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Abstract: As spatial correlation and heterogeneity often coincide in the data, we propose a spatial
single-index varying-coefficient model. For the model, in this paper, a robust variable selection
method based on spline estimation and exponential squared loss is offered to estimate parameters
and identify significant variables. We establish the theoretical properties under some regularity
conditions. A block coordinate descent (BCD) algorithm with the concave–convex process (CCCP) is
composed uniquely for solving algorithms. Simulations show that our methods perform well even
though observations are noisy or the estimated spatial mass matrix is inaccurate.
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1. Introduction

Spatial econometrics is one of the essential branches of econometrics. Its basic content
is to consider the spatial effects of variables in regional scientific models. The most widely
used spatial econometric model is the spatial autoregressive (SAR) model, first proposed
by [1], which has been extensively studied and applied in the fields of economy, finance,
and environment.

The SAR model is mainly a parameter model. However, in the practical applica-
tion, only the parametric model cannot fully explain the complex economic problems and
phenomena. Therefore, in order to improve the flexibility and applicability of the spatial
econometric model, the non-parametric spatial econometric model has received more atten-
tion. Ref. [2] studied the SAR model in the non-parametric frame, obtained the parameter
estimators by using the generalized moment estimation, and proved the consistency and
asymptotic property of the estimator. The instrumental variable method was used by [3]
to study semi-parametric varying-coefficient spatial panel data models with endogenous
explanatory variables.

However, for all practical purposes, data may have spatial correlation and spatial
heterogeneity simultaneously, which leads to spatial heterogeneity that cannot be fully
considered and reflected by the SAR model in the parametric form and the non-parametric
SAR model.

The single-index varying-coefficient model is a generalization of the single-index
and varying-coefficient models, which can effectively avoid the “curse of dimension” in
multidimensional non-parametric regression. Many domestic and foreign researchers
have learned this. Refs. [4,5] studied the evaluation of the single-index varying-coefficient
model. Ref. [6] constructed the empirical likelihood confidence region of the single-index
varying-coefficient model by using the empirical likelihood method; Ref. [7] proposed a
new estimated empirical likelihood ratio statistic, obtained maximum likelihood estimators
of the model parameters, and proposed a new Profile empirical likelihood ratio, which was
shown to be asymptotically close to the standard chi-square distribution.

In addition, selecting significant explanatory variables is one of the most important
problems of statistical learning. Some robust regression methods have been proposed,
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such as quantile regression, composite quantile regression, and modal regression. Ref. [8]
presented a new class of robust regression estimators methods for linear models based
on exponential square loss. The specific method is as follows: for the linear regression
model yi = XT

i β + εi, minimize ∑n
i=1

{
1− exp

(
−
(
yi − XT

i β
)2/h

)}
this objective function

to estimate the regression parameters β, in which h > 0 controls the robustness of the
estimation. For a large h, 1− exp

(
−r2/h

)
≈ r2/h. Therefore, the proposed estimation

is similar to the least squares estimation in the extreme case. For a small h, the value of
|r| is large, and the impact on the estimated value is small. Hence, a small value of h
will limit the influence of outliers on the estimation, thus improving the robustness of
estimators. Ref. [8] also pointed out that their method is more robust than the other general
robust estimators methods. Ref. [9] made a robust estimation based on exponential square
loss for some linear regression models and proposed a data driver to select adjustment
parameters. The exponential square loss square is used in data simulation, and positive
results were obtained by the method. Ref. [10] suggested a robust variable selection for
the high-dimensional single-index varying-coefficient model based on exponential square
loss, established and proved the theoretical properties of estimators, and demonstrated
the robustness of this method through numerical simulation. Ref. [11] applied exponential
square loss to conduct robust structure analysis and variable selection for some linear
variable coefficient models and obtained good results.

Inspired by the above article, we introduce the spatial position of the observed objects
into a single-index variable coefficient model, and a spatial single-index variable coeffi-
cient model is proposed. We also presented a variable selection method for the spatial
single-index varying-coefficient model based on spline estimation and the exponential loss
function. This method was capable of selecting significant predictors while estimating
regression coefficients. The following are the main contributions of this work.

1. We propose a novel model: the spatial single-index varying-coefficient model, which
can deal with the spatial correlation and spatial heterogeneity of data at the same time.

2. We construct a robust variable selection method for the spatial single-index varying-
coefficient model, which uses exponential square loss function to resist the influence
of strong noise and inaccurate spatial weight matrix. Furthermore, we present the
BCD (block coordinate descent) algorithm to solve the optimization problem of the
objective function.

3. Under reasonable assumptions, we give theoretical properties of this method. In ad-
dition, we verify the robustness and effectiveness of the variable selection method
through numerical simulation studies. The numerical study shows that the method
is more robust than other comparative methods in variable selection and parameter
estimation when outliers or noise are presented in the observations.

The rest of this paper is organized as follows. In Section 2, we develop the methodology
for variable selection with exponential squared loss and give the theoretical properties
of the proposed method in Section 3. In Section 4, we present the related algorithms.
The experimental results are carried out in Section 5, and we conclude the paper in Section 6.
All of the details of the proofs of the main theorems are collected in the Appendix A.

2. Methodology
2.1. Model Setup

Consider the following spatial single-index varying-coefficient model:

yi = ρ
n

∑
j=1

wijyj + g1

(
UT

i α
)

zi1 + g2

(
UT

i α
)

zi2 + · · ·+ gq

(
UT

i α
)

ziq + εi (1)

where yi is the response variable, zi =
(
zi1, zi2, · · · , ziq

)T is the q-dimensional of the ob-
served variable, and Ui = (Ui1, Ui2, · · · , Uim)

T is the m-dimensional spatial location pa-
rameter. The n × n matrix of the spatial weights matrix W in dimensional space is wij.
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ρ and α = (α1, α2, · · · , αm)
T are the parameters to be estimated. It is natural to suppose

that εi is independent and subject to a mean value of zero and a variance of σ2. g(·) is an
unknown function. For the identifiability of the model, it is assumed that ‖α‖ = 1 and the
first nonzero element of α is positive.

It can be seen from the model (1) that the spatial single-index varying-coefficient model
is a semi-parametric varying-coefficient model, and the unknown function g changes with
the transformation of geographical location. When ρ = 0, the model becomes the partial
linear single-index varying-coefficient model. When zi1 = 1 and g1

(
UT

i α
)
= UT

i α while the
other g(·) = 0, the model becomes the SAR model.

2.2. Basis Function Expansion

Since g(·) is unknown, we replace g(·) with its basis function approximations. The spe-
cific estimation steps are as follows:

Step 1. The initial value α0 should be given. This paper uses the method proposed
by [12]. We roughly calculate the estimated value of α by the linear regression model:

yi = UT
i α zi1 + UT

i α zi2 + · · ·+ UT
i αziq + εi

set the estimated value of α as α0, in which ‖α0‖ = 1 and the first nonzero element in α0
is positive.

Step 2. Set a 6 k1 < k2 < · · · < kl 6 b as l nodes on the interval [a, b]. By the initial
value α0, let ti = UT

i α0, then the radial basis function of degree p is

δ(ti) =
(

1, ti, t2
i , · · · , tp−1

t , |ti − k1|2p−1, |ti − k2|2p−1, · · · , |ti − kl |2p−1
)T

Suppose that the coefficient of the radial basis function is

γ1−i = (γ1−i0, γ1−i1, · · · , γ1−i(p−1), γ1−ip, · · · , γ1−i(p+l−1))
T ,

then, the sth unknown function gis(ti) ≈ δ(ti)
Tγ1−s, where i = 1, 2, · · · , n, s = 1, 2, · · · , q.

Substituting the radial basis function into model (1), we can obtain the following:

yi = ρ
n

∑
j=1

wijyj + zi1δ(ti)
Tγ1−1 + zi2δ(ti)

Tγ1−2 + · · ·+ ziqδ(ti)
Tγ1−q + εi (2)

Let Y = (y1, y2, · · · , yn)
T , γ1 =

(
γT

1−1, γT
1−2, · · · , γT

1−n
)T , D = (D1, D2, · · · , Dn)

T ,

where Di =
(

zi1δ(ti)
T , zi2δ(ti)

T , · · · , ziqδ(ti)
T
)T

, ε = (ε1, ε2, · · · , εn)
T , then the matrix

form of the model (2) is
Y = ρWY + Dγ1 + ε (3)

As can be seen from model (3), model (1) is transformed from the spatial single-index
varying-coefficient model to the classical SAR model under the fitting of the radial basis
function. The theory of the SAR model is relatively well-equipped, and the exponential
squared loss-based variable selection method for the SAR model is used to estimate the
unknown parameters.

