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Abstract: The aim of the present paper is to provide a preliminary investigation of the thermodynam-
ics of particles obeying monotone statistics. To render the potential physical applications realistic, we
propose a modified scheme called block-monotone, based on a partial order arising from the natural
one on the spectrum of a positive Hamiltonian with compact resolvent. The block-monotone scheme
is never comparable with the weak monotone one and is reduced to the usual monotone scheme
whenever all the eigenvalues of the involved Hamiltonian are non-degenerate. Through a detailed
analysis of a model based on the quantum harmonic oscillator, we can see that: (a) the computation
of the grand-partition function does not require the Gibbs correction factor n! (connected with the
indistinguishability of particles) in the various terms of its expansion with respect to the activity; and
(b) the decimation of terms contributing to the grand-partition function leads to a kind of “exclusion
principle” analogous to the Pauli exclusion principle enjoined by Fermi particles, which is more
relevant in the high-density regime and becomes negligible in the low-density regime, as expected.

Keywords: monotone grand-canonical ensemble; thermodynamics of grand-canonical ensemble;
exclusion principle; high- and low-density regimes

1. Introduction

In recent years, the investigation of exotic models has significantly increased in the
hope of making some progress in solving long-standing unsolved problems involved in
the physics of complex models. In this regard, we certainly must mention the question
of providing a satisfactory mathematical description of the quantum electrodynamics,
which obtains predictions via the renormalisation technique that are in surprisingly perfect
accordance with the experiments.

Along the same line, we can identify the models which aim to study and unify the
strong interactions (i.e., quantum chromodynamics) with the electroweak ones. All these
models are called “standard” models and have the same strengths and weaknesses. That is,
they are in good accordance with the experiments but not satisfactory from the mathemati-
cal point of view. The long-standing problem of unifying these three fundamental forces,
which are present in nature, with the remaining one, that is, the gravitation, which was
recently addressed through the use of the so-called noncommutative geometry (e.g., [1]), is
very far from being solved, even in a partial form.

We should also mention the potential relevance of the investigation of models enjoying
exotic commutation relations with some other disciplines, such as information theory
and quantum computing, both of which are connected with, and relevant for, concrete
applications.
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Among such models, we can certainly find those associated with the so called q-
particles, or quons, q ∈ (−1, 0)

⋃
(0, 1), from the perspective of the extension to the so-called

anyons, corresponding to the case when the parameter q assumes values in some roots of
the unity, and plektons.

Such exotic q-particles are naturally associated with the following commutation rela-
tions:

aq( f )a†
q(g)− qa†

q(g)a( f ) = 〈g, f 〉IH , f , g ∈ H , (1)

H being the one-particle space, where the creators and annihilators act on the corresponding
Fock spaces. The quons can certainly be seen as an interpolation between the particles
obeying the Fermi statistics (i.e., q = −1) and those obeying the Bose statistics (i.e., q = 1),
passing through the q = 0 value describing the classical particles and, thus, obeying the
Boltzmann statistics. We can observe that for q = ±1, the commutation rules (1) are reduced
to the well-known ones associated with the Bose and Fermi particles, respectively (see,
e.g., [2]).

All such models are relevant to the so-called quantum probability. In fact, the Boltzmann
case q = 0, describing the statistics of classical particles concerning the physical meaning, is
also known as free because it naturally arises from a particular case of quantum probability
called free probability (see, e.g., [3]).

In the setting of quantum probability, the various generalisations of the commutation
rules (1) allow one to introduce and investigate exotic quantum stochastic processes (see,
e.g., [4]).

As is well-known in the Bose and Fermi cases, all the above-mentioned commutation
rules naturally arise from the so called second quantisation, which is associated with the
so-called grand-canonical ensemble. The various functors of the second quantisation allow
one to construct the corresponding Fock spaces. The Fock space encodes the statistics that
the involved particles obey and allows the involved commutation relations to be faithfully
represented.

We can also remark that the grand-canonical ensemble allows one to investigate one of
the most fascinating phenomena occurring in the condensate state of the matter, involving
bosons, that is, the Bose–Einstein Condensation in the fundamental state (see, e.g., [2,5]).
In [6], it is shown that such a phenomenon of condensation also appears in the case of
Bose-like quons, that is, when q ∈ (0, 1].

Returning to exotic commutation relations and their applications in quantum probabil-
ity, we can cite the Boolean and Monotone ones. As in the case of all the models mentioned
above, they satisfy commutation relations falling into the general form described in [7]
(Corollary 3.2), and are therefore associated with a suitable Fock space. The Boolean Fock
space is the simplest non-trivial example of second quantisation, because only one particle
can be created and/or annihilated. In fact, it describes the absorption of a single photon, at
most, from an apparatus (see [8]).

