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Abstract: Queuing networks (QNs) are essential models in operations research, with applications in
cloud computing and healthcare systems. However, few studies have analyzed the cell’s biological
signal transduction using QN theory. This study entailed the modeling of signal transduction as an
open Jackson’s QN (JQN) to theoretically determine cell signal transduction, under the assumption
that the signal mediator queues in the cytoplasm, and the mediator is exchanged from one signaling
molecule to another through interactions between the signaling molecules. Each signaling molecule
was regarded as a network node in the JQN. The JQN Kullback–Leibler divergence (KLD) was defined
using the ratio of the queuing time (λ) to the exchange time (µ), λ/µ. The mitogen-activated protein
kinase (MAPK) signal-cascade model was applied, and the KLD rate per signal-transduction-period
was shown to be conserved when the KLD was maximized. Our experimental study on MAPK
cascade supported this conclusion. This result is similar to the entropy-rate conservation of chemical
kinetics and entropy coding reported in our previous studies. Thus, JQN can be used as a novel
framework to analyze signal transduction.

Keywords: open queuing network; Kullback–Leibler divergence; signal transduction

1. Introduction

A cell-signal-transduction cascade forms a network of reactions that modify protein
molecules. The modified protein can diffuse in the cytoplasm and modify another protein.
Finally, modified proteins translocate to the nucleus to bind to the promoter in DNA to
promote the gene expression encoded in the DNA [1]. Currently, kinetic models based
on partial-differential equations (PDEs), including diffusion terms, primarily simulate
signal-transduction kinetics and networks. Although PDEs reduce theoretical difficulties
through mathematical simplification, the stochastic factors essential to biological kinetics
are generally omitted.

The queue in operations is used for analyzing the congestion phenomenon of stochas-
tic systems. For example, queuing theory applies to service-processing design to maintain
the waiting time within a specific range [2–6]. The queuing theory applies to a system
consisting of a “server”, a “waiting room”, and a “customer” who arrives and stays for a
certain time and accepts the “service.” Kendall introduced the symbol of the queue in the
form of A/B/C/D (A: the arrival of the customer, B: the distribution of the service time,
C: the number of servers, D: the capacity of the system including the waiting room) [7].
Recently, this theory has been applied to analyzing the queuing of packets in routers in
communication networks to model gene-expression networks [8]. Furthermore, the theory
can apply to the management of the healthcare system [9] in which the patient-waiting time
is analyzed when introducing electronic medical-record systems. COVID-19 pandemic
infections have been modeled using this theory [10,11]. On the other hand, there have been
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several studies that have applied queueing networks to biological research [12,13]. For ex-
ample, the enzymatic reaction [14], molecular birth process [15], metabolism pathway [16],
and pharmacokinetics [17] were analyzed using the queueing network. However, few
theoretical studies have considered the signal-transduction network and individual chain
reactions connected to multiple signaling proteins using QN theory. This study entailed
the use of QNs to quantitatively analyze a signal-transduction network. In this regard,
the diffusion process of signaling molecules in the cytoplasm and its phosphorylation by
other signaling molecules are relevant. The diffusion is the “queue” of signaling molecules
formed in the cytoplasm. The phosphorylation process is the service. The network node
server is the signaling molecule, and the network service is the process of modifying signal-
ing molecules, which is mediated by the exchange of inorganic phosphate groups between
the signaling molecules. Furthermore, the queue-reaction-cascade self-interacts to form
a network.

Considering the network of the queue, that is, QN, the theory can describe complex
stochastic networks. In particular, this study analyzed a quantitative signal-transduction
network for optimizing signal transmission where it was necessary to consider the entire
network of queues; therefore, a QN that comprises multiple queues of combined nodes
was applied [18,19]. QN is classified into closed and open QN. For closed QN, several
customers are exchanged within the QN without arriving or leaving [7]; for open QN,
customers receive services from multiple nodes and leave the QN. Jackson’s network (JQN)
is an open QN [20]. The theory also applies to the management of cloud computing systems
for optimizing networking [2].

This study aimed to create a QN model based on JQN to maximize signal transduction.
Previously, I reported that when signal transduction is maximized, the signal-transduction
rate is conserved through the cascade based on an entropy-coding system or nonequilibrium
thermodynamics and kinetics [21,22].

In this study, we will first review the JQN theory and explain a cellular biological model
of signal transduction based on the theory. Second, we will show a theoretical achievement
of signal transduction based on the model. Lastly, we will examine the experimental
signal-transduction data using the theoretical model. The discussion section will suggest
the existence of a relationship between queuing, entropy encoding, and chemical potential.

