗ = UΛVT = [U1, U2][Λ1, 0; 0, 0][VT
1 ; VT

2 ]
5: r ← rank(Φ∗)
6: z1

1:r ← [−M, ...,−M]; z1
r+1:d′ ← VT

2 Φ′x
7: z2

1:r ← [M, ..., M]; z2
r+1:d′ ← VT

2 Φ′x
8: x1 ← Vz1; x2 ← Vz2

9: if Lv is not empty then
10: zold ← []; i← 0; x′ ← x
11: while i < len(Lv) do
12: z← Lv[i]x′

13: zold.append(z)
14: x′ ← zLr[i]:
15: i← i + 1
16: end while
17: i← 0
18: while i < len(Lv) do
19: j← len(Lv)− i
20: z1 ← zold[j]; z2 ← zold[j]
21: z1

Lr[j]: ← x1; z2
Lr[j]: ← x2

22: x1 ← Lv[j]Tz1; x2 ← Lv[j]Tz2

23: i← i + 1
24: end while
25: end if
26: if label(x1) = label(x2) then
27: Lr.append(r); Lv.append(VT)
28: Xe ← VT

2 Xe; Φ′ ← VT
2 Φ′

29: Goto Step 2
30: end if
31: w← w∗; Φ← Φ∗

End

Remark 1. CSIB succeeds to solve OOD generalization without assuming the support overlap
to invariant features and could apply to multiple spurious modes where IB-IRM (as well as ERM,
IRM, and IB-ERM) may fail. By introducing counterfactual inference and further supervision
(usually conducted by a human) with several steps, CSIB works even when accessing data from a
single environment, which is significant especially in the cases where multiple environments’ data
are not available.

6. Experiments
6.1. Toy Experiments on Synthetic Datasets

We perform experiments on three synthetic datasets from different spurious correla-
tions modes to verify our method—counterfactual, supervision-based, and information
bottleneck (CSIB)—and compare them to ERM, IB-ERM, IRM, and IB-IRM. We follow the
same protocol for tuning hyperparameters from [8,12,17] and report the classification error
for all experiments. In the following, we first briefly describe the designed datasets and
then report the main results. More experimental details can be found in the Appendix.
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6.1.1. Datasets

Example 1/1S. The example is a modified one from the linear unit tests introduced
in [17], which generalizes the cow/camel classification task with relevant backgrounds.

θcow = 1m, θcamel = −θcow, νanimal = 10−2

θgrass = 1o, θsand = −θgrass, νbackground = 1.

The dataset De of each environment e ∈ Etr is sampled from the following distribution

Ue ∼ Categorical(pese, (1− pe)se, pe(1− se), (1− pe)(1− se)),

Ze
inv ∼

{
(Nm(0, 0.1) + θcow)νanimal if Ue ∈ {1, 2},
(Nm(0, 0.1) + θcamel)νanimal if Ue ∈ {3, 4},

Ze
spu ∼

{
(No(0, 0.1) + θgrass)νbackground if Ue ∈ {1, 4},
(No(0, 0.1) + θsand)νbackground if Ue ∈ {2, 3},

Ze ← (Ze
inv, Ze

spu), Xe ← S(Ze), N ∼ Bernoulli(q), q < 0.5, Ye ← 1(1T
mZe

inv)⊕ N

We set se0 = 0.5, se1 = 0.7, and se2 = 0.3 for the first three environments, and sej ∼ Uniform
(0.3, 0.7) for j > 3. The scrambling matrix S is an identical matrix in Example 1 and a
random unitary matrix in Example 1S. Here, we set pe = 1 and q = 0 for all environ-
ments to make the spurious features and the invariant features both linearly separable to
confuse each other. The experiments on different values of q and pe are presented in the
Appendix, where we have found very interesting observations related to the inductive bias
of neural networks.

Example 2/2S. This example is extended from Example 1 to show one of the failure
modes of IB-IRM (as well as ERM, IRM, and IB-ERM) and how our method can be im-
proved by intervention (counterfactual supervision). Given we ∈ R, each instance in the
environment data De is sampled by

θspu = 5 · 1o, θw = we · 1m, νspu = 10−2, νw = 1, p, q ∼ Bernoulli(0.5),

Ze
spu = No(0, 1)νspu + (2p− 1) · θspu, We = Nm(0, 1)νw + (2q− 1) · θw

Ze
inv = AZe

spu + We, Ze ← (Ze
inv, Ze

spu), Xe ← S(Ze), Ye = 1(1T
mZe

inv),

where we set m = o = 5, and A ∈ Rm×o is the identical matrix in our experiments. We
set we0 = 3, we1 = 2, we2 = 1, and wej = Uniform(0, 3) if j > 3 for different training
environments. This example shows clearer smaller entropy of spurious features than that
of invariant features, which is opposite Example 1/1S.

Example 3/3S. This example extends from Example 2 and is similar to the construction
of Example 2/2S. Let we ∼ Uniform(0, 1) for different training environments. Each instance
in the environments e is sampled by

θinv = ·10 · 1m, νinv = 10, νspu = 1, p, q ∼ Bernoulli(0.5),

Ze
inv = Nm(0, 1)νinv + (2p− 1) · θinv, Ye = 1(1T

mZe
inv),

Ze
spu = 2(Ye − 1) · νspu + (2q− 1) · we · 1o, Ze ← (Ze

inv, Ze
spu), Xe ← S(Ze),

where we set m = o = 5 in our experiments. The spurious features have smaller entropy
than the invariant features in this example, which is similar to Example 2/2S, but the
invariant features significantly enjoy much larger margin than the spurious features, which
is very different from the above two examples. We show a summary of the properties of
these three datasets in Table 1 for a general view.
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Table 1. Summary of three synthetic datasets. Note that for linearly separable features, their margin
levels significantly influence the final learning classifier due to the implicit bias of the gradient
descent [18]. Such bias would push the standard learning (such as cross-entropy loss) to focus more
on the large-margin features. The margin with respect to a dataset (or features) Z (each instance has
a label 0 or 1) is the minimum distance between a point in Z and the max-margin hyperplane, which
separates Z by its labels.