2.3. The Penalized Robust Regression Estimator

Now, we consider the variable selection for the model (3). To guarantee the model
identifiability and to improve the model fitting accuracy and interpretability, we normally
assume that the true regression coefficient vector α∗ is sparse with only a small proportion
of nonzeros [13,14]. It is natural to employ the penalized method that simultaneously
selects important variables and estimates the values of parameters. The constructed model
is recast as follows:
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min L(γ1, ρ) =
1
n

n

∑
i=1

φγ2

(
Yi − ρỸi − Diγ1

)
+ λ

q

∑
j=1

P
(∣∣γ1−j

∣∣) (4)

where λ > 0, Ỹ = WY, ∑n
j=1 P

(∣∣γ1−j
∣∣) is a penalty term, φγ2(·) is the exponential squared

loss function: φγ2(t)=1−exp(−t2/γ2)
, in which γ2 is the tuning parameter controlling the

degree of robustness.
Concerning the choice of the penalty term. The lasso or adaptive lasso penalty could be

considered if there is no extra structured information. Assume that γ̂1 is a root-n-consistent
estimator for γ1, for instance, the naive least square estimator γ̂1(ols). Define the weight
vector η ∈ Rp with ηj = 1/

∣∣γ̂1−j
∣∣r(j = 1, . . . , q), r > 0, and then we set r = 1 in this paper

as suggested by [15]. An adaptive lasso penalty is described as

q

∑
j=1

P
(∣∣γ1−j

∣∣) = q

∑
j=1

ηj
∣∣γ1−j

∣∣. (5)

The objective function of penalized robust regression that consists of exponential
squared loss and an adaptive lasso penalty is formulated as

min L(γ1, ρ) =
1
n

n

∑
i=1

φγ2

(
Yi − ρỸi − Diγ1

)
+ λ

q

∑
j=1

ηj
∣∣γ1−j

∣∣ (6)

The selection of tuning parameter γ2 and regularization parameter λ is discussed in
Section 4.

2.4. Estimation of the Variance of the Noise

Set H = (In − ρW)−1, then the variance of the noise is estimated as

σ̂2 =
1
n
(Y− HDγ1)

T
(

HHT
)−1

(y− HDγ1), (7)

where ρ and γ1 could be estimated by the solutions of (6). It is pointed out that H is a non-
singular matrix, then

(
HHT)−1

=
(

HT)−1H−1 = (In − ρW)T(In − ρW). Let u = HDγ1,
then u = HDγ1 = (In − ρW)−1(Dγ1) and then σ̂2 defined by (7) can be computed by

σ̂2 =
1
n
‖(In − ρW)(Y− u)‖2

2 (8)

3. Theoretical Properties

To discuss the theoretical properties, let the parameters θ =
(
ρ, γT

1
)T , with θ0, α0

and g0(·), be the true values of θ, α and g(·). It is generally assumed that αl0 = 0, l =
s + 1, . . . , p, and αl0, l = 1, . . . , s, are all nonzero parts of α0. Moreover, we assume that
gj0 = 0, j = d + 1, . . . , q, and gj0, j = 1, . . . , d are all nonzero parts of g(·). Set φ =

(α2, α3, · · · , αm)
T , α(φ) =

(√
1− ‖φ‖2, φT

)T
; the real parameters of φ0 satisfy ‖φ0‖ < 1.

Hence, αϕ is differentiable within the neighborhood of φ0, and the Jacobian matrix is

Jφ =

(
−
(
1− ‖φ‖2)−1/2

φT

Im−1

)
(9)

Assumption:

(C1) The density function f (t) of Uα is uniformly bounded on T = {t = Uα} and far from
0. Furthermore, f (t) is assumed to satisfy the Lipschitz condition of order 1 on T.

(C2) The function gj(t), j = 1, . . . , q, has bounded and continuous derivatives up to order
r(≥ 2) on T, where gj(t) is the jth components of g(t).
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(C3) E
(∥∥U6

∥∥) < ∞, E
(∥∥Z6

∥∥) < ∞ and E
(
|ε|6
)
< ∞.

(C4) {(yi, Ui, zi), 1 6 i 6 n} is a strictly stationary and strongly mixing sequence with coef-
ficient γ(n) = O(ξn), where 0 < ξ < 1.

(C5) Let c1, . . . , cK be the interior knots of [a, b], where a = inf{t : t ∈ T}, b = sup{t : t ∈ T}.
Moreover, we set c0 = a, cK+1 = b, hi = ci − ci−1, h = max{hi}. Then, a positive
constant C0 exists such that

h
min{hi}

< C0, max{hi+1 − hi} = o
(

K−1
)

.

(C6) Let bn = maxj
{
| p̈j
(∣∣γ1−j0

∣∣)∣∣ : γ1−j0 6= 0} and then bn → 0 as n → ∞. Further, let
limn→ inf∞
lim|γ1−j|→ inf0 λ−1

j

∣∣ ṗj
(∣∣γ1−j

∣∣)∣∣ > 0, where j = d + 1, . . . , q.

(C7) H(ρ) = (In − ρW)−1 is a nonsingular matrix, invertible for any ρ ∈ Θ, Θ is a com-
pact parameter space, and the absolute row and column sums of H(ρ), H(ρ)−1 are
uniformly bounded on ρ ∈ Θ;

(C8) Let

I(φ, γ1; γ2) =
2

γ2

∫
G(φ)GT(φ)e−r2/γ2

(
2r2

γ2
− 1
)

dF(G, y)

where r = Y − (In − ρW)−1D(φ)γ1 = Y − G(φ)γ1, G(φ) = (In − ρW)−1D(φ). Sup-
pose that I(φ, γ1; γ2) is negative definite.

(C9) Σ = E
(
GGT) is positive definite.

Under the above preparations, we give the following sampling properties for our
proposed estimators. The following theorem presents the consistency of the penalized
exponential squared loss estimators.

Theorem 1. Assume that conditions C1 ∼ C9 hold and the number of knots K = O
(

n1/(2r+1)
)

.
Further, we suppose that γ2−n − γ2−0 = op(1) for some γ2−0 > 0 and I(φ0, γ1−0; γ2−0) is
negative definite. Then,

(i) ‖α− α0‖ = Op

(
n−1/(2r+1) + an

)
;

(ii)
∥∥ĝj(·)− gj0(·)

∥∥ = Op

(
n−r/(2r+1) + an

)
, for j = 1, . . . , q,

where an = maxj
{
| ṗj
(∣∣γ1−j0

∣∣)∣∣ : γ1−j0 6= 0}, r is defined in condition (C2), and ṗλ(·) represents
the first order derivative of pλ(·).

In addition, we have proved that when some suitable conditions hold, the consistent
estimation must be sparse, as described below.

Theorem 2. Suppose that conditions C1 ∼ C9 hold, and the number of knots K = O
(

n1/(2r+1)
)

.

We assume that
√

nan = Op(1) and
√

n(γ2−n − γ2−0) = op(1). Let

λj(max) → 0, nr/(2r+1)λj(min) → ∞(n→ ∞).

Then, with probability approaching 1, α̂ and ĝ(·) satisfy

(i) α̂l = 0, l = s + 1, . . . , p;
(ii) ĝj(·) = 0, j = d + 1, . . . , q.

We then show that the estimators of nonzero coefficients for the parameter components
have the same asymptotic distribution as the estimators based on the correct submodel. Set

α∗ = (α1, . . . , αs)
T , g∗(t) =

(
gT

1 (t), . . . , gT
d (t)

)T
,
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and let α∗0 and g∗0(t) be true values of α∗ and g∗, respectively. Corresponding covariates are

denoted by U∗i and Z∗i , i = 1, . . . , n. Furthermore, let Σ2 = cov
(

exp
(
−r2/γ2−0

) 2r
γ2−0

Gi1

)
,

Σ1 = diag
{

p̈λ1

(∣∣γ∗1−01

∣∣), . . . , p̈λd

(∣∣γ∗1−0d

∣∣)},

∆ =
(

ṗλ1

(∣∣γ∗1−01

∣∣) sign
(
γ∗1−01

)
, . . . , ṗλd

(∣∣γ∗1−01

∣∣) sign
(
γ∗1−01

))T ,

I1
(
φ∗01, γ∗1−01; γ2−0

)
= 2

γ2−0
E
[
exp

(
−r2/γ2−0

)( 2r2

γ2−0
− 1
)](

EGi1GT
i1
)
.

The following result presents the asymptotic properties of α̂∗.

Theorem 3. If the assumptions of Theorem 2 hold, we have

√
n
(

I1
(
φ∗01, γ∗1−01; γ2−0

)
+ Σ1

){
α̂∗ − α∗0 +

(
I1
(
φ∗01, γ∗1−01; γ2−0

)−1∆
}

L→ N
(

0, Jφ∗0
Σ2 JT

φ∗0

)
where ‘ L→’ represents the convergence in distribution.

Theorems 1 and 2 show that the proposed variable selection procedure is consistent,
and Theorems 1 and 3 show that the penalized estimators have the oracle property. This
demonstrates that if the subset of true zero coefficients are known, the penalty estimators
perform well.

4. Algorithm

In this section, we talk about a feasible algorithm for the solution of (6). A data-driven
procedure for γ2 and a simple selection method for λ are considered. Moreover, effective
optimization algorithms have been composed to solve non-convex and non-differentiable
objective functions.

4.1. Choice of the Tuning Parameter γ2

The tuning parameter γ2 controls the level of robustness and performance of the
proposed robust regression estimators. Ref. [16] propose a data-driven procedure to choose
γ2 for ordinary regression. We follow its steps and apply it to the spatial single-index
varying-coefficient model. Firstly, a set of tuning parameters is determined to ensure that
the proposed penalized robust estimators have an asymptotic breakdown point at 1/2.
Then, the tuning parameter is selected with the maximum efficiency.

The whole procedures are presented as follows:
Step 1. Initialize ρ̂ = ρ(0) and γ̂1 = γ

(0)
1 . Set ρ(0) = 1

2 , γ
(0)
1 a robust estimator.