2. Materials and Methods
2.1. Cell Culture

We reported the detailed protocol in our previous study [23]. The A431 human skin-
cancer cell line was obtained from RIKEN BioResource Research Center (Tsukuba, Japan).
A431 cells (0.6 × 105) were cultured in a 5% CO2 atmosphere at 37 ◦C for 5 days. EGF
(100 ng/mL; Cell Signaling Technology, Danvers, MA, USA) was added to the cultures and
incubated for 0 (untreated), 15, 30, 45, 60, 120, and 180 min. The cell extract was purified
using an antibody-array assay kit (Full Moon BioSystems, Inc., Sunnyvale, CA, USA).

2.2. Antibody Array Assay

The assay was conducted according to a previously reported protocol [23]. Antibody
arrays (PMK185 and PEG214) were used. Biotinylation of the proteins and conjugation and
detection by Cy3-streptavidin (PA43001; GE Healthcare Life Science, Little Chalfont, UK)
were performed using an antibody-array assay kit (Full Moon BioSystems, Sunnyvale, CA,
USA). Cell-extract samples (60 mg) were used. A SureScan Microarray Scanner (G2565CA
Microarray Scanner System; Agilent Technologies, Santa Clara, CA, USA) was used for
scanning microarrays.

3. Results
3.1. Queueing Model of Signal Transduction

Cell-signal transduction is a non-equilibrium process characterized by biological infor-
mation transmission caused by a biochemical mediator such as adenosine triphosphate



Entropy 2023, 25, 326 3 of 12

(ATP). The signal transduction forms a network of sequential chain reactions that modify
signaling molecules, ai, which constitute the network nodes. Figure 1 illustrates a modeled
signal-transduction network. For simplification, the signal is mediated by a mediator P.
The reaction of signaling molecules, Ai, in the ith node (1 ≤ i ≤ n) is expressed as follows:

Ai + P→ Ai − P : λoi (1)

Ai + Ai−1 − P→ Ai − Ai−1 − P : λi , (2)

Ai − Ai−1 − P→ Ai − P + Ai−1 : µi , (3)

where P diffuses from the outside and arrives at an arrival rate of λoi at the ith node, ai,
where protein kinase Ai stays (Equation (1)). λi is the arrival rate of Ai−1-P at the ith node
(Equation (2)), where the signal can be transduced by the exchange of P from Ai−1 to Ai at
a rate of µi (Equation (3)).
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In the actual signaling system, the individual concentrations of the signaling molecules,
Ai (1 ≤ i ≤ n), are sufficiently low; a single signaling event rarely occurs. Therefore, I
hypothesized that under the following three assumptions, the signaling event occurs by
a Markov process: (i) the probability that a signal event will occur is constant, (ii) the
probability that an ith step (node) in the cascade occurs at any time interval (t, t + ∆) does
not depend on the number of events before time t where ∆ signifies the minimal interval,
and (iii) the probability of an event occurring twice or more during a minute’s time ∆ is
negligible and is denoted as o(∆). Let the likelihood pi in the ith step (nodes) in the cascade
be the probability that an event occurs Ai-P (=ai) times in time t to t + ∆, and let λi∆ be
the probability that an event occurs once in a minute, where ∆ denotes a stable arrival
rate. The arrival interval of pi becomes a random variable sequence that follows the same
exponential distribution, and the arrival interval of the signal components is independently
and identically distributed:

pi(t + ∆) = pi−1(t)λi∆ + pi(t)(1− λi∆) (4)

Transformation of Equation (4) gives:

pi(t + ∆)− pi(t)
∆

λi(−pi(t) + pi−1(t)) (5)

Approaching ∆→ 0 gives a differential equation:

dpi(t)
dt

= λi(−pi(t) + pi−1(t)) (6)

Solving Equation (6) gives the solution that pi is reached by a Poisson distribution:

pi(t) = ∏n
i=1

(λiτi)
ai

ai!
exp(−λit) (7)
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Equation (7) describes a queuing model in which Ai-1-P arrival rate can be formulated
as a Poisson process. Here, the service was defined as the time taken for transcription. In
the queue, in accordance with the Poisson process, λi is termed as the arrival rate.