Datasets Margin Relationship Entropy Relationship Diminv Dimspu

Example 1/1S Margininv � Marginspu Entropyinv < Entropyspu 5 5
Example 2/2S Margininv ≈ Marginspu Entropyinv > Entropyspu 5 5
Example 3/3S Margininv � Marginspu Entropyinv > Entropyspu 5 5

6.1.2. Summary of Results

Table 2 shows the classification errors of different methods when training data comes
from single, three, and six environments. We can see that ERM and IRM fail to recognize
the invariant features in the experiment of Example 1/1S, where invariant features have
smaller margin than spurious features do, while information bottleneck-based methods (IB-
ERM, IB-IRM, and CSIB) show improved results due to the smaller entropy of the invariant
features. Our method CSIB shows results consistent with IB-IRM in Example 1/1S when
invariant features are extracted in the first run, which verifies the effectiveness of using
the information bottleneck for OOD generalization. In another dataset of Example 2/2S,
where the invariant features have larger entropy than spurious features do, we can see that
only CSIB can remove the spurious features compared with the other method, although the
information bottleneck-based method IB-ERM would degrade the performance of ERM
by focusing more on the spurious features. In the third experiment of Example 3/3S, we
can see that although ERM shows not-bad results due to the significantly larger margin of
invariant features, our CSIB method still shows improvements by removing more spurious
features. Notably, comparing the IB-ERM and IB-IRM when only spurious features are
extracted (Example 2/2S, Example 3/3S), our CSIB method could effectively remove them
by counterfactual supervision and then refocus on the invariant features. Note that the
reason of non-zero average error and the fluctuant results of CSIB in some experiments
is that the entropy minimization in the training process is less accurate, where entropy is
substituted by variance for the ease of the optimization. Nevertheless, there always exists a
case where the entropy is indeed truly minimized, and the error reaches zero (see (min) in
the table) in Example 2/2S and Example 3/3S. In summary, CSIB consistently performs
better in different spurious correlations modes and is especially more effective than IB-ERM
and IB-IRM when the spurious features enjoy much smaller entropy than the invariant
features do.

6.2. Experiments on Color MNIST Dataset

In this experiment, we set up a binary classification task for digit recognition and
identify whether the digit is less than five or more than five. We use real-world dataset,
the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/), for the
construction. Following our learning setting, we use color information as the spurious
features that correlates strongly with the class label. By construction, the label is more
strongly correlated with the color than with the digit in the training environments, but this
correlation is broken in the test environment. Specifically, the three designed environments
(two training environments and one test environment containing 10,000 points each) of
the color MNIST are as follows: first, we define a preliminary binary label ŷ to the image
base on the digit: ŷ = 0 for digits 0–4 and ŷ = 1 for 5–9. Second, we obtain the final
label y by flipping ŷ with probability 0.25. Then, we flip the final labels to obtain the color
id, where the flipping probabilities with respect to two training environments and one
test environment are 0.2 and 0.1, and 0.9. For better understanding, we randomly draw
20 examples for each label from each environment and visualize them in Figure 4.

http://yann.lecun.com/exdb/mnist/


Entropy 2023, 25, 193 12 of 24

Table 2. Main results: #Envs means the number of training environments, and (min) reports the
minimal test classification error across different running seeds.

#Envs ERM (min) IRM (min) IB-ERM (min) IB-IRM (min) CSIB (min)

Example 1 1 0.50 ± 0.01 (0.49) 0.50 ± 0.01 (0.49) 0.23 ± 0.02 (0.22) 0.31 ± 0.10 (0.25) 0.23 ± 0.02 (0.22)
Example 1S 1 0.50 ± 0.00 (0.49) 0.50 ± 0.00 (0.50) 0.46 ± 0.04 (0.39) 0.30 ± 0.10 (0.25) 0.46 ± 0.04 (0.39)
Example 2 1 0.40 ± 0.20 (0.00) 0.50 ± 0.00 (0.49) 0.50 ± 0.00 (0.49) 0.46 ± 0.02 (0.45) 0.00 ± 0.00 (0.00)
Example 2S 1 0.50 ± 0.00 (0.50) 0.31 ± 0.23 (0.00) 0.50 ± 0.00 (0.50) 0.45 ± 0.01 (0.43) 0.10 ± 0.20 (0.00)
Example 3 1 0.16 ± 0.06 (0.09) 0.18 ± 0.03 (0.14) 0.50 ± 0.01 (0.49) 0.40 ± 0.20 (0.01) 0.11 ± 0.20 (0.00)
Example 3S 1 0.17 ± 0.07 (0.10) 0.09 ± 0.02 (0.07) 0.50 ± 0.00 (0.50) 0.50 ± 0.00 (0.50) 0.21 ± 0.24 (0.00)

Example 1 3 0.45 ± 0.01 (0.45) 0.45 ± 0.01 (0.45) 0.22 ± 0.01 (0.21) 0.23 ± 0.13 (0.02) 0.22 ± 0.01 (0.21)
Example 1S 3 0.45 ± 0.00 (0.45) 0.45 ± 0.00 (0.45) 0.41 ± 0.04 (0.34) 0.27 ± 0.11 (0.11) 0.41 ± 0.04 (0.34)
Example 2 3 0.40 ± 0.20 (0.00) 0.50 ± 0.00 (0.50) 0.50 ± 0.00 (0.50) 0.33 ± 0.04 (0.25) 0.00 ± 0.00 (0.00)
Example 2S 3 0.50 ± 0.00 (0.50) 0.37 ± 0.15 (0.15) 0.50 ± 0.00 (0.50) 0.34 ± 0.01 (0.33) 0.10 ± 0.20 (0.00)
Example 3 3 0.18 ± 0.04 (0.15) 0.21 ± 0.02 (0.20) 0.50 ± 0.01 (0.49) 0.50 ± 0.01 (0.49) 0.11 ± 0.20 (0.00)
Example 3S 3 0.18 ± 0.04 (0.15) 0.08 ± 0.03 (0.03) 0.50 ± 0.00 (0.50) 0.43 ± 0.09 (0.31) 0.01 ± 0.00 (0.00)

Example 1 6 0.46 ± 0.01 (0.44) 0.46 ± 0.09 (0.41) 0.22 ± 0.01 (0.20) 0.37 ± 0.14 (0.17) 0.22 ± 0.01 (0.20)
Example 1S 6 0.46 ± 0.02 (0.44) 0.46 ± 0.02 (0.44) 0.35 ± 0.10 (0.23) 0.42 ± 0.12 (0.28) 0.35 ± 0.10 (0.23)
Example 2 6 0.49 ± 0.01 (0.48) 0.50 ± 0.01 (0.48) 0.50 ± 0.00 (0.50) 0.30 ± 0.01 (0.28) 0.00 ± 0.00 (0.00)
Example 2S 6 0.50 ± 0.00 (0.50) 0.35 ± 0.12 (0.25) 0.50 ± 0.00 (0.50) 0.30 ± 0.01 (0.29) 0.20 ± 0.24 (0.00)
Example 3 6 0.18 ± 0.04 (0.15) 0.20 ± 0.01 (0.19) 0.50 ± 0.00 (0.49) 0.37 ± 0.16 (0.16) 0.01 ± 0.01 (0.00)
Example 3S 6 0.18 ± 0.04 (0.14) 0.05 ± 0.04 (0.01) 0.50 ± 0.00 (0.50) 0.50 ± 0.00 (0.50) 0.11 ± 0.20 (0.00)

Figure 4. Visualization of the color mnist dataset.