The model Y = ρWY + Dγ1 + ε can be recasted as Y∗ = Dγ1 + ε, where Y∗ = Y− ρWY.
Step 2. Find the pseudo outlier set of the sample:
Let An =

{(
D1, Y∗1

)
, . . . , (Dn, Y∗n )

}
. Calculate ri(γ̂1) = Y∗i − Diγ̂1, i = 1, . . . , n and

Sn = 1.4826×mediani | ri(γ̂1) −medianj
(
rj(γ̂1)

)
|. Then, take the pseudo outlier set

Am = {(Di, Yi) : |ri(γ̂1)| ≥ 2.5Sn}, set m = ]{1 ≤ i ≤ n : |ri(γ̂1)| ≥ 2.5Sn}, and An−m =
An/Am.

Step 3. Select the tuning parameter γ2−n: construct V̂(γ2) = { Î(γ̂1)}−1Σ̃2{ Î(γ̂1)}−1,
in which

Î(γ̂1) =
2

γ2

{
1
n

n

∑
i=1

exp
(
−r2

i (γ̂1)/γ2

)(2ri(γ̂1)

γ2
− 1
)}
·
(

1
n

n

∑
i=1

DiDT
i

)

Σ̃2 = Cov
{

exp
(
−r2

1(γ̂1)/γ2

)2r1(γ̂1)

γ2
D1, . . . , exp

(
−r2

n(γ̂1)/γ2

)2rn(γ̂1)

γ2
Dn

}
.

Let γ2−n be the minimizer of det(V̂(γ2)) in the set G = {γ2 : ζ(γ2) ∈ (0, 1]}, where
ζ(·) has the same definition in [8] and det(·) means the determinant operator.

Step 4. Update ρ̂ and γ̂1 as the optimal solution of min ∑n
i=1 φγ2

(
Yi − ρỸi − Diγ1

)
,

where Ỹ = WY. Repeat step 2 to step 4 until convergence.
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It is noted that an initial robust estimator γ
(0)
1 is needed in the initial step above.

In practice, we make the estimator of the LAD loss as the initial estimator. In this sense,
the selection of γ2 does not depend on λ basically. Meanwhile, one could also select the
two parameters γ2 and λ jointly by cross-validation as discussed in [8]. Nevertheless, this
approach needs huge computation. Moreover, the candidate interval of γ2 is {γ2 : ζ(γ2) ∈
(0, 1]}. Practically, we find the threshold of γ2−1 subject to ζ(γ2−1) = 1. The choice of γ2 is
usually located in the interval of [5γ2−1, 30γ2−1].

4.2. Choice of the Regularization Parameter λ and ηj

With regard to the choice of the regularization parameter λ and ηj in (6), as the
parameter λ can be unified with ηj, we set λj = λ · ηj. Generally, many methods can
be applied to select λj, such as AIC, BIC, and cross-validation. To ensure that variable
selection is consistent and that the intensive computation can be reduced, we propose the
regularization parameter by minimizing a BIC-type objective function as [16]:

n

∑
i=1

[
1− exp

{
−(Y∗i − Diγ1)

2 /γ2−n

}]
+ n

q

∑
j=1

λj
∣∣γ1−j

∣∣− q

∑
j=1

log
(
0.5nλj

)
log(n) (10)

where Y∗i = Yi − ρWnYi. This results in λj =
log(n)

n|γ1−j| . γ1−j can be easily estimated by the

unpenalized exponential squares loss estimator γ̃1−j, where the parameter value of γ2
has been estimated as described in Section 4.1. Note that this simple choice satisfies the
conditions

√
nλ̂j → 0 for j ≤ d and

√
nλ̂j → ∞ for j > d, with d the number of nonzeros in

the true value of γ1. Thus, the consistent variable selection is ensured by the final estimator.

4.3. Block Coordinate Descent (BCD) Algorithm

We seek to compose an effective algorithm to solve the objective function (6). Finding
an effective algorithm is difficult because the optimization problem is non-convex and non-
differentiable. We embark on using the BCD algorithm proposed by [17] and then overcome
the above challenges. The BCD algorithm framework is shown in Algorithm 1 specifically.

Algorithm 1 The block coordinate descent (BCD) algorithm

1. Set initial value for γ0
1 ∈ Rp and ρ0 ∈ (0, 1);

2. repeat for k = 0, 1, 2, . . .
3. Solve the subproblem about ρ with initial point ρk:

ρk+1 ← min
ρ∈[0,1]

L
(

γk
1, ρ
)

(11)

4. Solve the subproblem with initial value γk
1,

min
γ1∈Rq

L
(

γ1, ρk+1
)

(12)

to get a solution γk+1
1 , ensuring that L

(
γk

1, ρk+1
)
− L

(
γk+1

1 , ρk+1
)
≤ 0, and γk+1

1 is a

stationary point of L
(

γ1, ρk+1
)

.

5. until convergence.
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4.4. DC Decomposition and CCCP Algorithm

An elemental observation for problem (12) is that the exponential squared loss function
is a DC function, and the lasso or the adaptive lasso penalty function is convex. As a result,
problem (12) is a DC programming. It can be solved by the following algorithms.

We first analyze whether the exponential squared loss function φγ2(t) can be denoted
as the difference of two convex functions:

φγ2(t) := [φγ2(t) + v(t)]− v(t) := u(t)− v(t) (13)

where φγ2(t) = 1− e−
t2
γ2 , v(t) = 1

3γ2
2
t4, u(t) = φγ2(t) + v(t).

Set

Jvex(γ1) =
1
n ∑n

i=1 u
(

Yi − ρk〈wi, Y〉 − Diγ1

)
+ λ ∑

q
j=1 P

(∣∣γ1−j
∣∣)

Jcav(γ1) =
1
n ∑n

i=1 v
(

Yi − ρk〈wi, Y〉 − Diγ1

) (14)

in which u(·), v(·) is defined in (13), wi is in the ith row of the weight matrix W, and
∑

q
j=1 P

(∣∣γ1−j
∣∣) a convex penalty with regard to γ1 . Then, Jvex (·) and Jcav (·) are convex

and concave functions, respectively. Subproblem (12) is recast as follows:

min
γ1∈Rn

L
(

γ1, ρk
)
= Jvex(γ1) + Jcav(γ1), (15)

Furthermore, it can be solved by the concave–convex procedure algorithm structure
proposed by [18] as shown in Algorithm 2.

Algorithm 2 The Concave–Convex Procedure

1. Initialize γ0
1. Set k = 0.

2. repeat for k = 0, 1, 2, . . .
3.

γk+1
1 = argminγ1

Jvex(γ1) + J′cav

(
γk

1

)
· γ1 (16)

4. until convergence of γk
1.

We focus on the lasso and the adaptive lasso penalty. Since J′cav

(
γk

1

)
· γ1 is linear to

γ1, according to the definition in (15), the objective function of (16) can be expressed as

min
γ1∈Rq

ψ(γ1) + λ
q

∑
i=1

P(|γ1−i|), (17)

where ψ(γ1) is a convex and continuously differentiable function, ∑
q
i=1 P(|γ1−i|) is the

lasso penalty, ∑
q
i=1|γ1−i|, or the more general adaptive lasso penalty: ∑

q
i=1 ηi|γ1−i|, ηi ≥

0, i = 1, . . . , q. Therefore, we can refer to an efficient algorithm ISTA and FISTA proposed
by [19] to solve the model with a framework (17) for the lasso penalty. The iterative steps
of ISTA is simply γk

1 = ΘL

(
γk−1

1

)
, where L is the unknown Lipschitz constant. FISTA is

an accelerated version of ISTA that has been shown to have a better convergence rate in
theory and practice, proven by [19]. Ref. [17] extended it to solve the model by adaptive
lasso penalty and can ensure numerical efficiency.

Now consider solving subproblem (11) to update ρk. Since problem (11) minimizes a
function of univariate variable, we employ the classical golden section search algorithm
based on parabolic interpolation (see [20] for details).

In accordance with Beck and Teboulle, the value of the iterative function generated by
FISTA for solving the subproblem (16) of CCCP converges to the optimal function value at
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the speed of O
(
1/k2), with an iteration step of k. The ordinary termination criterion of ISTA

and FISTA is ‖γk
1−γk−1

1 ‖
max{‖γk

1‖,1} ≤ tolγ1 , where tolγ1 is a tolerance approaching zero and greater

than zero. Under the criterion of either
∥∥∥γk

1 − γk−1
1

∥∥∥ ≤ ε1, or
∥∥∥L
(

γk
1

)
− L

(
γk+1

1

)∥∥∥ ≤ ε2,
Algorithm 1 terminates. Therefore, to obtain an optimal solution of ε, the required iterations
of the FISTA algorithm are O(1/

√
ε) and the gradient ∇ψ(γ1) of (17) is computed for

each iteration. Suppose that the BCD algorithm converges with a specified number of
iterations and the CCCP algorithm terminates at most m times in each iteration. Since
O(np) computation is needed to calculate the gradient ∇ψ(γ1), the total computational
complexity is O(mnp/

√
ε).

5. Simulation Studied

In this section, we conduct numerical studies to illustrate the performance of the
proposed method, including the cases of normal data and noisy data.

5.1. Simulation Sampling

The data is generated from model (1). We set α =
(
α1, α2, 0q

)T , where (α1, α2) generates
from a 2-dimensional normal distribution of the mean vector (0.6, 0.8) and covariance
matrix 0.01 · I2, with I2 the unit matrix ∈ R2×2, 0q is the zero vector of q dimension. Set the
sample size n ∈ {25, 144, 324}, and spatial coefficient ρ is generated by uniform distribution
on interval [ρ1 − 0.1, ρ1 + 0.1], where ρ1 ∈ {0.8, 0.5, 0.2}. For comparison’s sake, we also
consider ρ = 0, which means that there is no spatial dependency, and model (1) changes
into the normal single-index varying-coefficient model.