The example of JQN in shown (Figure 1). Thus, P is transferred by Ai through the
network, and the endpoint is the transcription of the nuclear DNA. The diffusion of P
carried by Ai is the rate-limiting step determining the signal-transduction rate. In this case,
P is known as a “customer” because it comes from the outside. The exchange rate of P
from Aj-1-P to Ai, µi, is known as the “service rate”. In this way, we assumed that signaling
molecules form an open-queue network known as JQN.

Here, the QN of signal transduction satisfies the following conditions of Jackson
network: (1) There are phosphorylation “servers” Ai-P with the exchange rate µi at the
ith node in the cascade. The arrival rate of P at each node i is λi from the outside of QN
according to the Poisson process, and it is possible for P to leave the network from any
node; (2) there is a customer P that is served (transferred to Ai) in the network; (3) P in the
network is sufficiently high; (4) The service time follows an exponential distribution at all
nodes; and (5) The service code is the arrival order of service (FCFS: first-come first-served).
In equilibrium state, given that the number of guests arriving per unit time to a node is
equal to the number of departures per unit time from that node, we get the following
equation, which is called the traffic equation:

λi = λoi + ∑n
i=1 λi pi (8)

λi (0 ≤ i ≤ 6) represents the arrival rate of P from node ai. λoi denotes the arrival
rate of P from the outside. The ladder-like mark symbolizes the queue of the signaling
molecule. µi inside the circle represents the exchange (“service” in the queueing theory)
rate in which P carried by ai−1 is transferred to another signaling molecule ai at the ith
node. The arrow represents the orientation of irreversible signal transduction. The final
node is DNA (binding histone proteins), where the transcriptional reaction occurs [7]. This
is depicted in a figure, and schemes follow the same formatting. The symbol ai (Ai) above
the µi represents that signal molecule Ai stays at the node.

Because the signal-molecule arrival rate is sufficiently low, we assumed that the ith
molecule, Ai, is localized at the ith node. Here, we set {a} = {a1, a2, . . . . An} = {ai}, which
represents the JQN-node state at the steady state and {a(t)} = {a1 (t), a2 (t), . . . . a (t)} = {ai
(t)}, which represents the JQN-node state during the signal transduction.

The vertical axis represents the ratio of the phosphorylated signaling molecule ai
concentration (1 ≤ i ≤ 3) to that at the steady state, ai (t)/ai = ρi (t)/ρi, where ai represents
the signaling molecule Aj-P concentration at the steady state. The horizontal axis indicates
the duration, where τi (1 ≤ i ≤ 3) represents the phosphorylation period for each signaling
molecule ai. In this case, the signal transduction proceeds in the order of 1→2→3.

Furthermore, we set ρi = λi/µi. ρi denotes the value at the initiation of the signal event.
As mentioned below, ρi is equal to ai. The following expression can be obtained using
Jackson’s theorem [20] and the probability that ai stays at the ith node at the steady state:

p(a) = p1(a1) p2(a2) · · · pn(an)
= ∏n

i=1 pi(ai)= ∏n
i=1 ρi

ai (1− ρi).
(9)

and
ai =

λi
µi − λi

=
ρi

1− ρi
(10)

where
ρi =

λi
µi

(11)
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Since the arrival rate is sufficiently low in the entire signal-transduction cascade, λi/µi << 1
holds for all ai. In this case, from Equation (9),

pi(ai) ∼= ρi
ai (12)

ai
∼= ρi (13)

and
∑n

i=1 ai = a (14)

The queue length of the ith node, Li, is equal to that of the independent queue. In this case,
Li and the sum of Li, L, are expressed by Little’s formula [24] as follows:

L = ∑n
i=1 Li = ∑n

i=1
ρi

1− ρi
∼∑n

i=1 ρi = a (15)

where λi/µi << 1, Equations (13) and (14) were used. Likewise, we set the concentration of
ai during the signal transduction:

ρi(t) =
λi(t)
µi(t)

= ai(t) (16)

and
∑n

i=1 ρi(t) = a (17)

An example of the time courses of signal transduction expressed by ρi (t)/ρi is shown in
Figure 2.
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3.2. Kullback–Leibler Divergence of JQN

Suppose that the signal-network activation in which the ith node is activated is ob-
tained. If the complete signal-transduction process is repeated a times in the entire signal-
transduction system and each signal-transduction process is repeated ai times in the ith
node, the probability that the transduction system stays at the given JQN state {a} is
calculated as follows:

a!
a1(t)!a2(t)! . . . an(t)!

p(a) =
a!

a1!a2! . . . an!
ρ1

a1 ρ2
a2 · · · ρn

an

Taking the logarithm of the left-hand side, we obtain (Appendix A):

log
(

a!
a1(t)!a2(t)!...an(t)!