The monotone statistics of particles, independently introduced in [9,10], do not seem
to have any evident physical application. The arising Fock space is easily constructed,
as described in Section 2, using the monotonic prescription induced by a totally ordered
orthonormal basis of the one-particle Hilbert space.

Now, we can also point out the well-known deep connection between the second
quantisation scheme and the equilibrium statistical mechanics (see, e.g., [2,5]). Indeed,
starting from a Fock space constructed by taking into account the statistics of the involved
particles, we can compute, at least in principle, the so-called grand-partition function. Such
a crucial function is supposed to encode all the thermodynamic properties enjoyed by a
large number (of the order of the Avogadro number NA ∼ 1023) of involved particles. This
is certainly true for the Bose and Fermi cases and also, due to its simplicity, for the boolean
one, in which the indistinguishability of the particles plays no role.

Due to the Gibbs paradox (cf. [5]), the computation of the grand-partition function in
the Boltzmann case, in terms of the associated full Fock space, deserves a suitable correction
due to the supposed indistinguishability of the involved particles (see below). The general
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case of the quons (i.e., q ∈ (−1, 0) ∪ (0, 1)) is differently solved in [11], since the necessarily
“deformed” statistics that such exotic particles obey are completely unknown.

The case of non-interacting particles obeying monotone statistics, simply called mono-
tone particles in the following pages, is unclear for two reasons. The first one is that the
concrete physical applications of such a model are completely unknown. The second one
is that we do not know whether the monotone scheme directly encodes the principle of
the indistinguishability of particles, the latter being a fundamental prescription for the
development of equilibrium statistical mechanics.

Taking into account all the previous considerations, it becomes natural to address
the investigation of the thermodynamic properties of particles obeying the monotone pre-
scription, which are encoded in the monotone Fock space. Unfortunately, since there is no
natural, total order of the one-particle subspace on an orthonormal basis, this investigation
deserves an appropriate preliminary analysis.

A simple one-particle physical system confined in a finite volume is essentially de-
scribed by a Hamiltonian H, which is a self-adjoint positive operator with compact resolvent
acting on a separable Hilbert spaceH. The statistics (i.e., Bose/Fermi or Boltzmann) of very
large systems formed of a number of the order of the Avogadro number of non-interacting
particles is encoded in the corresponding Fock space.

Since there is a natural order of the eigenvectors of H induced by the corresponding
eigenvalues (i.e., the energy levels of the system under consideration), one is tempted to
use such an order to implement the monotone scheme for models of statistical mechanics.
This can be carried out only when the eigenvalues of H all have a multiplicity of 1 or, in
simple terms, when any energy level of the model is non-degenerate.

Unfortunately, this is not the case for all concrete models when the degeneracy of all
the energy levels increases to infinity in the thermodynamic limit (i.e., when, in particular,
the volume of the system tends to occupy the whole environment), in which case the
so-called “passage to the continuum” can be performed (see, e.g., [5,12]).

The passage to the continuum is the fundamental tool used to investigate the thermo-
dynamic properties of more realistic models in which the one-particle Hamiltonian has a
continuum spectrum, such as a free particle living in R3.

In the present paper, we propose a method that can be used to overcome this basic
difficulty and, thus, take into account the possible degeneracy of the energy levels. Indeed,
we simply generalise the monotone prescription to index sets, which are merely partially
ordered according to those arising from the spectrum of a positive, compact resolvent
Hamiltonian with possible degenerate energy levels. This model, called block-monotone in
the following pages, which is expected to be more suitable for physical applications, is
described in Section 3.

Since the grand-partition function of a system associated with (block-)monotone
particles is not directly computable in most infinite dimensional cases, the remaining part
of the paper is devoted to a detailed analysis of a simple model formed of infinite uncoupled
quantum harmonic oscillators. Since the corresponding Hamiltonian has non-degenerate
eigenvalues, such a computation falls into the monotone scheme. The grand-partition
function for such a model is computed in Section 4.

Section 5 is then devoted to the explicit computation of the statistical weights appear-
ing in the expansion of the monotone grand-canonical partition function and to a refined
study of the high- and low-density regimes. Such an investigation leads to the following
relevant facts.

First of all, the computation of such statistical weights suggests that the Gibbs correc-
tion factor n!, connected with the indistinguishability of particles in the various terms of its
expansion with respect to the activity, directly appears in the low-density regime, that is,
when the temperature of the system becomes increasingly higher. This suggests that the
monotone scheme directly encodes the indistinguishability of the involved particles.

Secondly, the decimation of the terms contributing to the grand-partition function
provides a kind of “exclusion principle” analogous to the Pauli exclusion principle observed
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for Fermi particles. Such an exclusion principle appears to be more relevant to the high-
density regime and becomes negligible in the low-density regime, as expected.