The variable Yn follows ε ∼ N
(
0, σ2 In

)
, in which σ2 is generated from a uniform

distribution by σ1 ∈ {1, 2} on interval [σ1 − 0.1, σ1 + 0.1]. We also consider the case when
there are outliers in the response. The error term follows a mixed normal distribution
(1− δ1) · N (0, 1) + δ1 · N

(
10, 62), where δ1 ∈ {0.01, 0.05}. zij is independent and randomly

taken from the normal distribution N(0, 1), and the space weight matrix Wn = IR ⊗
Bm, where Bm = (1/(m− 1))

(
1m · 1T

m − Im
)
, ⊗ is a Kronecker product, and 1m is the m-

dimensional column vector of ones. We take different values of m = 2 and R, where
R = 20,100.

Moreover, we construct the spatial location information, where two-dimensional plane
coordinates are used in this paper. Take a square to simulate the geographical area object, set
the end point of the lower left corner of the square as the origin, and establish a rectangular
coordinate system along the horizontal and vertical directions. Each side is divided into
h− 1 equal points, and corresponding equal points are connected along the horizontal and
vertical axes to form h ∗ h crossing points (including the equal points of each square side).
Each crossing point is the geographical location point. Set sampling capacity n = h2; then,
the geographical location coordinate Ui = (ui1, ui2, . . . , uiq)

T is expressed as:

Ui = (0.5mod(i− 1, h), 0.5 f loor(i− 1, h), 0, . . . , 0)T

where mod and floor are the representations of built-in functions in MATLAB, mod(i− 1, h)
represents the remainder of i− 1 divided by h, and f loor(i− 1, h) represents the integer
part of the quotient of i− 1 divided by h. We set

g(t) =
(

g1(t), . . . , gq(t)
)T

= (sin(t), 3t2,
1
6

t, 0, . . . , 0)T

The true surface of the three coefficient functions is shown in Figure 1.
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(a) Surface of g1 (b) Surface of g2 (c) Surface of g3

Figure 1. Real surfaces of coefficient functions.

Another important problem of the spatial single-index varying-coefficient model is
the estimation of weight matrix W. Since W ∈ Rn×n is composed of the correlation of every
two observations, it is usually difficult to obtain an accurate estimation of the weight matrix
W in practical applications. In order to confirm the effect of inaccurate estimation of the
matrix W, we randomly remove 30%, 50%, and 80% non-zero weights from each row of the
true weight matrix W, respectively.

For each case of the simulation experiment, all of the results shown below are averaged
over 100 replications to avoid unintended effects. We adopt the node selection method
proposed by [12], with step = 10 and the number of radial basis functions p = 3.

5.2. Simulation Results

The evaluation of simulation results is shown as follows. We use the median of
squared error (MedSE) proposed by [21]. It is defined as ‖α− α̂‖2 in this paper, where

‖α‖ =
√

∑n
i=1 α2

i , α = (α1, . . . , αn), α̂ is the estimator of α. The square root of mean
deviation (MAISE) is used as the evaluation index for the unknown function. Specifically,

MAISE = mcn−1 ∑mcn
i=1

√
n−1 ∑n

j=1(gt(Uα)− δ(Uα̂)T ˆγ1−t)
2, t = 1, 2, · · · , q, where mcn

represents the total simulation times of the model, and t represents the tth unknown
function of the model, gt(·). The smaller the value of each index, the higher the accuracy of
parameter estimation and the better fitting effect of the unknown function.

Table 1 illustrates the results of the estimated coefficient by the spatial single-index
varying-coefficient model with q = 5, the null penalty term, and Gaussian noise in y, where
“E”, “S”, and ”L” indicate the exponential squared loss, the square loss, and the LAD loss,
respectively. It is shown that both of the three loss functions bring nonzero estimates of
α1 and α2, which are close to the true values (the mean of the true values of α1 and α2 are
0.6, 0.8 resp.). Comparatively, the model with the square loss produces the most accurate
estimation. As the sample size increases, all three loss functions bring an accurate estimate
of α and σ2.

Table 2 presents the results of the estimated coefficient by the spatial single-index
varying-coefficient model when the dimension is comparatively close to the sample size.
Similar results in Table 1 have been observed, except for q = 5. As the sample size is not
enough compared with the dimension, these results are as expected.
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Table 1. Estimation with no regularizer on normal data (q = 5).

n = 25, q = 5 n = 144, q = 5 n = 324, q = 5

E+null S+null L+null E+null S+null L+null E+null S+null L+null

ρ1 = 0.8, σ1 = 1
α1 0.80 0.61 0.83 0.50 0.66 0.28 0.53 0.62 0.67
α2 0.88 0.61 0.75 0.78 0.77 0.66 0.74 0.79 0.96
ρ̂ 0.80 0.94 0.75 0.90 0.80 0.91 0.88 0.89 0.84

σ̂2 0.45 0.78 0.82 0.79 0.72 0.70 0.86 0.71 0.80
MedSE 0.28 0.44 0.70 0.22 0.23 0.42 0.17 0.16 0.19

ρ1 = 0.5, σ1 = 1
α1 0.69 0.65 0.64 0.49 0.66 0.28 0.53 0.63 0.67
α2 0.82 0.61 0.88 0.78 0.76 0.72 0.74 0.80 0.96
ρ̂ 0.52 0.61 0.50 0.68 0.40 0.74 0.62 0.65 0.55

σ̂2 0.44 0.82 0.71 0.83 0.71 0.74 0.89 0.73 0.82
MedSE 0.22 0.45 0.77 0.22 0.23 0.41 0.17 0.16 0.19

ρ1 = 0.2, σ1 = 1
α1 0.67 0.66 0.57 0.51 0.65 0.32 0.53 0.65 0.65
α2 0.81 0.59 0.96 0.80 0.75 0.72 0.76 0.81 0.98
ρ̂ 0.14 0.00 0.27 0.33 0.00 0.50 0.19 0.26 0.16

σ̂2 0.44 0.82 0.68 0.87 0.70 0.78 0.91 0.76 0.84
MedSE 0.23 0.49 0.72 0.21 0.23 0.41 0.17 0.16 0.22

ρ1 = 0, σ1 = 1
α1 0.68 0.66 0.61 0.51 0.66 0.32 0.53 0.65 0.65
α2 0.81 0.60 0.95 0.81 0.73 0.70 0.76 0.81 0.98
ρ̂ 0.00 0.00 0.22 0.19 0.00 0.36 0.03 0.11 0.04

σ̂2 0.44 0.83 0.69 0.88 0.72 0.79 0.91 0.76 0.84
MedSE 0.22 0.47 0.70 0.21 0.25 0.39 0.16 0.16 0.22

ρ1 = 0.8, σ1 = 2
α1 0.73 0.77 1.37 0.41 0.79 0.34 0.58 0.63 0.42
α2 0.74 0.27 0.64 0.66 0.65 0.55 0.69 0.68 0.96
ρ̂ 0.86 0.98 0.62 0.95 0.83 0.97 0.93 0.94 0.90

σ̂2 1.83 3.26 5.78 3.20 3.08 2.68 3.53 2.89 3.25
MedSE 0.46 1.00 1.95 0.49 0.52 0.90 0.38 0.33 0.48

ρ1 = 0.5, σ1 = 2
α1 0.72 0.79 0.66 0.43 0.78 0.23 0.59 0.65 0.42
α2 0.74 0.32 0.90 0.68 0.68 0.54 0.72 0.70 1.01
ρ̂ 0.58 0.68 0.50 0.77 0.29 0.86 0.70 0.74 0.62

σ̂2 1.87 3.49 3.05 3.44 3.03 3.00 3.74 3.08 3.45
MedSE 0.46 0.98 1.59 0.48 0.48 0.95 0.38 0.32 0.48

ρ1 = 0.2, σ1 = 2
α1 0.76 0.77 0.53 0.46 0.78 0.19 0.60 0.68 0.46
α2 0.76 0.35 1.06 0.72 0.65 0.65 0.75 0.72 1.01
ρ̂ 0.14 0.00 0.39 0.39 0.00 0.61 0.21 0.32 0.23

σ̂2 1.88 3.52 3.00 3.68 2.99 3.19 3.88 3.24 3.57
MedSE 0.45 0.97 1.51 0.46 0.50 0.84 0.36 0.32 0.48

ρ1 = 0, σ1 = 2
α1 0.77 0.78 0.57 0.47 0.79 0.23 0.59 0.68 0.47
α2 0.77 0.34 1.07 0.72 0.64 0.55 0.76 0.72 1.04
ρ̂ 0.00 0.00 0.31 0.23 0.00 0.52 0.01 0.14 0.07

σ̂2 1.88 3.54 3.04 3.74 3.09 3.32 3.90 3.26 3.60
MedSE 0.45 0.97 1.50 0.46 0.52 0.89 0.35 0.33 0.48
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Table 2. Estimation with no regularizer on normal data when the dimension is close to the sample size.

n = 25, q = 20 n = 144, q = 80 n = 324, q = 200

E+null S+null L+null E+null S+null L+null E+null S+null L+null

ρ1 = 0.8, σ1 = 1
α1 0.74 0.39 0.24 0.04 0.49 −0.21 0.78 0.72 0.62
α2 0.67 0.18 2.81 1.05 0.88 2.15 0.86 0.86 0.71
ρ̂ 0.84 0.93 0.50 0.54 0.80 0.50 0.80 0.80 0.50