ρ1
a1(t)ρ2

a2(t) · · · ρn
an(t)

)
= −a ∑n

i=1 ρi(t) log ρi(t)
ρi

= −aD(ρ(t)||ρ)
(18)
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Here,

D(ρ(t)||ρ) ≡∑n
i=1 ρi(t) log

ρi(t)
ρi

, (19)

which has the form of the KLD. The KLD has been used in sensor and imaging analy-
ses [25], Bayesian model diagnostics [26], clinical trial assessments [27], and information
science [28]. We recently performed the EGFR cascade analysis based on the KLD theoretical
framework [23]. Furthermore, from Little’s law in queueing theory [24],

τ = ∑n
i=1 aiτoi= ∑n

i=1 ai
1

λoi
(20)

τio =
1

λoi
(21)

In Equation (21), τoi denotes the duration of a single signal mediator P for a single
signaling molecule ai. We hypothesized that cells signal more efficiently by eliminating
redundancies in terms of energy metabolism. This assumption was also adopted in our
previous study [23] and led to maximizing KLD, i.e., information gain, per the signal-event
time at each step of the cell-signal-transduction cascade.

To maximize D(ρ(t)||ρ) per a given duration τ, we introduced function F with the
constraint Equation (20), as given below.

F = D(ρ(t)||ρ) +
n
∑

i=1
γ aiτoi

= D(ρ(t)||ρ) + ∑n
i=1 γ ri

ai ai
λoi

(22)

where γ is an arbitrary parameter independent of node i. From Equation (22),

∂F
∂ai

= 0 (23)

Subsequently,

γ = −λoilog
ρi(t)

ρi
(24)

Using Equation (21),

log
ρi(t)

ρi
= −γτoi (25)

Accordingly, taking the sum of both sides,

D(ρ(t)||ρ) = −∑n
i=1 ρi(t)τoi = −γτ (26)

Therefore, we have

− γ =
D(ρ(t)||ρ)

τ
(27)

The negative value of γ indicates the average KLD per signal duration. In conclusion, the
average KLD rate per signal duration is independent of the signal step node because γ is
independent of the step-node number, i.

3.3. Chemical Potential in JQN

Here, we defined the chemical potential of ai at the pre-signal event state as

µi
st := µi

0 + kBT log ρi = µi
0 + kBT log ai (28)

and the signal state as

µi := µi
0 + kBT log ρi(t) = µi

0 + kBT log ai(t) (29)
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where kB denotes the Boltzmann coefficient and T represents the temperature of the system.
The thermodynamic entropy changes, ∆si, between the pre-signal and signal event status
are given by

∆si :=
µi − µst

i
kBT

=log
ρi(t)

ρi
= log

ai(t)
ai

(30)

Therefore, the entropy changes can be related to KLD [29–31]. From Equation (30), we can
obtain the relationship between the thermodynamic entropy change and KLD:

∆S= ∑n
i=1 ρi(t)∆s = −γτ= D(ρ(t)||ρ) (31)

Accordingly, γ has the dimension of a negative entropy-production rate.

3.4. Application of KLD Theory to Signal-Transduction Analysis

The mitogen-activated protein kinase (MAPK) signaling cascade (consisting of ASK1,
MKK4, JNK, and HSF1) induced by cell stress has been analyzed [32–38]. The MAPK
cascades include the ERK pathway, p38 pathway, and JNK cascade, which are associated
with the MAPK stress-response pathway. This pathway is activated by a range of extracel-
lular stress stimuli, including heat shock, oxidation, and exposure to ultraviolet light or
radiation [39–41]. A MAPK signal cascade in which signal transduction is represented as a
sequential activation of the signaling molecules can be described as follows (see Figure 1):

ASK1 + P↔ phospho− ASK1
phospho− ASK1 + MKK3↔ ASK1 + Phospho−MKK3

phospho−MKK3 + p38 + ATP↔ MKK3 + phospho− p38
phospho− p38 + HSF1 + ATP↔ p38 + phospho− HSF1

(32)

where phospho represents the phosphorylated status of signaling molecules, and P denotes
the released phosphate and adenosine diphosphate, respectively. In this cascade, phosphate
is the mediator. With reference to Equation (32), the average KLD rate of the ASK1–MKK4–
JNK-HSF1 cascade is calculated as follows [29]:

− γ =
∆Si
τoi

=
1

τoi
log

∫ τi
0 ρi(t)dt∫ τi

0 ρidt
=

1
τoi

log

∫ τi
0 ai(t)dt∫ τi

0 aidt
(33)

In the above equation, we used ρi(t) = ai(t) and ρi = ai. The integrals in the third term
in Equation (33) were calculated using the integral of the plot (Figure 3) (0 ≤ t ≤ τi). In
the experimental study, we cultured the A431 skin-cancer cell line in a serum-free medium
and stimulated it with EGFR. In the starved A431 cells, the MAPK-related signal cascade
(ASK1–MKK4–JNK-HSF1) was tentatively activated with starvation and minimal EGFR
stimuli with EGF. As a result, the KLD rates were around 3.0, which are similar to each
other in terms of the Cohen’s factor d ≤ 0.5 (Table 1), indicating that Equations (25) and (26)
hold in signal transduction.

The vertical axis indicates ρi(t)/ρi, and the horizontal axis shows the time course after
the EGF stimulation of the cell. (a) Scheme of the integral of the plot. In terms of the
calculation of the integral value, the area above the horizontal line with respect to the
vertical axis 1.0 corresponds to the integral value indicated in white, and the lower part
corresponds to the integral value indicated in white. The upper end of the integration
calculation τj was determined by the time of the horizontal axis, and it is estimated that
the value of the vertical axis of the plot reaches 1.0. (b) Actual measurement plots of each
signaling molecule. The error value indicates the standard error. The measurements were
carried out four times.
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Table 1. Fundamental statistics of KLD rates.

Mean (µ) Standard Deviation

ASK1 (Phospho-Ser83) 3.27 0.76
MKK4 (Phospho-Thr261) 3.43 0.70

p38 (Phospho-Thr180) 3.07 0.73
MKK3(Phospho-Ser189) 3.19 0.20

ATF2(Phospho-Thr69 or 51) 3.03 0.50
Negative control 0.00 0.00

∆µ Cohen’s Factor d
ASK1 (Phospho-Ser83)-MKK4 (Phospho-Th261) 0.16 0.22
MKK4 (Phospho-Th261)-p38 (Phospho-Thr183) 0.36 0.50

MKK3(Phospho-Ser189)-p38 0.12 0.22
p38 (Phospho-Thr183)-ATF2(Phospho-Thr69 or 51) 0.04 0.06

4. Discussion

A primary theoretical approach for analyzing signal transduction in systems biology
is the kinetics consisting of continuous differential equations for the time-evolution of the
concentration of signaling molecules. Based on some experimental facts, a further numerical
simulation was performed by substituting measurable-reaction kinetic coefficients and
other parameters. However, in general, the number of signaling molecule proteins in the
cytoplasm was small, so concentration fluctuations were expected to be large. Therefore,
an analysis using differential equations assuming continuous variables is an appropriate
approximation method. In practice, to think of the dynamics of the signaling molecule
as a discrete quantity, it is necessary to use the dynamics of discrete parameters, i.e.,
the stochastic dynamics framework. However, such kinetics are complex and inevitably
challenging to apply to complex systems such as cell signaling, which involve non-linear
interactions of many signaling molecules, as is the case in systems biology. In contrast,
QN theory has a simple framework that can analyze the reaction of discrete quantities.
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Furthermore, the queues are one-directional, which is consistent with the one-way signaling
mechanism in the intracellular biochemical-reaction network, in which the intracellular
information is transmitted through the processing of information in the cell membrane or
cytoplasm to the nucleus.

If the customer is the signaling molecule itself, a closed QN can be applied where the
concentration of the signaling molecule is constant during the signaling period. However,
in this case, there are multiple customers, and the QN is more complicated. Besides, each
signaling molecule concentration is unstable owing to the fluctuation as aforementioned. To
understand the essence of signal transduction and simplify the model, the signal mediators
ATP or phosphate were treated as customers. Since these molecules are in large quantities
in cells and are continuously and constantly supplied to the signal-transduction system
from the outside, we applied an open QN. The open QN, where customers arrive externally
according to the Poisson process, better reflects the intracellular reaction.