The classification results on the color MNIST dataset are shown in Table 3. From the re-
sults, we can see that both ERM and IB-ERM methods almost surely use the color features to
achieve the task. Although IRM and IB-IRM methods have shown some improvements over
ERM, only our method can perform better than a random prediction, which demonstrates
the effectiveness of CSIB.

Table 3. Classification accuracy (%) on color MNIST dataset. “Oracle” in the table means that the
training and test data are in the same environment.

Methods ERM IRM IB-ERM IB-IRM CSIB Oracle

Accuracy 9.94 ± 0.28 20.39 ± 2.76 9.94 ± 0.28 43.84 ± 12.48 60.03 ± 1.28 84.72 ± 0.65

7. Related Works

We divide the works related to OOD generalization into two categories: theory and
methods, though some of them belong to both.
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7.1. Theory of OOD Generalization

Based on different definitions to the distributional changes, we review the correspond-
ing theory by the following three categories.

Based on causality. Due to the close connection between the distributional changes
and the interventions discussed in the theory of causality [13,14], the problem of OOD
generalization is usually built in the framework of causal learning. The theory states that
a response Y is directly caused only by its parents variables XPa(Y), and all interventions
other that those on Y do not change the conditional distribution of P(Y|XPa(Y)). Such
theory inspires a popular learning principle—the invariance principle—that aims to dis-
cover a set of variables such that they remain invariant to the response Y in all observed
environments [15,19,20]. Invariant risk minimization (IRM) [8] is then proposed to learn
a feature extractor Φ in an end-to-end way such that the optimal classifier based on the
extracted features Φ(X) remains unchanged in each environment. The theory in [8] shows
the guarantee of IRM for OOD generalization under some general assumptions but only
focuses on the linear regression tasks. Different from the failure analyses of IRM for the
classification tasks in [21,22], where the response Y is the cause of the spurious feature,
Ahuja et al. [12] analyse another scenario when the invariant feature is the cause of the
spurious feature and show that in this case, linear classification is more difficult than linear
regression, where the invariance principle itself is insufficient to ensure the success of OOD
generalization. They also claim that the assumption of support overlap of invariant features
is necessarily needed. They then propose a learning principle of information bottleneck-
based invariant risk minimization (IB-IRM) for linear classification, which shows how
to address the failures of IRM by adding information bottleneck [16] into the learning.
In this work, we closely investigate the conditions identified in [12] and first show that
support overlap of invariant features is not necessarily needed for the success of OOD
generalization. We further show several failure cases of IB-IRM and propose improved
results for it.

Recently, some works tackle the challenge of OOD generalization in the nonlinear
regime [23,24]. Commonly, both of them use variational autoencoder (VAE)-based mod-
els [25,26] to identify the latent variables from observations in the first stage. Then, these in-
ferring latent variables are separated into two distinct parts of invariant (causal) and spurious
(non-causal) features based on different assumptions. Specifically, Lu et al. [23,27] assume
that the latent variables conditioned on some accessible side information such as the envi-
ronment index or class label follow the exponential family distributions, and Liu et al. [24]
directly disentangle the latent variables to two different parts during the inferring stage
and assume that the marginal distributions of them are independent of each other. These
assumptions, however, are rather strong in general. Nevertheless, these solutions aim
to capture the latent variables such that the response given these variables is invariant
for different environments, which could still fail because the invariance principle itself
is insufficient for OOD generalization in the classification tasks, as shown in [12]. In this
work, we focus on the linear classification only and show a new theory of a new method
that addresses several OOD generalization failures in the linear settings. Our method could
extend to the nonlinear regime by combining with the disentangled representation learn-
ing [28] or causal representation learning [29]. Specifically, once the latent representations
are well disentangled, i.e., the latent features are represented by a linear transform of the
causal features and spurious features, we then could apply our method to filter out the
spurious features in the latent space such that only causal features remain.

Based on robustness. Different from those based on the causality, where different
distributions are generated by intervention on a same SEM and the goal is to discover causal
features, the robustness-based methods aim to protect the model against the potential distri-
butional shifts within the uncertainty set, which is usually constrained by f-divergence [30]
or Wasserstein distance [31]. This series of works is theoretically addressed by distribution-
ally robust optimization (DRO) under a minimax framework [32,33]. Recently, some works
tend to discover the connections between causality and robustness [34]. Although these
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works show less relevance to us, it is possible that a well-defined measure of distribution
divergence could help to effectively extract causal features under the robustness framework.
This would be an interesting avenue for future research.

Others. Some other works assume that the distributions (domains) are generated from
a hyper-distribution and aim to minimize the average risk estimation error bound [35–37].
These works are often built based on the generalization theory under the independent and
identically distributed (IID) assumption. The authors in [38] do not make any assumption
on the distributional changes and only study the learnability of OOD generalization in a
general way. All of these theories do not cover the OOD generalization problem under a
single training environment or domain.

7.2. Methods of OOD Generalization

Based on the invariance principle. Inspired from the invariance principle [15,19], many
methods are proposed by designing various loss to extract features to better satisfy the
principle itself. IRMv1 [8] is the first objective to address this in an end-to-end way by adding
a gradient penalty to the classifier. Following this work, Krueger et al. [9] suggest penalizing
the variance of the risks, while Xie et al. [39] give the same objective but take the square
root of the variance, and many other alternatives can also be found [40–42]. It is clear that
all of these methods aim to find an invariant predictor. Recently, Ahuja et al. [12] found
that for the classification problem, finding the invariant predictor is not enough to extract
causal features since the features could include spurious information to make the predictor
invariant across training environments, and they propose IB-IRM to address such a failure.
Similar ideas to IB-IRM can also be found in the work [43,44], where different loss functions
are proposed to achieve the same purpose. Specifically, Alesiani et al. [44] also use the
information bottleneck (IB) for the help in dropping spurious correlations, but their analyses
only focus on the scenario when spurious features are independent from the causal features,
which could be considered as a special case of ours. More recently, Wang et al. [45] propose
similar ideas to ours but only tackle the situation when the invariant features have the same
distribution among all environments. In this work, we further show that IB-IRM could
still fail in two cases due to the model only relying on spurious features to meet the task
of interest. We then propose a counterfactual supervision-based information bottleneck
(CSIB) method to address such failures and show improving results to prior works.