The last part of Section 5 is devoted to a refined comparison between the grand-
partition functions relative to the Boltzmann and monotone models, allowing us to estimate
the correction of the relevant thermodynamic quantities, such as the average number, in
the low-density regime.

To conclude the present introduction, we point out that this preliminary investigation
seems to provide a promising perspective concerning the potential physical applications of
the block-monotone scheme, which we plan to return to in a future work.

2. Preliminaries

One-particle Hamiltonian. We start with a system whose Hamiltonian H is a self-
adjoint positive (i.e., σ(H) ⊂ [0,+∞)) operator with compact resolvent, acting on a separa-
ble Hilbert spaceH, called the one-particle space.

In such a situation, the spectrum σ(H) is formed of isolated points, accumulating
at +∞ if H is infinite dimensional. In addition, the multiplicity g(ε) of each eigenvalue
ε ∈ σ(H) is finite. In summary, by considering the resolution of the identity of H, we obtain
I ≡ IH = ∑ε∈σ(H) Pε,

H = ∑
ε∈σ(H)

εPε, and g(ε) = dim
(
Ran(Pε)

)
< ∞ .

Let kB ≈ 1.3806488× 10−23 JK−1 be the Boltzmann constant, and β := 1
kBT the “inverse

temperature”. Assuming that e−βH is trace class for each β > 0, we can define the partition
function ζ := Tr(e−βH).

The grand-partition function. Here, we define the the grand-partition function in a
relatively general framework relative to a gas comprising non-interacting particles obey-
ing rather general statistics and thus potentially suitable for physical applications. The
knowledge of such grand-partition functions plays a crucial role in the so-called equilib-
rium statistical mechanics. The standard method for such an analysis is the so-called second
quantisation, (see, e.g., [2,5]).

Indeed, for the one-particle Hilbert space H, we define the so-called full Fock space
F0(H) ≡ F , given by

F :=
+∞⊕
n=0
H⊗ · · · ⊗H︸ ︷︷ ︸

n-times

,

with the convention thatH⊗ · · · ⊗H︸ ︷︷ ︸
0-times

:= C ≡ CΩ, where Ω is the so-called vacuum vector.

The number operator N has a clear meaning (see e.g., [2]).
For a linear operator A with domain D ⊂ H, we define

dΓo(A)dD⊗···⊗D :=A⊗ I ⊗ · · · ⊗ I + I ⊗ A⊗ · · · ⊗ I

+ · · ·+I ⊗ · · · ⊗ A⊗ I + I ⊗ · · · ⊗ I ⊗ A ,

and extend it to the whole Fock space by linearity. If A is self-adjoint, the closure dΓ(A) of
dΓo(A) will still be self-adjoint (see, e.g., [2]). Note that dΓ(IH) provides the number operator.

Now, let P be a self-adjoint projection acting on F . For a fixed positive operator H
(i.e., a Hamiltonian) and the parameters β > 0 (the inverse temperature) and µ ∈ R (the
chemical potential), such that Pe−βdΓ(H−µI)P ≡ Pe−β(dΓ(H)−µN)P is trace class, we define
the grand-partition function as

ZP ≡ ZH,P(β, µ) := Tr
(

Pe−βdΓ(H−µI)P
)

. (2)
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The most important cases, describing the thermodynamics of Bose and Fermi gases,
are those when P is the self-adjoint projections onto the completely symmetric and antisym-
metric subspaces (with respect to the natural action of the permutations on F ), respectively.

When P is the identity operator I ≡ IF , the corresponding grand-partition function
will describe the thermodynamics of classical particles, that is, those obeying the Boltzmann
statistics. Unfortunately, this is not the case, as explained in [11,13]. Below, we outline how
it is possible to recover such a grand-partition function in the Boltzmann case.

We can also remark that the q-deformed Fock space Fq(H) (e.g., [4,14] for the arising
ergodic properties) could be used to compute the grand-partition function for the so-
called quons and, thus, their thermodynamics. Unfortunately, in this case, too, the second
quantisation method does not work. The grand-partition function for the free gas of quons
is entirely computed in [11] without using the q-deformed Fock space.

The so-called Boolean (e.g., [15]) and monotone (see below) models might also be de-
scribed as outlined above. This is certainly true for the Boolean case, in which Fboole(H) =
C
⊕H and, thus, there is no question about the indistinguishability of the particles. We

will see, in the forthcoming analysis, that this is also the case for the monotone model and
its generalisations addressed in the present paper.

Monotone Fock space. For the reader’s convenience, we outline some basic facts
regarding monotone Fock spaces and their fundamental operators (see [9,10,16] for more
details). Here, we define a generalisation of the monotone particles which is suitable for
physical applications. However, as a particular case arising directly from quantum physics,
we study, in some detail, the thermodynamics of a simple model satisfying the monotone
statistics/commutation relations. For the interested reader, we point out the existence
of new investigations concerning exotic commutation relations that are related to those
previously mentioned and might have potential physical applications (see [17]).