σ̂2 0.18 0.53 3.54 0.30 0.26 1.00 0.37 0.41 1.68
MedSE 2.79 2.20 7.92 2.78 1.72 4.56 1.44 1.66 2.21

ρ1 = 0.5, σ1 = 1
α1 0.72 0.39 0.10 0.19 0.49 0.06 0.75 0.68 0.56
α2 0.65 0.27 1.76 0.94 0.83 1.68 0.84 0.84 0.65
ρ̂ 0.61 0.66 0.50 0.46 0.54 0.50 0.52 0.53 0.50

σ̂2 0.17 0.56 0.44 0.23 0.24 0.47 0.36 0.40 0.72
MedSE 2.87 2.04 3.30 1.57 1.71 2.43 1.40 1.60 1.62

ρ1 = 0.2, σ1 = 1
α1 0.70 0.37 0.08 0.17 0.50 0.24 0.75 0.67 0.55
α2 0.64 0.40 1.45 0.93 0.79 1.60 0.84 0.85 0.60
ρ̂ 0.45 0.04 0.50 0.00 0.31 0.50 0.13 0.19 0.50

σ̂2 0.18 0.57 0.22 0.22 0.24 0.50 0.36 0.40 0.73
MedSE 3.16 1.71 2.40 1.59 1.82 2.50 1.41 1.59 1.64

ρ1 = 0, σ1 = 1
α1 0.71 0.37 0.06 0.20 0.50 0.26 0.75 0.68 0.61
α2 0.64 0.38 1.47 0.94 0.80 1.60 0.84 0.85 0.62
ρ̂ 0.35 0.00 0.50 0.00 0.16 0.50 0.00 0.04 0.50

σ̂2 0.18 0.57 0.21 0.23 0.24 0.52 0.36 0.40 0.77
MedSE 3.19 1.76 2.42 1.57 1.81 2.62 1.41 1.60 1.84

ρ1 = 0.8, σ1 = 2
α1 0.58 0.08 −0.47 −1.05 0.29 −1.22 0.78 0.68 0.54
α2 0.45 −0.57 2.66 1.31 0.87 3.60 0.91 0.71 0.72
ρ̂ 0.77 0.97 0.50 0.61 0.81 0.50 0.84 0.87 0.50

σ̂2 4.18 2.27 12.43 2.20 1.06 4.13 1.63 1.63 6.24
MedSE 8.37 4.41 9.85 5.68 3.59 9.27 2.97 3.24 4.38

ρ1 = 0.5, σ1 = 2
α1 0.63 0.11 −0.38 −0.43 0.33 −0.45 0.75 0.68 0.57
α2 1.23 −0.23 2.89 1.28 0.78 2.71 0.93 0.71 0.62
ρ̂ 0.64 0.60 0.50 0.47 0.59 0.50 0.60 0.61 0.50

σ̂2 2.33 2.44 1.88 1.76 1.00 2.03 1.73 1.68 3.08
MedSE 5.36 3.80 6.83 4.34 3.55 5.02 2.97 3.26 3.35

ρ1 = 0.2, σ1 = 2
α1 0.65 0.13 −0.81 −0.15 0.36 −0.17 0.75 0.69 0.65
α2 1.14 −0.04 2.37 0.88 0.74 2.48 0.96 0.72 0.51
ρ̂ 0.37 0.00 0.50 0.00 0.31 0.50 0.26 0.22 0.50

σ̂2 1.89 2.43 0.95 1.95 1.03 2.01 1.91 1.72 3.17
MedSE 5.12 3.43 5.01 3.42 3.66 4.81 3.07 3.30 3.32

ρ1 = 0, σ1 = 2
α1 0.64 0.12 −0.80 −0.10 0.35 −0.14 0.76 0.70 0.64
α2 0.58 −0.18 2.23 0.88 0.76 2.47 0.93 0.72 0.53
ρ̂ 0.21 0.00 0.50 0.00 0.15 0.50 0.01 0.01 0.50

σ̂2 0.78 2.46 0.97 2.09 1.03 2.07 1.73 1.71 3.24
MedSE 5.91 3.72 4.90 3.42 3.64 4.90 2.98 3.30 3.40

Table 3 illustrates the results of the model when the observations of y have outliers.
Compared with the square loss model and LAD loss model, the model with exponential
square loss shows advantages in parameter estimation in terms of MedSE, especially when
the sample size is large.

We list the results of the estimated coefficients with inaccurate weight matrix W in
Table 4. Compared with the results with normal data (Table 1), the MedSE values increase,
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and the estimations of ρ̂ and σ̂2 become worse for each loss functions in total. Particularly,
for removing a certain part (30%, 50%, and 80%) of nonzero weights of the matrix W, MedSE
increases as the moving nonzeros increase and decreases as the sample size n increases for
each of the three loss functions. The exponential squared loss has the lowest MedSE among
the three loss functions.

Table 3. Estimation with no regularizer when the observations of y have outliers.

n = 25, q = 5 n = 144, q = 5 n = 324, q = 5

E+null S+null L+null E+null S+null L+null E+null S+null L+null

ρ1 = 0.5, σ1 =1, δ1 = 0.01
α1 0.71 0.70 0.59 0.52 0.53 0.54 0.52 0.60 0.42
α2 0.49 0.76 1.20 0.73 0.94 0.86 0.72 0.66 1.14
ρ̂ 0.45 0.64 0.50 0.67 0.54 0.51 0.59 0.49 0.55

σ̂2 0.80 0.82 0.73 0.87 0.86 0.98 1.02 1.09 0.91
MedSE 0.46 0.34 0.51 0.30 0.25 0.21 0.18 0.22 0.35

ρ1 = 0.5, σ1 = 2, δ1 = 0.01
α1 1.06 0.69 0.64 0.45 0.40 0.45 0.59 0.61 0.35
α2 0.14 0.86 1.58 0.62 1.28 0.80 0.71 0.54 1.38
ρ̂ 0.48 0.69 0.66 0.76 0.59 0.70 0.67 0.52 0.63

σ̂2 3.84 3.24 2.82 3.72 3.48 3.98 4.21 4.46 3.79
MedSE 1.52 0.70 1.07 0.55 0.63 0.56 0.39 0.40 0.67

ρ1 = 0.5, σ1 = 1, δ1 = 0.05
α1 0.88 1.01 0.67 0.57 0.74 0.39 0.42 0.58 0.58
α2 0.43 0.72 1.01 0.56 0.78 1.00 0.65 0.51 1.05
ρ̂ 0.60 0.75 0.50 0.75 0.85 0.60 0.67 0.74 0.65

σ̂2 2.64 3.72 4.32 3.75 3.02 4.44 4.04 4.64 3.83
MedSE 0.67 0.59 1.07 0.73 0.45 0.47 0.35 0.48 0.28

ρ1 = 0.5, σ1 = 2, δ1 = 0.05
α1 1.09 1.00 0.74 0.56 0.61 0.61 0.48 0.61 0.41
α2 0.23 0.83 1.58 0.43 1.13 0.73 0.64 0.40 1.42
ρ̂ 0.39 0.76 0.50 0.77 0.82 0.50 0.69 0.69 0.64

σ̂2 5.02 6.17 6.23 6.13 5.67 7.62 7.08 7.94 6.33
MedSE 0.98 0.83 1.61 0.87 0.59 0.72 0.46 0.64 0.67

Table 4. Estimation with no regularizer with noisy weighting matrix w.

n = 25, q = 5 n = 144, q = 5 n = 324, q = 5

E+null S+null L+null E+null S+null L+null E+null S+null L+null

Remove 30% nonzero weights
α1 0.59 0.58 0.17 0.43 0.32 0.47 0.55 0.65 0.46
α2 0.59 0.97 1.63 0.82 0.80 0.97 0.73 0.78 1.12
ρ̂ 0.61 0.55 0.52 0.70 0.57 0.50 0.65 0.54 0.53

σ̂2 1.05 1.13 0.99 1.08 1.08 1.03 1.14 1.09 1.22
MedSE 0.48 0.45 1.10 0.35 0.33 0.49 0.20 0.25 0.25

Remove 50% nonzero weights
α1 0.67 0.57 0.16 0.44 0.30 0.31 0.52 0.66 0.54
α2 0.61 0.90 1.48 0.73 0.81 1.15 0.74 0.79 1.10
ρ̂ 0.54 0.48 0.50 0.64 0.49 0.41 0.57 0.49 0.49

σ̂2 1.07 1.17 0.97 1.11 1.11 1.09 1.18 1.12 1.25
MedSE 0.41 0.26 1.12 0.34 0.37 0.64 0.19 0.27 0.31

Remove 80% nonzero weights
α1 0.68 0.63 0.26 0.46 0.33 0.24 0.58 0.70 0.48
α2 0.59 0.94 1.29 0.71 0.82 1.31 0.77 0.78 1.19
ρ̂ 0.40 0.34 0.51 0.52 0.34 0.37 0.42 0.33 0.36

σ̂2 1.15 1.30 0.96 1.26 1.24 1.14 1.34 1.26 1.40
MedSE 0.50 0.40 0.89 0.40 0.40 0.78 0.20 0.29 0.33
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Correspondingly, Tables 5–8 show the variable selection results compared with other
loss functions. The average number of zero coefficients that are correctly chosen is labeled
as “Correct”. The label “Incorrect” depicts the average number of nonzero coefficients
incorrectly identified as zero. “˜̀1”, “l1”, and “null” express the adaptive lasso penalty,
the lasso penalty, and without penalty term, respectively.