Based on distribution matching. It is worth noting that there are many works focused
on learning domain invariant features representations [46–48]. Most of these works are
inspired by the seminal theory of domain adaptation [49,50]. The goal of these methods is to
learn a feature extractor Φ such that the marginal distribution of P(Φ(X)) or the conditional
distribution of P(Φ(X)|Y) is invariant across different domains. This is different from the
invariance principle, where the goal is to make P(Y|Φ(X)) (or E(Y|Φ(X))) invariant. We
refer readers to the papers of [8,51] for better understanding the details of why these
distribution-matching-based methods often fail to address OOD generalization.

Others. Other related methods are varied, including by using data augmentation
in both image level [52] or feature level [53], by removing spurious correlations through
stable learning [54], and by utilizing the inductive bias of neural networks [3,55], etc.
Most of these methods are empirically inspired from experiments and are verified on
some specific datasets. Recently, empirical studies in [56,57] notice that the real effects of
many OOD generalization (domain generalization) methods are weak, which indicates
that the benchmark-based evaluation criteria may be inadequate to validate the OOD
generalization algorithms.

8. Conclusions, Limitations and Future Work

In this paper, we focus on the OOD generalization problem of linear classification. We
first revisit the fundamental assumptions and results of prior works and show that the
condition of invariant features supporting overlap is not necessarily needed for the success
of OOD generalization and thus propose a weaker counterpart. Then, we show two failure
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cases of IB-IRM (as well as ERM, IB-ERM, and IRM) and illustrate its intrinsic causes by
theoretical analysis. We further propose a new method—counterfactual supervision-based
information bottleneck (CSIB)—and theoretically prove its effectiveness under some weaker
assumptions. CSIB works even when accessing data from a single environment and can
easily extend to the multi-class problems. Finally, we design several synthetic datasets with
our examples for experimental verification. Empirical observations among all comparing
methods illustrate the effectiveness of the CSIB.

Since we only take the linear problem into account, including linear representation
and linear classifier, any nonlinear case would not be guaranteed by our theoretical results,
and thus CSIB may fail. Therefore, the same as prior works (IRM [8] and IB-IRM [12]), the
nonlinear challenge is still an unsolved problem [21,22]. We believe this is of great value for
investigating in future work since widely used data in the wild are nonlinearly generated.
Another fruitful direction is to design a powerful algorithm for entropy minimization
during the learning process of CSIB. Currently, we use the variance of features to replace
the entropy of the features during optimization. However, variance and entropy are
essentially different. A truly effective entropy minimization is the key to the success of
CSIB. Another limitation of our method is that we have to require further supervision to
the counterfactual examples during the learning process, although it only takes one time
for a single step.
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The following abbreviations are used in this manuscript:

OOD Out-of-distribution
ERM Empirical risk minimization
IRM Invariant risk minimization
IB-ERM Information bottleneck-based empirical risk minimization
IB-IRM Information bottleneck-based invariant risk minimization
CSIB Counterfactual supervision-based information bottleneck
DAG Directed acyclic graph
SEM Structure equation model
SVD Singular value decomposition

Appendix A. Experiments Details

In this section, we provide more details on the experiments. The code to reproduce
the experiments can be found at https://github.com/szubing/CSIB.

Appendix A.1. Optimization Loss of IB-ERM

The objective function of IB-ERM is as follows:

min
w,Φ

∑
e∈Etr

he(Φ) s.t.
1
|Etr| ∑

e∈Etr

Re(w ◦Φ) ≤ rth. (A1)

https://github.com/szubing/CSIB
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Since the entropy of he(Φ) = H(Φ(Xe)) is hard to estimate by a differential variable that
can be optimized by using gradient descent, we follow [12] by using the variance instead
of the entropy for optimization. The total loss function is given by

loss(w, Φ) = ∑
e∈Etr

(Re(w ◦Φ) + λVar(Φ)) (A2)

with a hyperparameter λ onto it.

Appendix A.2. Experiments Setup

Model, hyperparameters, loss, and evaluation. In all experiments, we follow the
same protocol as prescribed by [12,17] for the model / hyperparameter selection, training,
and evaluation. Except those specified, for all experiments across three examples and five
comparing methods, the model is the same with a linear feature extractor Φ ∈ Rd×d fol-
lowed by a linear classifier w ∈ Rd+1. We use binary cross-entropy loss for classification. All
hyperparameters, including the learning rate, the penalty term in IRM, or the λ associated
with the Var(Φ) in Equation (A2), etc., are randomly searched and selected by using 20 test
samples for validation. The results reported in the main manuscript use three hyperpa-
rameter queries of each and average over five data seeds. The results when searching over
more hyperparameter values are reported in the supplementary experiments. The search
spaces of all the hyperparameters follow the same as in [12,17]. The classification test errors
between 0 and 1 are reported.

Compute description. Our computing resource is one GPU of NVIDIA GeForce GTX
1080 Ti with 6 CPU cores of Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz.

Existing codes and datasets used. In our experiments, we mainly rely on the follow-
ing two github repositories: InvarianceUnitTests (https://github.com/facebookresearch/
InvarianceUnitTests) and IB-IRM (https://github.com/ahujak/IB-IRM).

Appendix A.3. Supplementary Experiments

The purpose of the first supplementary experiment is to illustrate what the result
would be when we increase the number of running seeds in the hyperparameters selection.
These results are shown in Table A1, where we increase the number of hyperparameter
queries to 10 of each. It is clear that overall, the results of the CSIB in Table A1 are much
better and have less fluctuations than those in Table 2, and the conclusions remain almost
the same as we have summarized in Section 6.1.2. This further verifies the effectiveness of
the CSIB method.