For k ≥ 1, denoted by Ik := {(i1, i2, . . . , ik)|i1 < i2 < · · · < ik, ij ∈ N, j = 1, . . . , k},
the class of all the ordered sequences of natural numbers are of length k. For k = 0, we
take I0 := {∅}. If k ≥ 0, the Hilbert space Hk := l2(Ik) is called the k-particles space. In
particular, the 0-particle space H0 = l2(∅) is identified with the complex scalar field C.
The monotone Fock space is then defined as Fm :=

⊕∞
k=0Hk.

With any increasing sequence α = {i1, i2, . . . , ik} of natural numbers, we canonically
associate the vector eα, which, for all such sequences α, provides the canonical basis of Fm.
For each pair of such sequences α = {i1, i2, . . . , ik}, β = {j1, j2, . . . , jl}, we state that α < β
if ik < j1. By convention, I0 < α for each α 6= I0.

In other words, if {en | n ∈ N} is the canonically ordered basis of `2(N) (or any
ordered basis of a separable Hilbert space), the n-particle space is generated by the vectors
eα ≡ ej1 ⊗ ej2 ⊗ · · · ⊗ ejn whenever α = {j1, j2, . . . , jn} with j1 < j2 < · · · < jn. If we relax
the last condition by merely assuming that j1 ≤ j2 ≤ · · · ≤ jn, we will obtain the so-called
weakly monotone Fock space (see, e.g., [16]). Note that Fm and Fwm are the range of the
self-adjoint projections Pm and Pwm acting on the full Fock space F :

Fm = PmF and Fwm = PwmF .

Even if this is not used in the forthcoming analysis, we can report the structure of the
monotone creation and annihilation operators and the generating commutation relations,
which are nevertheless useful for application to quantum probability. Indeed, the monotone
creation and annihilation operators are, respectively, for any i ∈ Z, given by

a†
i (e(i1,i2,...,ik)) :=

{
e(i,i1,i2,...,ik) if {i} < {i1, i2, . . . , ik} ,
0

(3)

otherwise,

ai(e(i1,i2,...,ik)) :=
{

e(i2,...,ik) if k ≥ 1 and i = i1 .
0

(4)



Entropy 2023, 25, 216 6 of 14

One can verify that ||a†
i || = ||ai|| = 1 (see e.g., [16], Proposition 8). Moreover, a†

i and
ai are mutually adjoint and satisfy the following relations:

a†
i a†

j = ajai = 0 if i ≥ j ,
aia†

j = 0 if i 6= j .

In addition, the following commutation relation, designated in the weak operator
topology of B(Fm) and falling into the general class of commutation relations managed in
Corollary 3.2 of [7] for applications in quantum probability,

aia†
i = 1I−∑

k≤i
a†

k ak

is also satisfied.
For some properties of monotone systems, including their ergodic properties, see,

e.g., [18] and the literature cited therein.
The grand-partition function for the Boltzmann case. The Boltzmann (or classical)

case is very particular because, in Boltzmann statistics, the Gibbs paradox (e.g., [5]) takes
place and, consequently, we should suitably correct the statistical weights.

As for the computation of Z±1 in the Bose and Fermi cases (e.g., [2,5]), it might
be natural to use the full Fock space F (H) and the grand-canonical Hamiltonian K :=
dΓ(H)− µN, as explained above, provided that K is trace class for a fixed β and µ. This
corresponds to taking P = IF in (2).

This easy computation is reported in [13], obtaining

Tr
(

e−βK
)
=

1
1− ζeβµ

,

which still holds for µ < min σ(H).
For the reasons explained in [11,13], such a formula is unrealistic. However, the correct

formula should be Z0 = eζeβµ
.

After defining the fugacity, also denoted as the activity, through z := eβµ, we have:

Tr
(

e−βK
)
=

+∞

∑
n=0

ζnzn , 0 ≤ z < 1 . (5)

It is interesting to see that, if one corrects (5) with the weight n! in the denominator of
the series, thus taking into account the indistinguishability of particles, as it is customary to
avoid the Gibbs paradox, we obtain the correct formula:

Z0 =
+∞

∑
n=0

ζn

n!
zn = eζz . (6)

Harmonic oscillator. Since we provide a detailed study of the simple model formed
of non-interacting harmonic oscillators, for the reader’s convenience, we report some basic
facts that are used in the following analysis. Consequently, relative to the Boltzmann
statistics, we compute the relative grand-partition function at the inverse temperature β
and activity z = eβµ, µ being the chemical potential.