Table 5 shows the variable section results of the lasso and the adaptive lasso regularizer
on normal data with q = 5. In almost all of the tested cases, the model with the exponential
squared loss and the lasso penalty or the adaptive lasso penalty (i.e., E+ l1, E+ ˜̀1) identifies
more numbers of true zero coefficients (“‘Correct”) and much lower MedSE.

Table 5. Variable section with regularizer on normal data (q = 5), E: the exponential loss; S: the
square loss; L: the LAD loss; l1: the lasso penalty; and ˜̀1: the adaptive lasso penalty.

n = 25, q = 5 n = 324, q = 5

E+ l1 E+ ˜̀1 S+ l1 S+ ˜̀1 L+ l1 L+ ˜̀1 E+ l1 E+ ˜̀1 S+ l1 S+ ˜̀1 L+ l1 L+ ˜̀1

ρ1 = 0.8, σ1 = 1
Correct 4.00 5.00 4.00 5.00 0.00 3.00 5.00 5.00 5.00 5.00 5.00 5.00

Incorrect 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
ρ̂ 0.99 0.86 0.86 0.97 0.73 0.82 0.89 0.88 0.88 0.89 0.89 0.92

MedSE 0.42 0.37 0.44 0.36 1.43 0.54 0.14 0.14 0.20 0.16 0.21 0.24
ρ1 = 0.5, σ1 = 1

Correct 4.00 4.00 3.00 5.00 5.00 4.00 5.00 5.00 5.00 5.00 5.00 5.00
Incorrect 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

ρ̂ 0.52 0.57 0.58 0.81 0.51 0.46 0.50 0.58 0.58 0.57 0.56 0.68
MedSE 0.24 0.31 0.45 0.40 0.49 0.43 0.17 0.11 0.15 0.16 0.23 0.22

ρ1 = 0.2, σ1 = 1
Correct 4.00 4.00 3.00 5.00 5.00 3.00 5.00 5.00 5.00 5.00 5.00 5.00

Incorrect 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
ρ̂ 0.26 0.38 0.40 0.61 0.37 0.20 0.33 0.35 0.35 0.31 0.35 0.49

MedSE 0.24 0.32 0.47 0.42 0.50 0.52 0.14 0.12 0.16 0.16 0.22 0.21
ρ1 = 0, σ1 = 1

Correct 4.00 4.00 3.00 5.00 5.00 3.00 5.00 5.00 5.00 5.00 5.00 5.00
Incorrect 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

ρ̂ 0.00 0.06 0.09 0.30 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.11
MedSE 0.24 0.31 0.46 0.44 0.56 0.55 0.14 0.13 0.17 0.16 0.17 0.21

ρ1 = 0.8, σ1 = 2
Correct 4.00 2.00 1.00 3.00 0.00 1.00 5.00 5.00 5.00 4.00 2.00 4.00

Incorrect 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
ρ̂ 0.88 0.90 0.92 0.99 0.86 0.88 0.94 0.92 0.92 0.94 0.92 0.96

MedSE 0.53 0.67 0.94 0.65 2.09 1.05 0.32 0.29 0.32 0.36 0.45 0.44
ρ1 = 0.5, σ1 = 2

Correct 4.00 2.00 1.00 2.00 3.00 3.00 5.00 5.00 5.00 4.00 2.00 4.00
Incorrect 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00

ρ̂ 0.45 0.64 0.69 0.89 0.51 0.52 0.66 0.63 0.65 0.64 0.62 0.81
MedSE 0.52 0.67 0.96 0.70 0.99 0.95 0.31 0.29 0.31 0.35 0.46 0.48

ρ1 = 0.2, σ1 = 2
Correct 4.00 2.00 1.00 1.00 2.00 3.00 5.00 5.00 5.00 4.00 2.00 3.00

Incorrect 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
ρ̂ 0.03 0.45 0.51 0.76 0.50 0.50 0.38 0.37 0.39 0.34 0.40 0.57

MedSE 0.55 0.69 0.97 0.76 1.13 1.02 0.29 0.30 0.33 0.34 0.47 0.48
ρ1 = 0, σ1 = 2

Correct 4.00 2.00 1.00 1.00 2.00 2.00 5.00 5.00 5.00 4.00 3.00 3.00
Incorrect 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00

ρ̂ 0.00 0.10 0.18 0.49 0.03 0.41 0.00 0.00 0.00 0.00 0.00 0.21
MedSE 0.51 0.68 0.96 0.82 1.09 1.21 0.28 0.31 0.36 0.34 0.38 0.50

Similar results have been observed when the sample dimension is close to the sample
size, which is presented in Table 6. In the tested cases of n = 360, q = 200, the model
with l1 ˜̀1 almost correctly identifies all the zero coefficients. The above performance
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of the proposed exponential squared loss and lasso or adaptive lasso penalty is beyond
our expectations.

Table 6. Variable section with regularizer on normal data when the dimension is close to the sample
size, E: the exponential loss; S: the square loss; L: the LAD loss; l1: the lasso penalty; and ˜̀1: the
adaptive lasso penalty.

n = 25, q = 20 n = 324, q = 200

E+ l1 E+ ˜̀1 S+ l1 S+ ˜̀1 L+ l1 L+ ˜̀1 E+ l1 E+ ˜̀1 S+ l1 S+ ˜̀1 L+ l1 L+ ˜̀1

ρ1 = 0.8, σ1 = 1
Correct 7.00 9.00 5.00 6.00 8.00 16.00 195.00 200.00 187.00 195.00 180.00 187.00

Incorrect 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
ρ̂ 0.81 0.82 0.89 0.88 0.58 0.69 0.84 0.87 0.85 0.88 0.65 0.73

MedSE 2.89 1.38 3.38 2.06 1.39 0.56 1.23 0.53 1.52 1.36 1.69 1.53
ρ1 = 0.5, σ1 = 1

Correct 6.00 10.00 5.00 4.00 17.00 13.00 197.00 200.00 192.00 196.00 199.00 197.00
Incorrect 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

ρ̂ 0.50 0.25 0.55 0.61 0.51 0.42 0.62 0.55 0.54 0.61 0.50 0.50
MedSE 2.02 1.41 3.38 2.20 0.64 0.76 1.05 0.52 1.43 1.33 0.88 1.00

ρ1 = 0.2, σ1 = 1
Correct 5.00 10.00 5.00 5.00 13.00 14.00 197.00 200.00 191.00 193.00 199.00 198.00

Incorrect 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00
ρ̂ 0.55 0.00 0.40 0.47 0.50 0.23 0.48 0.34 0.40 0.48 0.50 0.50

MedSE 2.98 1.39 3.47 2.45 0.90 0.74 1.11 0.52 1.41 1.36 0.91 1.02
ρ1 = 0, σ1 = 1

Correct 9.00 11.00 5.00 4.00 13.00 13.00 197.00 200.00 192.00 193.00 200.00 196.00
Incorrect 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00

ρ̂ 0.55 0.00 0.00 0.12 0.38 0.00 0.13 0.00 0.03 0.16 0.50 0.49
MedSE 1.78 1.24 3.41 2.28 1.04 0.82 1.07 0.52 1.42 1.36 0.92 1.13

ρ1 = 0.8, σ1 = 2
Correct 6.00 6.00 5.00 1.00 5.00 13.00 162.00 172.00 133.00 137.00 156.00 138.00

Incorrect 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00
ρ̂ 0.81 0.92 1.00 0.98 0.76 0.73 0.94 0.89 0.89 0.94 0.73 0.73

MedSE 3.33 3.65 7.30 5.30 2.30 0.92 2.28 1.84 2.99 2.71 2.30 2.78
ρ1 = 0.5, σ1 = 2

Correct 8.00 6.00 4.00 1.00 9.00 9.00 160.00 173.00 134.00 135.00 185.00 173.00
Incorrect 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

ρ̂ 0.77 0.53 0.91 0.90 0.60 0.47 0.74 0.63 0.61 0.75 0.50 0.50
MedSE 2.52 3.39 7.63 5.95 1.87 1.44 2.34 1.81 2.96 2.77 1.64 1.94

ρ1 = 0.2, σ1 = 2
Correct 7.00 7.00 4.00 1.00 8.00 9.00 162.00 167.00 129.00 130.00 181.00 173.00

Incorrect 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00
ρ̂ 0.24 0.10 0.68 0.79 0.63 0.15 0.53 0.46 0.46 0.55 0.50 0.50

MedSE 2.87 3.42 7.62 5.98 1.84 1.47 2.33 1.83 2.97 2.81 1.72 1.99
ρ1 = 0, σ1 = 2

Correct 8.00 6.00 4.00 1.00 9.00 9.00 144.00 172.00 131.00 131.00 178.00 171.00
Incorrect 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00

ρ̂ 0.00 0.00 0.32 0.54 0.50 0.00 0.35 0.00 0.00 0.26 0.50 0.50
MedSE 2.98 3.60 7.65 5.70 1.95 1.58 2.73 1.83 2.99 2.86 1.87 2.11