Observation on different settings in Example 1/1S. In our main experiments of
Example 1/1S, we set pe = 1 and q = 0 to make the spurious features and the invari-
ant features both linearly separable to confuse each other. Here, we analyse what the result
would be if we vary their values. Following [17], we set pe0 = 0.95, pe1 = 0.97, pe2 = 0.99,
and pej ∼ Uniform(0.9, 1) to make spurious features linearly inseparable, and q is set to
0/0.05 to make invariant features linearly separable/inseparable. Table A2 shows the
corresponding results. Interestingly, we find that all methods except for IB-IRM have an
ideal error rate (the same as the Oracle) when the spurious features are linearly inseparable
(pe 6= 1), even when the invariant features are linearly inseparable too (q = 0.05). Why
would this happen? We then remove the linear embedding Φ. The results are presented in
Table A3. Comparing the results between Tables A2 and A3, we found there is a significant
inductive bias of the neural network, though the model is linear. Further analysis to such
observation is out of the scope of this paper, but this would be an interesting avenue for
future research.

https://github.com/facebookresearch/InvarianceUnitTests
https://github.com/facebookresearch/InvarianceUnitTests
https://github.com/ahujak/IB-IRM
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Table A1. Supplementary results when using 10 hyperparameter queries. #Envs means the number
of training environments, and (min) reports the minimal test classification error across different
running data seeds.

#Envs ERM (min) IRM (min) IB-ERM (min) IB-IRM (min) CSIB (min) Oracle (min)

Example 1 1 0.50 ± 0.01 (0.49) 0.50 ± 0.01 (0.49) 0.23 ± 0.02 (0.22) 0.31 ± 0.10 (0.25) 0.23 ± 0.02 (0.22) 0.00 ± 0.00 (0.00)
Example 1S 1 0.50 ± 0.00 (0.49) 0.50 ± 0.00 (0.49) 0.09 ± 0.04 (0.04) 0.30 ± 0.10 (0.25) 0.08 ± 0.04 (0.04) 0.00 ± 0.00 (0.00)
Example 2 1 0.40 ± 0.20 (0.00) 0.00 ± 0.00 (0.00) 0.50 ± 0.00 (0.49) 0.48 ± 0.03 (0.43) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 2S 1 0.50 ± 0.00 (0.50) 0.30 ± 0.25 (0.00) 0.50 ± 0.00 (0.50) 0.50 ± 0.01 (0.48) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3 1 0.16 ± 0.06 (0.09) 0.03 ± 0.00 (0.03) 0.50 ± 0.01 (0.49) 0.41 ± 0.09 (0.25) 0.02 ± 0.01 (0.00) 0.00 ± 0.00 (0.00)
Example 3S 1 0.16 ± 0.06 (0.10) 0.04 ± 0.01 (0.02) 0.50 ± 0.00 (0.50) 0.41 ± 0.12 (0.26) 0.01 ± 0.01 (0.00) 0.00 ± 0.00 (0.00)

Example 1 3 0.44 ± 0.01 (0.44) 0.44 ± 0.01 (0.44) 0.21 ± 0.00 (0.21) 0.21 ± 0.10 (0.06) 0.21 ± 0.00 (0.21) 0.00 ± 0.00 (0.00)
Example 1S 3 0.45 ± 0.00 (0.44) 0.45 ± 0.00 (0.44) 0.09 ± 0.03 (0.05) 0.23 ± 0.13 (0.01) 0.09 ± 0.03 (0.05) 0.00 ± 0.00 (0.00)
Example 2 3 0.13 ± 0.07 (0.00) 0.00 ± 0.00 (0.00) 0.50 ± 0.00 (0.50) 0.33 ± 0.04 (0.25) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 2S 3 0.50 ± 0.00 (0.50) 0.14 ± 0.20 (0.00) 0.50 ± 0.00 (0.50) 0.34 ± 0.01 (0.33) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3 3 0.17 ± 0.04 (0.14) 0.02 ± 0.00 (0.02) 0.50 ± 0.01 (0.49) 0.43 ± 0.08 (0.29) 0.01 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3S 3 0.17 ± 0.04 (0.13) 0.02 ± 0.00 (0.02) 0.50 ± 0.00 (0.50) 0.36 ± 0.18 (0.07) 0.01 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)

Example 1 6 0.46 ± 0.01 (0.44) 0.46 ± 0.09 (0.41) 0.22 ± 0.01 (0.21) 0.41 ± 0.11 (0.26) 0.22 ± 0.01 (0.21) 0.00 ± 0.00 (0.00)
Example 1S 6 0.46 ± 0.02 (0.44) 0.46 ± 0.02 (0.44) 0.06 ± 0.04 (0.02) 0.45 ± 0.07 (0.41) 0.06 ± 0.04 (0.02) 0.00 ± 0.00 (0.00)
Example 2 6 0.21 ± 0.03 (0.17) 0.00 ± 0.00 (0.00) 0.50 ± 0.00 (0.50) 0.36 ± 0.03 (0.31) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 2S 6 0.50 ± 0.00 (0.50) 0.10 ± 0.20 (0.00) 0.50 ± 0.00 (0.50) 0.19 ± 0.16 (0.01) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3 6 0.17 ± 0.03 (0.14) 0.02 ± 0.00 (0.02) 0.50 ± 0.00 (0.49) 0.37 ± 0.16 (0.16) 0.01 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3S 6 0.17 ± 0.03 (0.14) 0.02 ± 0.00 (0.02) 0.50 ± 0.00 (0.50) 0.46 ± 0.09 (0.28) 0.01 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)

Observation on linearly separable properties of high-dimensional data. Here, we
empirically show that for o-dimensional data, we have high probability that o randomly
drawn points are linearly separable for any two subsets. To verify that, we design a random
experiment as follows: (1) Let o ∈ [100, 10,000], and we randomly draw o points from
[−1, 1]o, and give random labels to these o points of 0 or 1. (2) We train a linear classifier to
fit these o points and report the final training error. (3) We perform (1) and (2) 100 times for
different seeds. Our results show that for 100 runs, all training errors reach 0 for every o,
which proves our conjecture.

Table A2. Results in Example 1/1S, where the learning model is a linear embedding Φ ∈ Rd×d

followed by a linear classifier w ∈ Rd+1.