Indeed, given that K acts as the Hook strength of the spring and m as the mass of
the involved particle, it is well-known that the spectrum of the Hamiltonian of this model
consists of non-degenerate eigenvalues, given by:

σ(H) =
{

h̄ω(n + 1/2) | n ∈ N
}

, (7)

where ω :=
√

K/m is the given frequency.
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In this way, the partition function is given by:

ζ ≡ Tr
(
e−βH) = e−

βh̄ω
2

+∞

∑
n=0

(
e−βh̄ω

)n
=

e−
βh̄ω

2

1− e−βh̄ω
=

e
βh̄ω

2

eβh̄ω − 1
=

1

2 sinh
( βh̄ω

2
) .

After taking into account the Gibbs correction (e.g., [5,11,13]), for the grand-partition
function, we obtain:

Z0 = ezζ =
+∞

∑
n=0

zne
nβh̄ω

2

n!

( 1
eβh̄ω − 1

)n
.

3. Block-Monotone Particles

The present section is devoted to a generalisation of the monotone prescription for
the statistics of the particles which, on the one hand, is more suitable for potential physical
applications and, on the other hand, is always different from the weak monotone scheme
briefly outlined above.

For such a purpose, we consider an index set I, being necessarily finite or countable,
which is a finite or countable disjoint union of finite sets. Indeed, I :=

⊔+∞
j=0 Ij, where

|Ij| < +∞, j = 0, 1, . . . . The set I is naturally partially ordered, because if k j, lj are in the
same subset Ij, there is no pre-assigned order between them. Conversely, if k1 ∈ Ij1 and
k2 ∈ Ij2 , then k1 ≺ k2 ⇐⇒ j1 < j2.

Such a picture is suggested by the potential physical applications. In fact, a positive
Hamiltonian H with compact resolvent acting on a separable Hilbert spaceH, as described
in Section 2, induces a natural order, as shown above, on the natural basis of H, formed
of the eigenvectors associated with the eigenvalues {ε j} of H, where the finite cardinality
of the involved subsets are given by the degeneracies gj of the eigenvalues ε j. The picture
arising from this analysis is defined as block-monotone. The corresponding block-monotone
Fock space Fbm and the relative creation and annihilator operators are easily constructed
as follows below.

Let {ej | j ∈ I} be an orthonormal basis ofH equipped with the previously described
partial order. Typically, such a partial order is induced by a positive Hamiltonian with
compact resolvent. As noted above, Fbm is a subspace of the full Fock one F ≡ F0, and on
the n-particle subspace, the n-particle block monotone subspace is generated as follows
below.

Such an n-particle subspace is generated by all the sequences of the elementary
(orthonormal) tensors ek1 ⊗ · · · ekn with the condition k1 < k2 < · · · < kn relative to the
partial order defined above. The block monotone creator and annihilator operators assume
the same form as in (3) and (4), respectively, according to the above partial order.

We denote Pbm as the self-adjoint projection acting on the full Fock space projected
onto Fbm. This allows us to compute the grand-partition Zbm according to (2). We can now
explicitly compute such a grand-partition for the simplest non-trivial finite dimensional
case, where H is generated by the orthonormal basis {(e1, e2), e}, the eigenvalues of a
Hamiltonian whose eigenvalues are h, k, with a multiplicity of 2 and 1, respectively. We
express such a grand-partition function in terms of the activity z = eβµ.

In this simple situation, the block-monotone Fock spaceFbm ends with the two-particle
subspace and is given by:

Fbm = C
⊕ ((

Ce1 ⊕Ce2)⊕Ce
)⊕ (

C(e1 ⊗ e)⊕C(e2 ⊗ e)
)

.

Correspondingly, the grand-partition function is given by:

Zbm(z, β) = 1 + z(2e−βh + e−βk) + 2z2e−β(h+k) .

We end the present section by noting that, if all the Ij are singletons (or empty sets),
the block-monotone scheme will be reduced to the usual monotone one. In the previous
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example, the comparison between the block-monotone scheme and the monotone one does
not depend on the order that we fix on the first subset of eigenvectors of H, leading to:

Zm(z, β) = 1 + z(2e−βh + e−βk) + z2(e−2βh + 2e−β(h+k)) .

In the forthcoming analysis, we study, in some generality, a non-trivial situation of this
kind.

Conversely, the block-monotone scheme is never comparable with the weakly mono-
tone one. Indeed, the weakly monotone version of the last example provides five additional
elements on the basis of the two-particle subspace plus non-trivial contributions involving
all the n-particle subspaces. Indeed,

Zwm(z, β) =1 + z
(
2e−βh + e−βk)+ z2(4e−2βh + 2e−β(h+k) + e−2βk)

+
+∞

∑
n=3

znan(h, k, β) .