Tables 7 and 8 list the variable selections results with noise in the observations and
the inaccurate weight matrix. The model with the exponential squared loss and the lasso
penalty or the adaptive lasso penalty (i.e., E + l1, E + ˜̀1) identifies many more numbers of
true coefficients (“Correct”) and has much lower MedSE. Compared with the results in the
normal cases (Table 5), the superiority of E + l1 and E + ˜̀1 is more evident.
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Table 7. Variable selection with regularizer when the observations y have outliers, E: the exponential
loss; S: the square loss; L: the LAD loss; l1: the lasso penalty; and ˜̀1: the adaptive lasso penalty.

n = 25, q = 5 n = 324, q = 5

E+ l1 E+ ˜̀1 S+ l1 S+ ˜̀1 L+ l1 L+ ˜̀1 E+ l1 E+ ˜̀1 S+ l1 S+ ˜̀1 L+ l1 L+ ˜̀1

ρ1 = 0.5, σ1 = 1, δ1 = 0.01
Correct 4.00 4.00 4.00 5.00 4.00 3.00 5.00 5.00 5.00 5.00 5.00 5.00

Incorrect 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
ρ̂ 0.77 0.64 0.63 0.77 0.70 0.79 0.74 0.66 0.66 0.70 0.64 0.61

MedSE 0.48 0.32 0.48 0.36 0.62 0.53 0.14 0.14 0.17 0.18 0.31 0.30
σ̂2

ρ1 = 0.5, σ1 = 2, δ1 = 0.01
Correct 3.00 1.00 2.00 3.00 1.00 1.00 5.00 5.00 5.00 5.00 3.00 3.00

Incorrect 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
ρ̂ 0.58 0.47 0.52 0.71 0.51 0.76 0.57 0.56 0.58 0.64 0.50 0.50

MedSE 0.61 0.97 0.93 0.79 1.19 1.17 0.18 0.35 0.35 0.34 0.66 0.63
ρ1 = 0.5, σ1 = 1, δ1 = 0.05

Correct 1.00 4.00 3.00 3.00 0.00 3.00 3.00 4.00 4.00 4.00 4.00 5.00
Incorrect 0.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00

ρ̂ 0.78 0.73 0.73 0.90 0.77 0.88 0.83 0.75 0.79 0.79 0.83 0.81
MedSE 0.69 0.87 0.92 0.69 1.75 0.66 0.38 0.30 0.35 0.32 0.52 0.22

ρ1 = 0.5, σ1 = 2, δ1 = 0.05
Correct 1.00 3.00 1.00 3.00 0.00 3.00 5.00 4.00 4.00 4.00 4.00 3.00

Incorrect 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
ρ̂ 0.65 0.42 0.41 0.83 0.51 0.79 0.75 0.59 0.64 0.67 0.63 0.57

MedSE 0.96 1.28 1.26 0.74 1.93 0.54 0.36 0.46 0.46 0.46 0.75 0.54

Table 8. Variable selection with regularizer and noisy weighting matrix w, E: the exponential loss; S:
the square loss; L: the LAD loss; l1: the lasso penalty; and ˜̀1: the adaptive lasso penalty.

n = 25, q = 5 n = 324, q = 5

E+ l1 E+ ˜̀1 S+ l1 S+ ˜̀1 L+ l1 L+ ˜̀1 E+ l1 E+ ˜̀1 S+ l1 S+ ˜̀1 L+ l1 L+ ˜̀1

Remove 30% nonzero weights
Correct 4.00 5.00 5.00 5.00 0.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Incorrect 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
ρ̂ 0.54 0.53 0.50 0.64 0.28 0.48 0.57 0.55 0.55 0.50 0.55 0.56

MedSE 0.50 0.22 0.41 0.32 0.90 0.28 0.16 0.18 0.26 0.16 0.17 0.28
Remove 50% nonzero weights

Correct 4.00 5.00 2.00 4.00 2.00 4.00 5.00 5.00 5.00 5.00 5.00 5.00
Incorrect 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ρ̂ 0.55 0.36 0.37 0.54 0.16 0.35 0.38 0.41 0.40 0.35 0.42 0.46
MedSE 0.57 0.43 0.63 0.36 0.86 0.40 0.09 0.22 0.29 0.17 0.12 0.28

Remove 80% nonzero weights
Correct 4.00 5.00 5.00 3.00 0.00 5.00 5.00 4.00 4.00 5.00 4.00 4.00

Incorrect 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ρ̂ 0.37 0.47 0.43 0.89 0.50 0.72 0.52 0.48 0.46 0.37 0.58 0.49

MedSE 0.63 0.35 0.50 0.77 0.91 0.42 0.20 0.48 0.50 0.29 0.36 0.41

For the fitting effect diagram of the coefficient function surface, we select the case at
the median position in 100 repeated experiments as the standard. Note, we present the
situation when h = 16 on the normal data. The fitting surfaces of ĝ1, ĝ2, and ĝ3 are shown
in Figure 2.

From the fitting effect of each coefficient function, it can be seen that the model has
an excellent fitting effect for unknown coefficient functions, which shows that in the case
of limited samples, the fitting effect of the spatial single-index varying-coefficient model
based on radial basis function and exponential squared loss is excellent. In other cases,
the fitting effect of each coefficient function also performs well.

We also present the fitting evaluation index MAISE when h = 16, 18 on normal data,
which is shown in Table 9. It can be seen that with the increase in the total number
of spatial objects, the value of the unknown function fitting evaluation index MAISE
shows a downward trend. That is, the fitting effect is getting better and better. Similarly,
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the MAISE value of y also shows a downward trend, indicating that for the model as a
whole, the relevant data is getting closer to the real data.

(a) Estimated surface of g1 (b) Estimated surface of g2 (c) Estimated surface of g3

Figure 2. Estimated surfaces of coefficient functions with exponential squared loss.

Table 9. Results of MAISE for the total number of different spatial objects.

h = 16 h = 18

ĝ1 0.0437 0.0388
ĝ2 0.0542 0.0539
ĝ3 0.0515 0.0496
ŷ 0.0566 0.0548

When the observations of y have outliers, the coefficient function surface fitting effect
is compared. We still select the one in the median of 100 repetitions and take the fitted
surface g3 as an example. When ρ1 = 0.5, σ1 = 1, δ1 = 0.05, the fitting effect of loss
functions with adaptive lasso is shown in Figure 3. This shows that our method performs
better. The same conclusion can be conducted in the case of noisy weighting matrix W.
Figure 4 illustrates the results when we remove 50% nonzero weights.

(a) E+ada-l1: estimated surface of g3 (b) S+ada-l1: estimated surface of g3 (c) L+ada-l1: estimated surface of g3

Figure 3. Comparison of ĝ3 when y have outliers.

(a) E+ada-l1: estimated surface of g3 (b) S+ada-l1: estimated surface of g3 (c) L+ada-l1: estimated surface of g3

Figure 4. Comparison of ĝ3 in the case of noisy weighting matrix w.

6. Summary

In this paper, we propose a novel model (the spatial single-index varying-coefficient
model) and introduce a robust variable selection based on spline estimation and exponential
squared loss for the model. The theoretical properties of the proposed estimators are
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established under reasonable assumptions. We especially design a BCD algorithm equipped
with a CCCP procedure for efficiently solving the non-convex and non-differentiable
mathematical optimization problem about the variable selection process. Numerical studies
show that our proposed method is particularly robust and applicable when observations
and the weight matrix are noisy.
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CCCP: concave–convex procedure;
ISTA: Iterative shrinkage-thresholding algorithm;
FISTA: Fast iterative shrinkage-thresholding algorithm;
MedSE: Median of squared error;
MAISE: Square root of mean deviation.

Appendix A. Proofs

Appendix A.1. The Related Lemmas

Lemma A1 (Convexity Lemma). Let {hn(t) : t ∈ T} be a sequence of random convex functions
defined on a convex, open subset T of Rd. Assume h(t) is a real-valued function on T for which
hn(t)→ h(t) in probability, for each t ∈ T . Then, for each compact subset J of T

sup
t∈J
|hn(t)− h(t)| → 0 in probability.

The function h(·) is necessary convex on T .

Proof of Lemma A1. For this well-known convexity lemma, there are many versions of
proof, one of which can be referred to [22].

Lemma A2. If gj(t), j = 1, . . . , q, satisfy condition (C2), then there a constant C > 0 exists
relying only on M such that

sup
t∈T

∣∣∣gj(t)− ηT(t)γ1−j

∣∣∣ ≤ CK−r.

Proof of Lemma A2. The proof of Lemma A2 is similar to the proof of inference 6.21
in [23].
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Appendix A.2. Poof of Main Theorems

Proof of Theorem 1. Let

η = n−r/(2r+1) + an, φ = φ0 + ηt1, γ1 = γ1−0 + ηt2, t =
(

tT
1 , tT

2

)T
.