#Envs pe = 1? q ERM IB-ERM IB-IRM CSIB IRM Oracle

Example 1 1 Yes 0 0.50 ± 0.01 0.23 ± 0.02 0.31 ± 0.10 0.23 ± 0.02 0.50 ± 0.01 0.00 ± 0.00
Example 1S 1 Yes 0 0.50 ± 0.00 0.46 ± 0.04 0.30 ± 0.10 0.46 ± 0.04 0.50 ± 0.00 0.00 ± 0.00
Example 1 3 Yes 0 0.45 ± 0.01 0.22 ± 0.01 0.23 ± 0.13 0.22 ± 0.01 0.45 ± 0.01 0.00 ± 0.00
Example 1S 3 Yes 0 0.45 ± 0.00 0.41 ± 0.04 0.27 ± 0.11 0.41 ± 0.04 0.45 ± 0.00 0.00 ± 0.00
Example 1 6 Yes 0 0.46 ± 0.01 0.22 ± 0.01 0.37 ± 0.14 0.22 ± 0.01 0.46 ± 0.09 0.00 ± 0.00
Example 1S 6 Yes 0 0.46 ± 0.02 0.35 ± 0.10 0.42 ± 0.12 0.35 ± 0.10 0.46 ± 0.02 0.00 ± 0.00

Example 1 1 No 0 0.00 ± 0.00 0.00 ± 0.00 0.15 ± 0.20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1S 1 No 0 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1 3 No 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1S 3 No 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1 6 No 0 0.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1S 6 No 0 0.00 ± 0.00 0.00 ± 0.00 0.31 ± 0.20 0.00 ± 0.00 0.04 ± 0.06 0.00 ± 0.00

Example 1 1 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.32 ± 0.22 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1S 1 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.19 ± 0.17 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1 3 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.07 ± 0.03 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1S 3 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1 6 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.30 ± 0.21 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1S 6 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.32 ± 0.19 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
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Table A3. Results in Example 1/1S, where the learning model is a linear classifier w ∈ Rd+1 without
linear embedding Φ. The CSIB must require a feature extractor, so there are not results related
to the CSIB.

#Envs pe = 1? q ERM IB-ERM IB-IRM IRM Oracle

Example 1 1 Yes 0 0.50 ± 0.01 0.25 ± 0.01 0.31 ± 0.10 0.50 ± 0.01 0.00 ± 0.00
Example 1S 1 Yes 0 0.50 ± 0.00 0.49 ± 0.01 0.30 ± 0.10 0.50 ± 0.00 0.00 ± 0.00
Example 1 3 Yes 0 0.44 ± 0.01 0.23 ± 0.01 0.21 ± 0.10 0.44 ± 0.01 0.00 ± 0.00
Example 1S 3 Yes 0 0.45 ± 0.00 0.44 ± 0.01 0.42 ± 0.04 0.45 ± 0.00 0.00 ± 0.00
Example 1 6 Yes 0 0.46 ± 0.01 0.27 ± 0.07 0.41 ± 0.11 0.46 ± 0.01 0.01 ± 0.01
Example 1S 6 Yes 0 0.46 ± 0.02 0.42 ± 0.08 0.46 ± 0.09 0.46 ± 0.02 0.01 ± 0.02

Example 1 1 No 0 0.50 ± 0.01 0.00 ± 0.00 0.15 ± 0.20 0.50 ± 0.01 0.00 ± 0.00
Example 1S 1 No 0 0.50 ± 0.00 0.00 ± 0.00 0.13 ± 0.19 0.50 ± 0.00 0.00 ± 0.00
Example 1 3 No 0 0.45 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.45 ± 0.01 0.00 ± 0.00
Example 1S 3 No 0 0.45 ± 0.00 0.01 ± 0.02 0.08 ± 0.14 0.46 ± 0.02 0.00 ± 0.00
Example 1 6 No 0 0.46 ± 0.01 0.10 ± 0.16 0.30 ± 0.20 0.46 ± 0.01 0.01 ± 0.01
Example 1S 6 No 0 0.46 ± 0.01 0.24 ± 0.19 0.41 ± 0.12 0.47 ± 0.03 0.01 ± 0.02

Example 1 1 No 0.05 0.50 ± 0.01 0.05 ± 0.00 0.32 ± 0.22 0.50 ± 0.01 0.05 ± 0.00
Example 1S 1 No 0.05 0.50 ± 0.01 0.05 ± 0.01 0.20 ± 0.17 0.50 ± 0.00 0.05 ± 0.00
Example 1 3 No 0.05 0.45 ± 0.01 0.05 ± 0.00 0.07 ± 0.03 0.47 ± 0.01 0.05 ± 0.00
Example 1S 3 No 0.05 0.45 ± 0.01 0.07 ± 0.03 0.11 ± 0.11 0.46 ± 0.01 0.05 ± 0.00
Example 1 6 No 0.05 0.47 ± 0.01 0.14 ± 0.14 0.30 ± 0.21 0.47 ± 0.01 0.05 ± 0.00
Example 1S 6 No 0.05 0.47 ± 0.01 0.27 ± 0.18 0.42 ± 0.11 0.47 ± 0.01 0.05 ± 0.01

Then, we look back to Theorem 2. For real data, such as an image, the dimension of
spurious features o is often high. Assume different environments enjoy different spurious
points randomly; then, from the above observation, there is a high probability that the
following events will occur: For any labeling data in the n training environments with
n < o/2 (2 is due to the binary label), models could achieve zero training error by relying
on spurious features only. This illustrates why prior methods easily fail to address OOD
generalization under Assumption 6.

Appendix B. Proofs

Appendix B.1. Preliminary

Before our proofs, we first review some useful properties related to the entropy [12,58].
Entropy. For discrete random variable X ∼ PX with support X , its entropy (Shannon

entropy) is defined as

H(X) = − ∑
x∈X

PX(X = x) log(PX(X = x)) (A3)

The differential entropy of the continuous random variable X ∼ PX with support X is
given by

h(X) = −
∫

x∈X
pX(x) log(pX(x))dx, (A4)

where pX(x) is the probability density function of the distribution PX. Sometimes, we
may confuse using H(X) or h(X) to represent its entropy no matter whether X is discrete
or continuous.

Lemma A1. If X and Y are discrete random variables that are independent, then

H(X + Y) ≥ max{H(X), H(Y)}. (A5)
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Proof. Define Z = X + Y. Since X ⊥ Y, we have

H(Z|X) = − ∑
x∈X

PX(x) ∑
z∈Z

PZ|X(Z = z|X = x) log(PZ|X(Z = z|X = x))

= − ∑
x∈X

PX(x) ∑
z∈Z

PY|X(Y = z− x|X = x) log(PY|X(Y = z− x|X = x))

= − ∑
x∈X

PX(x) ∑
z∈Z

PY(Y = z− x) log(PY(Y = z− x))

= − ∑
x∈X

PX(x) ∑
y∈Y

PY(Y = y) log(PY(Y = y))

= H(Y),

and similar we have H(Z|Y) = H(X). Therefore,

H(X + Y) = I(Z, X) + H(Z|X) = I(Z, X) + H(Y) ≥ H(Y) (A6)

H(X + Y) = I(Z, Y) + H(Z|Y) = I(Z, Y) + H(X) ≥ H(X). (A7)

This completes the proof.