4. The Grand-Partition Function for Monotone Particles

Since the explicit computation of the monotone grand-partition function is not avail-
able for most infinite dimensional cases, we reduce the matter to the simple case of the
one-dimensional quantum harmonic oscillator briefly described in Section 2. The spectrum
of the involved Hamiltonian (7) is formed of multiplicity-one eigenvectors. Therefore,
in such a case, the block-monotone model described in Section 3 is reduced to the usual
monotone one.

Denoting such a monotone grand-partition function relative to the quantum harmonic
oscillator as Zm, we obtain the following:

Proposition 1. For the grand-partition function Zm, we have

Zm = 1 +
+∞

∑
n=1

zne
nβh̄ω

2

n

∏
k=1

1(
ekβh̄ω − 1

) .

In addition, 0 ≤ Zm ≤ Z0, where Z0 is the Boltzmann grand-partition function given in (6),
and thus Zm converges for all z ≥ 0 and β > 0.

Proof. We start the second half by noting that:

ekβh̄ω − 1 =
(
eβh̄ω − 1

) k−1

∑
l=0

elβh̄ω ≥ k
(
eβh̄ω − 1

)
,

and, thus,

0 ≤
n

∏
k=1

1(
ekβh̄ω − 1

) ≤ 1
n!
(
eβh̄ω − 1

)n .

Therefore, Zm ≤ Z0 < +∞.
Concerning the first half, taking into account the exclusion rule arising from the

monotone assumption, it is straightforward to verify that, for the contribution relative to
the n-particle subspace, n ≥ 1,

Tr
(

Pme−βdΓ(H)PmdH ⊗ · · · ⊗ H︸ ︷︷ ︸
n-times

)
= e−

nβh̄ω
2

+∞

∑
k1=0

ek1βh̄ω
+∞

∑
k2=k1+1

ek2βh̄ω

· · · · · ·
+∞

∑
kn=kn−1+1

ekn βh̄ω = e
nβh̄ω

2

n

∏
k=1

1(
ekβh̄ω − 1

) .
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Now, we can compare both grand-partition functions Zm and Z0. Indeed, after defining

Z# =
+∞

∑
n=0

a(#)n (β)zn ,

# standing for “0” and “monotone”, we can address two physically interesting, cases, β ↓ 0
(high-energy/low-density regime) and β ↑ +∞ (low-energy/high-density regime).

For the high energy case,

a(m)
n (β) =

1
(h̄ω)n

( 1
β

)( 1
2β

)
· · ·
( 1

nβ

)
+ o
( 1

βn

)
≡ 1

n!(h̄ωβ)n + o
( 1

βn

)
, (8)

which leads to
a(0)n (β) = a(m)

n (β) + o
( 1

βn

)
, for β ↓ 0 . (9)

Remark 1. Equations (8) and (9) explain that, in some sense, at least in this simple case of the
harmonic oscillator, in the limit of high energies (i.e., β ↓ 0), the monotone grand-partition function
Zm behaves, term-by-term, in the same way as Z0, corresponding to classical particles. In the next
section, we provide a more refined analysis concerning this fact.

For the appearance (i.e., (8)) of the Gibbs correction term n!, we can immediately argue that
the monotone Fock space will naturally take into account the indistinguishability of particles.

Now, we move on to the limit of low energies (typically when dealing with the
so-called ground states) β ↑ +∞. Indeed,

n

∏
k=1

1(
ekβh̄ω − 1

) ≈ 1

eβh̄ω ∑n
k=1 k

= e−βh̄ω
n(n+1)

2 ,

and, thus,

Zm ≈
+∞

∑
n=0

zne−
n2βh̄ω

2 .

Relative to the Boltzmann partition function, according to the reasoning above, we
obtain:

Z0 ≈
+∞

∑
n=0

zn

n!
e−

nβh̄ω
2 , for β ↑ +∞ .

Now, using the Stirling formula, when n ↑ +∞ and β ↑ +∞, retaining only the leading
terms, we obtain:

a(0)n (β) ≈ e−n(βh̄ω/2+ln n), whereas a(m)
n (β) ≈ e−n2βh̄ω/2 . (10)

Remark 2. In the high-density regime described by β, n ↑ +∞, that is, when the state of the matter
is very condensed, the monotone particles obey a kind of exclusion principle analogous to the Pauli
exclusion principle for fermions. The heuristic Formula (10) seems to confirm the existence of such
a principle.

5. The Low-Density Regime

We discuss the low-density regime corresponding to β, z ≈ 0 by showing that, in such
a limit,

Zm(β, z) ≈ Z0(z, β), for β, z→ 0 .

Proposition 2. For the monotone and Boltzmann grand-partition functions, we have:

(1− f (β, z))Z0(z, β) ≤ Zm(β, z) ≤ Z0(z, β) , (11)
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where f (β, z) := z2eβh̄ω

4(eβh̄ω−1)
.