(i) Let

Q(φ, γ1) =
n

∑
i=1

exp
{
−
(

Yi − GT
i (φ)2/γ1

)}
We will present that, for any given ε > 0, a large constant exists C such that

P
{

inf
‖t‖=C

Q
(
φ0 + ηt1, γ1−0 + ηt2

)
> Q

(
φ0, γ1−0

)}
≥ 1− ε, (A1)

where the true value of φ. and γ1 are φ0 and γ1−0. Let

Wn(φ, γ1) =
n

∑
i=1

2
γ2

exp
{
−
(

Yi − GT
i (φ)γ1

)2
/γ2

}{
Yi − Gi(φ)Tγ1

}
Ġi(φ)Tγ1 JT

φ Ui

and

Vn(φ, γ1) =
n

∑
i=1

2
γ2

exp
{
−
(

Yi − GT
i (φ)γ1

)2
/γ2

}{
Yi − Gi(φ)Tγ1

}
Gi(φ),

where ĠT
i (φ)(φ0) = (In − ρW)−1Ḋ(φ) Let Ln(τ) = K−1{`n(φ, γ1)− `n

(
φ0, γ1−0

)}
. Then,

through the Taylor expansion and a simple calculation, we obtain

Ln(τ) =
1
K
{`n(φ0 + ητ1, γ1−0 + ητ2)− `n(φ0, γ1−0)}

≤ 1
K

η
(

Wn(φ0, γ0)
T , Vn

(
φ0, γ1−0

)T
)
(t1, t2)

T − 1
2K

(t1, t2)
T [−I(φ0, γ1−0)](t1, t2)nη2{1 + op(1)

}
− n

K

d

∑
j=1

[
]pλj

(∣∣γ1−j0
∣∣)− pλj

(∣∣γ1−j0
∣∣)]

=S1 + S2 + S3 + op(1).

Notice that S1 = Op

(
1 + nr/(2r+1)an

)
‖t‖ and S2 = Op

(√
nK−1η2)‖t‖2 = Op(

1 + 2nr/(2r+1)an

)
‖t‖2. Hence, though selecting a sufficiently large C, S2 dominates S1

uniformly in ‖t‖ = C. Moreover, invoking pλ(0) = 0, and by the standard argument of the
Taylor expansion, we obtain

S3 ≤ n
d

∑
j=1

[
η ṗλj

(∣∣γ1−j0
∣∣) sgn

(
γ1−j0

)∣∣∣tl j

∣∣∣+ η2 p̈λj

(∣∣γ1−j0
∣∣)∣∣t1j

∣∣2{1 + o(1)}
]

≤
√

s− 1nK−1ηan‖t‖+ nK−1η2bn‖t‖2

Then, it is clear to present that S3 is dominated by S2 uniformly in ‖u‖ = C. Therefore,
selecting a sufficiently large C, (A.1) holds. Hence, there exist local minimizers φ̂ and γ̂1
such that ∥∥γ̂1 − γ1−0

∥∥ = Op(η),
∥∥φ̂−φ0

∥∥ = Op(η).

By calculating, we obtain ‖φ̂−φ‖ = Op(η), which finishes the proof of (i).
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(ii) Note that∥∥ĝj(t)− gj0(t)
∥∥2

=
∫

T

{
ĝj(t)− gj0(t)

}2d t

=
∫

T

{
δT(t)γ̂1−j − δT(t)γ1−j0 + Rj(t)

}2
d t

≤ 2
∫

T

{
δT(t)γ̂1−j − δT(t)γ1−j0

}2
dt + 2

∫
T

{
R2

j (u)
}

= 2
(
γ̂1−j − γ1−j0

)T H
(
γ̂1−j − γ1−j0

)
+ 2

∫
T

{
R2

j (t)
}

Then, invoking ‖H‖ = O(1), a simple calculation shows

(γ̂1−k − γ1−k0)
T H(γ̂1−k − γ1−k0) = Op

(
n−2r/(2r+1) + a2

n

)
. (A2)

In addition, it is easy to show that∫
T

R2
j (t)dt = Op

(
n−2r/(2r+1)

)
. (A3)

Invoking (A.2) and (A.3), we finish the proof of (ii).

Proof of Theorem 2. (i) From λmax → 0, it is easy to show that an = 0 for large n. Then,
by Theorem 1, it is sufficient to show that, for any φj which satisfies∥∥φj − φj0

∥∥ = Op

(
n−r/(2r+1)

)
, j = 1, . . . , s− 1,

and some given small ε = Cn−r/(2r+1) and j = s, . . . , p− 1, when n→ ∞, with probability
approximating to one, we obtain ∂Q(φ, γ)/∂φj > 0 for 0 < φj < ε, and ∂Q(φ, γ)/∂φj < 0
for −ε < φj < 0. Let

Qn(φ, γ1) =
n

∑
i=1

exp
{
−
(

Yi − G>i (φ)γ1

)2
/γ2

}
(A4)

a simple calculation shows that

∂`(φ, γ1)

∂φj
=

∂Qn(φ, γ1)

∂φj

=
n

∑
i=1

2
γ2

exp
{
−
(

Yi − GT
i (φ)γ1

)2
/γ2

}{
Yi − Gi(φ)Tγ1

}
Ġi(φ)Tγ1eT

φj
Ui

where eφj =
(
−
(
1− ‖φ‖2)−1/2

φj, 0, . . . , 0, 1, 0, . . . , 0
)T

with (j + 1)th component 1. Un-
der conditions (C1), (C2), (C3), and Theorem 1, it is easy to present that

∂`(φ, γ)

∂φj
= Op

(
n−r/(2r+1)

)
.

The sign of the derivative is completely determined by that of φj. Then, ∂Q(φ, γ1)/∂φj >
0 for 0 < φj < ε, and ∂Q(φ, γ1)/∂φj < 0 for −ε < φj < 0 hold. This finishes the proof
of (i).

(ii) Applying the similar arguments as in the proof of (i), we obtain, with probability
approximating to one, γ̂1 j = 0, j = d + 1, . . . , q. Then, invoking

sup
t
‖δ(t)‖ = O(1),
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the result of this theorem is obtained from ĝj(t) = δT(t)γ̂1−j.

Proof of Theorem 3. Though Theorems 1 and 2, we obtain that, as n→ ∞, with probability

approximating to one, `(φ, γ1) reaches the local maximizer at
(

φ̂
∗T , 0T

)
and

(
γ̂1
∗T , 0

)T
.

Let

Q1n(φ, γ1) =
∂`(φ, γ1)

∂φ∗
, Q2n(φ, γ1) =

∂`(φ, γ1)

∂γ1∗
.

Then,
(

φ̂
∗T , 0

)T
and

(
γ̂1
∗T , 0

)T
satisfy

1
n Q1n

((
φ̂
∗T , 0

)T
,
(

γ̂1
∗T , 0

)T
)

= −2
n ∑n

i=1
2

γ2
exp

{
−
(
Yi − GT

i (φ)γ1
)2/γ2

}(
Yi − G∗Ti

(
φ̂
∗
0
)
γ̂1
∗)Ġ∗Ti

(
φ̂
∗)

γ̂1
∗ JT

φ̂
∗U∗Ti −V1 = 0

where

V1 =

(
ṗλ1(|γ̂1−1|)

γ̂T
1−1H
|γ̂1−1|

, . . . , ṗλd(|γ̂1−d|)
γ̂T

1−dH
|γ̂1−d|H

)T

.

Applying the Taylor expansion to ṗλj

(∣∣γ̂1−j
∣∣), we have

ṗλj

(∣∣γ̂1−j
∣∣) = ṗλj

(∣∣γ̂1−j0
∣∣)+ { p̈λj

(∣∣γ̂1−j0
∣∣)+ op(1)

}(
γ̂1−j − γ1−j0

)
.

Furthermore, condition (C6) implies that p̈λj(|γ̂1−10|) = op(1), and note that ṗλj(|γ̂1−10|) =
0 as λmax → 0. From Theorems 1 and 2, we have

ṗλj

(∣∣γ̂1−j
∣∣) γ̂T

1−j H∣∣γ̂1−j
∣∣ = op

(
γ̂1
∗ − γ∗1−0

)
..

Therefore, a simple calculation shows that

1
n

n

∑
i=1

(
Yi − G∗Ti

(
φ̂
∗
0
)
γ̂1
∗
)

G∗i
(
φ̂
∗)

=
1
n

n

∑
i=1

{
εi + RT

(
α∗T0 U∗i

)
Z∗i − G∗Ti (φ∗0)

(
γ̂1
∗ − γ∗1−0

)
−
[
G∗i
(
φ̂
∗
0
)
− G∗i (φ

∗
0)
]T

γ̂1
∗
}{

G∗i (φ
∗
0) +

[
G∗i
(
φ̂
∗)− G∗i (φ

∗
0)
]}

Let

Λn =
1
n

n

∑
i=1

G∗i (φ
∗
0)
(

εi + RT
(

U∗Ti α∗0

)
Z∗i
)

.

Then, from conditions (C8) and (C9), Theorem 1, and supt ‖δ(t)‖ = O(1), we obtain

γ̂1
∗ − γ∗1−0 =

[
Φn + op(1)

]−1{Λn −Ψn
(
φ̂
∗ −φ∗0

)}
.

Thus, we can have

`n

((
φ̂
∗T , 0

)T
,
(

γ̂1
∗T , 0

)T
)

∂φ∗j
=

∂Qn

{(
φ∗T0 , 0

)T ,
(
γ∗T1 , 0

)T
}

∂φ∗j

=
∂Qn

{(
φ∗T0 , 0

)T ,
(
γ∗T1−0, 0

)T
}

∂φ∗j

+
s−1

∑
l=1

∂2Qn

{(
φ∗T0 , 0

)T ,
(
γ∗T1−0, 0

)T
}

∂φ∗j φ∗l
+ op(1)

(φ̂∗l − φ∗01
)
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where Qn(φ, γ1) is defined in (A.4). As the definition of Jφ∗0
that α− α0 = Jφ∗0

(φ−φ∗0) +

Op
(
n−1). Since

√
n(γ2−n − γ2−0) = op(1), the proof is proved by Slutsky’s lemma and the

central limit theorem. This ends with proof of Theorem 3.

Thus, the proof is completed.
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