Lemma A2. If X and Y are continuous random variables that are independent, then

h(X + Y) ≥ max{h(X), h(Y)}. (A8)

Proof. Define Z = X + Y. Since X ⊥ Y, we have

h(Z|X) = −
∫

x∈X
pX(x)

∫
z∈Z

pZ|X(Z = z|X = x) log(pZ|X(Z = z|X = x))dxdz

= −
∫

x∈X
pX(x)

∫
z∈Z

pY|X(Y = z− x|X = x) log(pY|X(Y = z− x|X = x))dxdz

= −
∫

x∈X
pX(x)

∫
z∈Z

pY(Y = z− x) log(pY(Y = z− x))dxdz

= −
∫

x∈X
pX(x)dx

∫
y∈Y

pY(Y = y) log(pY(Y = y))dy

= h(Y),

and similar, we have h(Z|Y) = h(X). Therefore,

h(X + Y) = I(Z, X) + h(Z|X) = I(Z, X) + h(Y) ≥ h(Y) (A9)

h(X + Y) = I(Z, Y) + h(Z|Y) = I(Z, Y) + h(X) ≥ h(X). (A10)

This completes the proof.

Lemma A3. If X and Y are discrete random variables that are independent with the supports
satisfying 2 ≤ |X | < ∞, 2 ≤ |Y| < ∞, then

H(X + Y) > max{H(X), H(Y)}. (A11)

Proof. From Lemma A1 and due to the symmetry of X and Y, we only need to prove
H(X + Y) 6= H(X). The proof is by contradiction. Suppose H(X + Y) = H(X), then
from Equation (A7) it follows that I(X + Y, Y) = 0, thus X + Y ⊥ Y. However, P(Y =
ymax|X + Y = xmax + ymax) = 1, which is different from P(Y = ymax) < 1 (due to |Y| ≥ 2).
This contradicts X + Y ⊥ Y.

Lemma A4. If X and Y are continuous random variables that are independent and have a bounded
support, then

h(X + Y) > max{h(X), h(Y)}. (A12)
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Proof. From Lemma A2 and due to the symmetry of X and Y, we only need to prove
h(X + Y) 6= h(X). The proof is by contradiction. Suppose h(X + Y) = h(X), then from
Equation (A10) it follows that I(X + Y, Y) = 0, thus X + Y ⊥ Y. For any δ > 0, define an
eventM : xmax + ymax − δ ≤ X + Y ≤ xmax + ymax. IfM occurs, then Y ≥ ymax − δ and
X ≥ xmax − δ. Thus, PY(Y ≤ ymax − δ|M) = 0. However, we can always choose a δ > 0
that is small enough to make PY(Y ≤ ymax − δ) > 0. This contradicts X + Y ⊥ Y.

Appendix B.2. Proof of Theorem 2

Proof. The proof is trivial. Since two sets ∪e∈EtrZ e
spu(Ye = 1) and ∪e∈EtrZ e

spu(Ye = 0) are
linearly separable, there exists a linear classifier w that only relies on spurious features
and can achieve zero classification error on each environment. Therefore, w is an invariant
predictor across different training environments. In addition, H(Ze

inv) > H(Ze
spu) would

make IB-IRM prefer to choose these spurious features. Therefore, w would be an opti-
mal solution of IB-IRM, ERM, IRM, and IB-ERM. However, since w relies on spurious
features which may change arbitrary in unseen environments, it thus fails to solve OOD
generalization.

Appendix B.3. Proof of Theorem 3

Proof. Assume Φ∗ ∈ Rc×d and w∗ are the feature extractor and classifier learned by
IB-ERM. Consider the feature variable extracted by Φ∗ as

Φ∗Xe = Φ∗S(Ze
inv, Ze

spu) = ΦinvZe
inv + ΦspuZe

spu. (A13)

We first show that Φinv = 0 or Φspu = 0. We prove this by contradiction. Assume Φinv 6= 0
and Φspu 6= 0. By observing that a solution of Φinv = 1, Φspu = 0, w∗ = w∗inv could make
the average training error to q; therefore any solution returned by IB-ERM should also
achieve the error no larger than q (because rth = q in the constraint of Equation (12)).
Therefore w∗ 6= 0.

1. In the case when each e ∈ Etr follows Assumption 4 of Ze
spu ← AZe

inv + We, we have

w∗ · (ΦinvZe
inv + ΦspuZe

spu) = w∗ ·ΦinvZe
inv + w∗ ·Φspu(AZe

inv + We)

= w∗ · (Φinv + Φspu A)Ze
inv + w∗ ·ΦspuWe.

Then, for any z = (ze
inv, ze

spu) of 1(w∗inv · ze
inv) = 1, we must have w∗ · (Φinv +

Φspu A)ze
inv + w∗ ·Φspuwe ≥ 0 for any we to make error no larger than q. Since We is

zero mean with at least two distinct points in each component, we can conclude that
w∗ · (Φinv + Φspu A)ze

inv ≥ 0. Similarly, for any z = (ze
inv, ze

spu) of 1(w∗inv · ze
inv) = 0,

we have w∗ · (Φinv + Φspu A)ze
inv < 0. From Lemma A3 or Lemma A4, we obtain

H((Φinv + Φspu A)Ze
inv + ΦspuWe) > H((Φinv + Φspu A)Ze

inv). Therefore, there ex-
ists a more optimal solution to IB-ERM with zero weight to Ze

spu, which contradicts
the assumption.

2. In the case when each e ∈ Etr follows Assumption 5 of Ze
inv ← AZe

spu + We, we have

w∗ · (ΦinvZe
inv + ΦspuZe

spu) = w∗ ·Φinv(AZe
spu + We) + w∗ ·ΦspuZe

spu

= w∗ · (Φspu + Φinv A)Ze
spu + w∗ ·ΦinvWe.

From Lemma A3 or Lemma A4, we obtain H((Φspu + Φinv A)Ze
spu + ΦinvWe) >

H((Φspu + Φinv A)Ze
spu). In addition, the spurious features are assumed to be linearly

separable. Therefore, there exists a more optimal solution to IB-ERM with zero weight
to Ze

inv, which contradicts the assumption.
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3. In the case when each e ∈ Etr follows Assumption 6 of Ze
spu ← We

1Ye + We
0(1− Ye),

we have

w∗ · (ΦinvZe
inv + ΦspuZe

spu) = w∗ ·ΦinvZe
inv + w∗ ·Φspu(We

1Ye + We
0(1−Ye))

= w∗ ·ΦinvZe
inv + w∗ ·ΦspuWe

1Ye + w∗ ·ΦspuWe
0(1−Ye).