Proof. (sketch). With x := eβh̄ω and

∆n(x) := 1− n!

(1 + x)(1 + x + x2) · · ·
(

∑n−1
k=0 xk

) , n = 1, 2, . . . , (12)

noting that β ↓ 0 ⇐⇒ x ↓ 1, for n ≥ 2 (for n = 0, 1, both coincide), we obtain:

a(0)n − a(m)
n =

1
n!(x− 1)n

(
∆n(1) + ∆′n(1)(x− 1) +

∆′′n(ξn)

2
(x− 1)2

)
. (13)

Here, we apply the Taylor formula with second-order Lagrange remainder; thus, ξn is
a certain number (obviously, depending on n) in the interval (1, x).

Since ∆n(1) = 0, ∆′n(1) =
n(n−1)

4 and, finally, we obtain the evidence that ∆′′n(ξn) < 0
whenever x > 1 (see the Appendix A), collecting these elements together, we have:

a(0)n − a(m)
n ≤

√
x

n!(x− 1)n

(n(n− 1)
4

(x− 1)
)
≡ n(n− 1)

4
(x− 1)a(0)n .

After defining y := z
√

x
x−1 , we can sum up, obtaining:

Z0 − Zm ≤
(x− 1)

4

+∞

∑
n=0

n(n− 1)
yn

n!
=

(x− 1)
4

y2 d2Z0

dy2

≡ z2x
4(x− 1)

ey ≡ z2x
4(x− 1)

Z0 .

(14)

Now, (14) easily leads to:

Z0

(
1− z2eβh̄ω

4(eβh̄ω − 1)

)
≤ Zm ,

and the proof follows, according to Proposition 1.

In order to progress to the investigation of the low-density regime, (11) reads:

(1− f (β, z)) ≤ Zm(β, z)
Z0(β, z)

≤ 1 , (15)

and (15) provides a useful condition, if and only if (1− f (β, z)) > 0.
It is now convenient to define t := z2/4 with the limitations 0 ≤ t < 1, obtaining:

1− xt
x− 1

> 0 ⇐⇒ x >
1

1− t
.

By passing to the logarithm and restoring the variables z and β, we obtain:

βh̄ω > − ln
(
1− (z/2)2) .

On the other hand, if for some 0 < γ < 1,

βh̄ω ≥ − ln
(
1− (z/2)2γ

)
> − ln

(
1− z2/4

)
, (16)

again, in terms of x and t, we have:

x ≥ 1
1− tγ

⇐⇒ xtγ

x− 1
≤ 1 ⇐⇒ xt

x− 1
≤ t1−γ → 0
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whenever t ↓ 0 or, equivalently, z ↓ 0.
Restoring the original variables, the above computation simply means that:

0 ≤ f (β, z) ≡ z2eβh̄ω

4(eβh̄ω − 1)
≤ (z2/4)1−γ → 0 ,

when z and, necessarily, also β in the chosen region change to 0.
Thus, we prove the following:

Proposition 3. For each fixed 0 < γ < 1 and (z, β) in the region R delimited by 0 ≤ z < 2 and
by the condition

βh̄ω > − ln
(
1− (z/2)2γ

)
,

we obtain

lim
(β,z)→(0,0)
(β,z)∈R

Zm(β, z)
Z0(β, z)

= 1 .

Concerning the low-density regime, Proposition 3 has the following meaning. Indeed,
for β, z ≈ 0 in the region defined by (16),

Zm(β, z) ≈ (1− f (β, z))Z0(β, z) , (17)

where the minus sign is explained in Remark 2 as an analogue of the Pauli exclusion
principle for monotone particles. Such a monotone exclusion principle tends to become very
relevant in the high-density regime (β ↑ +∞, see Remark 2), whereas it tends to vanish in
the low-density regime (Proposition 3). In the latter case, the function 1− f (β, z) provides
the correction for the thermodynamic potentials relative to those of the monotone case,
compared with the analogous ones relative to Boltzmann case.

Moreover, using (17), we can determine that the average number of particles is

Nm(β, z) =z
∂ ln Zm(β, z)

∂z
≈ z

∂ ln(1− f (β, z))
∂z

+ N0(β, z)

=N0(β, z)− z2eβh̄ω

2
(
(eβh̄ω − 1)− (z/2)2eβh̄ω

) ,

where the second addendum in the last member is, indeed, negative because of (16).
We conclude by noting that Proposition 3 allows one to compute the asymptotics of

Connes’ spectral action (cf. [1]), associated with the average number of monotone particles,
as described in [19] for q-particles, but with the condition described in (16). We postpone
the investigation of this aspect for a forthcoming analysis.