Then, for any z = (ze
inv, ze

spu) of 1(w∗inv · ze
inv) = 1, we must have w∗ ·Φinvze

inv + w∗ ·
Φspuwe

1ye + w∗ ·Φspuwe
0(1− ye) ≥ 0 for any we

1 and we
0 to make error no larger than q.

Since We
1 and We

0 are both zero mean variables with at least two distinct points in each
component, we can conclude that w∗ ·Φinvze

inv ≥ 0; Similarly, for any z = (ze
inv, ze

spu)
of 1(w∗inv · ze

inv) = 0, we have w∗ ·Φinvze
inv < 0. From Lemma A3 or Lemma A4, we

obtain H(ΦinvZe
inv + ΦspuWe

1Ye + ΦspuWe
0(1−Ye)) > H(ΦinvZe

inv). Therefore, there
exists a more optimal solution to IB-ERM with zero weight to Ze

spu, which contradicts
the assumption.

So far, we have proved that the feature extractor Φ∗ learned by IB-ERM would never extract
both spurious features and invariant features together. Then, we perform singular value
decomposition (SVD) to the Φ∗ as

Φ∗ = UΛVT = [U1, U2][Λ1, 0; 0, 0][VT
1 ; VT

2 ] = U1Λ1VT
1 (A14)

Let S ∈ Rd×d be the orthogonal matrix. Set r as the rank of the matrix Φ∗, i.e., r = Rank(Φ∗),
and let VT

1 S = [V′1, V′2] with V′1 ∈ Rr×m and V′2 ∈ Rr×o, and VT
2 S = [V′′1 , V′′2 ] with V′′1 ∈

R(d−r)×m and V′′2 ∈ R(d−r)×o, then

Φ∗Xe = U1Λ1VT
1 S[Ze

inv; Ze
spu] = U1Λ1(V′1Ze

inv + V′2Ze
spu). (A15)

Since Φ∗Xe contains the information either from spurious features or from invariant fea-
tures, we must have U1Λ1V′1 = 0 or U1Λ1V′2 = 0, and thus, V′1 = 0 or V′2 = 0 due to
Rank(U1Λ1) = r. If V′2 = 0, then Φ∗ extract invariant features only. Otherwise when
V′1 = 0, we decompose the VTS by

VTS = [VT
1 ; VT

2 ]S = [VT
1 S; VT

2 S] = [V′1, V′2; V′′1 , V′′2 ]. (A16)

Since VT and S are both the orthogonal matrix, VTS is also orthogonal; thus V′1 = 0 ⇒
V′T2 V′′2 = 0, and then Rank(V′′2 ) = Rank([V′2; V′′2 ]) − Rank(V′2) = o − r (note that r ≤
min{m, o}). Then,

VT
2 Xe = VT

2 S[Ze
inv; Ze

spu] = [V′′1 , V′′2 ][Z
e
inv; Ze

spu] = V′′1 Ze
inv + V′′2 Ze

spu. (A17)

Therefore, by running the CSIB for one iteration, the rank of spurious features would be
decreased by r > 0. This would result in zero weight to spurious features by finite runs
of CSIB.

Then, we intend to show why the counterfactual supervision step could help to
distinguish whether V′1 is 0 or not. For a specific instance x = S[zinv; zspu], let two new
features be z1 and z2, then do(z1

1:r) = [−M, ...,−M] and do(z1
r+1:d) = VT

2 x; do(z2
1:r) =

[M, ..., M] and do(z2
r+1:d) = VT

2 x. Back the new features z1 and z2 to the input space as
x1 = Vz1 and x2 = Vz2. If V′1 = 0, then

S−1x1 = S−1Vz1 = S−1V[z1
1:r; V′′1 zinv + V′′2 zspu]

= (VTS)T [z1
1:r; V′′1 zinv + V′′2 zspu]

= [V′T1 , V′′T1 ; V′T2 , V′′T2 ][z1
1:r; V′′1 zinv + V′′2 zspu]

= [V′T1 z1
1:r + V′′T1 (V′′1 zinv + V′′2 zspu); V′T2 z1

1:r + V′′T2 (V′′1 zinv + V′′2 zspu)]

= [zinv; V′T2 z1
1:r + V′′T2 V′′2 zspu],
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and similarly we have S−1x2 = [zinv; V′T2 z2
1:r + V′′T2 V′′2 zspu]. Therefore, the ground truths

of x1 and x2 are the same. On other hand, if V′1 6= 0, then V′2 = 0, and

S−1x1 = S−1Vz1 = S−1V[z1
1:r; V′′1 zinv + V′′2 zspu]

= (VTS)T [z1
1:r; V′′1 zinv + V′′2 zspu]

= [V′T1 , V′′T1 ; V′T2 , V′′T2 ][z1
1:r; V′′1 zinv + V′′2 zspu]

= [V′T1 z1
1:r + V′′T1 (V′′1 zinv + V′′2 zspu); V′T2 z1

1:r + V′′T2 (V′′1 zinv + V′′2 zspu)]

= [V′T1 z1
1:r + V′′T1 V′′1 zinv; zspu],

and similarly we have S−1x2 = [V′T1 z2
1:r + V′′T1 V′′1 zinv; zspu]. Since z1

1:r = −z2
1:r and their

magnitudes are large enough to make sgn(w∗inv · (V′T1 z1
1:r + V′′T1 V′′1 zinv)) 6= sgn(w∗inv ·

(V′T1 z2
1:r + V′′T1 V′′1 zinv)); thus the ground truths of x1 and x2 would be different. Therefore,

the counterfactual supervision step could help to detect whether invariant features or
spurious features are extracted by using a single sample only.

Finally, when only invariant features are extracted by Φ, the training error is mini-
mized, i.e., w∗Φinv ∈ arg min f EP[l( f (Ztr

inv), Ytr)]. Then, based on our assumption to the
OOD environments (Assumptions 8), i.e., ∀e ∈ Eood, Fl(P(Ztr

inv, Ytr)) ⊆ Fl(P(Ze
inv, Ye)),

therefore, for any e ∈ Eood, we have EP[l((Xe, Ye), w∗Φ)] = EP[l((Ze
inv, Ye), w∗Φinv)] =

EP[l((Ztr
inv, Ytr), w∗Φinv)] = q.

It is worth noting that the proof of Theorem 3 does not rely on how many labels
there would be, so it is easily extended to the multi-class classification case as long as the
corresponding assumptions and conditions are satisfied.
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