6. Conclusions

The previous analysis concerning monotone models suggests that their potential ap-
plications to physics appear to be meaningful and fruitful, even if the explicit computation
of the thermodynamic quantities seems to be rather complicated. Therefore, it is natural to
systematically address the investigation of the statistical properties of monotone systems,
even if the involved grand-partition function is not completely computable for most infinite
dimensional systems. We thus list some natural questions which could be addressed in
future investigations below.

The first one concerns the models in which the involved energy levels are degenerate.
A simple example to address is the case when the degeneracy of the energy levels is
uniform. A concrete but more complicated example is the isotropic harmonic oscillator in
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a d-dimensional environment, d > 1. Such a degeneracy is not uniform but can easily be
computed, obtaining:

ε = h̄ω
d

∑
i=1

(ni + 1/2) , ni ∈ N, i = 1, 2, . . . , d ,

g(ε) =
(

d + n− 1
n

)
, n ∈ N .

The second natural question to be addressed is the investigation of the free gas formed
of monotone particles. This is connected with the degeneracy and can be addressed either
by considering the free particles confined in a box and then “passing to the continuum”,
as in Sections 4 and 5 of [19], or by removing the harmonic potential (i.e., performing an
appropriate limit as the Hook constant changes to 0). For d = 1, the second approach
seems to be directly applicable because, as pointed out above, the energy levels are non-
degenerate, whereas the first approach already involves a non-trivial degeneracy in the
case d = 1.

The third but not least significant question is the systematic investigation of the
statistical properties of monotone systems, with particular attention given to low- and high-
density regimes. As explained above, the detailed investigation of the low-density regime
also involves the explicit computation of the asymptotics for β ↓ 0, which is connected
to Connes’ spectral action (e.g., [1]) for monotone systems and, thus, to noncommutative
geometry.

The study of the high-density regime, particularly at zero temperature (i.e., in the limit
β ↑ ∞), could explain the quantitative effect of the decimation induced by the monotone
prescription. This is simply the effect that we previously called the “monotone exclusion
principle”, that is, the analogue of the Pauli exclusion principle occurring in the case of
fermions at zero temperature.

For example, we can argue that the statistical properties of the (block-) monotone
systems might have reasonable applications to complex systems which are absorbing (or
emitting) quanta of energy. The system that we have in mind is an atom which is capturing
a photon and then passing into an excited state or even emitting, again, a photon reaching a
more stable state. Another example concerns the nuclei of fissile material (such as uranium
U92

235) in a nuclear plant which are capturing thermal neutrons and undergoing nuclear
fission. In both cases, the relevant subject might not be the absorbed particles (bosons in
the former case and fermions in the latter case) but the complex system which is absorbing
(or emitting) the energy, according to the order of the eigenvalues of its Hamiltonian. These
considerations might suggest that the block-monotone prescription has some role in the
investigation of such complex systems from a statistical point of view.

We conclude by pointing out that such a monotone exclusion principle should not
allow for the occurrence of the condensation phenomena of monotone particles in the
fundamental state. It would interesting to provide a rigorous proof of this conjecture for
the free gas of monotone particles in a d-dimensional (or, more concretely, in the euclidean
3-dimensional) space.

Author Contributions: Conceptualization, F.C., F.F. and C.M.; formal analysis, F.C., F.F. and C.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: F.C. and F.F. acknowledge the MIUR Excellence Department Project awarded
to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006, and



Entropy 2023, 25, 216 13 of 14

INDAM-GNAMPA. F.C. acknowledges the ERC Advanced Grant 669240 QUEST, “Quantum Alge-
braic Structures and Models”.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The main aim of the present work is to investigate whether particles obeying the
monotone prescription have potential physical applications. For this reason, we did not
pursue the proof of Proposition 2 in much detail in this stage. In particular, in the sketch
of the proof, we used the negativity condition of the second derivative of the ∆n(x) for
n = 2, 3, . . . and for all x > 1. Even though this property is reasonable and intuitive, it is
complex to provide analytic proof of it. For this reason, we numerically computed such a
second derivative for different values of n, reporting their plots in Figure A1.

On the other hand, while it is easy to see that ∆′n(1) =
n(n−1)

4 , in order to estimate the

last addendum in (13), we fitted ∆′′n (1)
2 with a polynomial of degree 4 in the form

p(n) = b4n4 + b3n3 + b2n2 + b1n + b0 ,

where

b0 ≈ 0, b1 ≈ 0.09028, b2 ≈ −0.13542, b3 ≈ 0.07639, b4 ≈ −0.03125 ,

with negligible errors (see Figure A2).

Figure A1. Second derivatives of ∆n(x), x > 1.

Figure A2. Fit of ∆′′n (1)
2 .
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16. Bożejko, M. Deformed Fock spaces, Hecke operators and monotone Fock space of Muraki. Dem. Math. 2012, XLV, 399–413.

[CrossRef]
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