In the application of JQN, when ρi < 1 holds for all ρi (1 ≤ i ≤ n), the solution for
the probability at the equilibrium distribution is given as a product-form solution. This
solution was the basis of this study, shown in Equation (9), and the KLD of the entire
system was definable in Equation (19). Since the stationary distribution was in product
form and the lengths of the queues of each node at any given time were independent of
each other, the process of leaving each node became a Poisson process. It was the first
significant development in QN theory, and applying Jackson’s theorem to search for similar
product-form solutions in other networks has been the subject of much research. Essentially,
a cell-signaling network consists of a considerable number of nodes or phosphorylated
(the active form of) signaling molecules, where each service rate (phosphorylation of other
signaling molecules) has different values. Thus, JQN represents the signal-transduction
system. We applied Little’s formula [2] and Jackson’s theorem [20] to queuing theory. We
obtained Equations (26) and (27) in which the JQN KLD per transduction time is constant
when the KLD is maximized. As a result, the conclusion was drawn that the KLD rate is
constant regardless of the node.

Intracellular signal transduction is a complicated process consisting of a series of
modifications and demodification reactions of intracellular proteins. Due to the simplicity
of this chain, we introduced the Markov chain (M), i.e., the assumption that the reaction
step depends only on the preceding and succeeding steps and that the reaction process
formed a model of a queue of M/M/Ai. Furthermore, it was necessary to add thermody-
namic information to the model as signal transduction is interpreted as the simultaneous
transduction and conversion of biological information. In order to understand the latter,
it was necessary to think about fluctuation theorem and entropy coding, and KLD repre-
sents the information gain before and after cell stimulation. These concepts are closely
related to each other, forming a unified framework of an information theory of intracellular
signal transduction. As a result, in this study, an important conclusion was obtained: the
KLD per transduction time (code length) in the same cascade signal-transduction step is
constant. Importantly, this conclusion was verified by measuring the modification and
demodification of proteins before and after cell stimulation.

By introducing quantitative evaluation in this research, it was possible to estimate the
transduction time in the signal-conversion step from the fluctuation before and after the
whole signal network. Additionally, based on the result that the KLD rate is constant in
each step in the known cascade, conversely, we may find a new cascade by comparing the
KLD rate of each signaling molecule. For example, when KLD rates of signaling molecules
A and B are similar in the given signal event, a signal cascade may be formed between A
and B. Further experimental research will be required to validate this idea.

The model of the QN is valid for the following reasons. First, it facilitates the con-
sideration of signal transformations that are irreversible reactions. In this model, the
rate-limiting step is a long, reversible process in which a signaling molecule diffuses to
the next signaling molecule that is its substrate. The phosphorylation process in service
is a short process, which is irreversible in this model. Therefore, the signal never passes
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through the same node again without considering the feedback mechanism. Such a model
framework is useful for signal transduction. Second, protein–protein phosphorylation is a
complex non-linear reaction that is difficult to target for kinetic analysis. Therefore, in the
application of network theory, we can ignore elementary processes that can be analyzed
with simpler models. Third, protein molecules have large concentration fluctuations and
are not subject to simple kinetics. This framework overcomes these problems and enables a
unified analysis.

We focused on a stress-induced ASK1–MKK4–JNK-HSF1 signal-transduction cascade
and found that the average information gain, i.e., KLD, per signal duration is consistent
in the pathway, indicating the conservation of KLD rate. Conversely, the cell signal-
transduction system proceeds in circumstances in which the rate of signal transduction
is maximized. By observing the temporal variation of the phosphorylation of individual
signaling molecules, plotting the increase against time, and taking the logarithm of the
integral value, the KLD increase rate per hour can be comprehensively measured. As a
result, signals can be transmitted between signaling molecules with similar KLD growth
rates. This is one of the methods that makes it possible to discover unknown cascades
between so many signaling molecules. Furthermore, by changing the dose of radiation
that produces reactive oxygen, it is possible to identify signaling molecules that show an
increase in the KLD rate correlated with the radiation dose and to more accurately identify
cascades specific to the type of stress.

Previously, we applied entropy encoding to a code-string model of the signal cascade
and found that the entropy-production rate is conserved [42], which corresponds with the
conclusion of this study where the KLD rate for the queue is consistent regardless of the
node, ai. Also, we reported that the non-equilibrium kinetics of signal transduction indicates
that the entropy-production rate is consistent in the signal-transduction cascade [22,23].
According to Equations (30) and (31), KLD can be expressed by a chemical potential
change and thermodynamic entropy ∆S in the entire signal transduction. In summary, the
entropy-production rate conservation holds in the JQN, entropy-coding theory, and non-
equilibrium thermodynamics. This indicates an intriguing relationship between queuing,
entropy encoding, and chemical potential.

A limitation of the present study is that we used continuous derivative operations
in deriving Equations (26) and (27) rather than discrete operations; therefore, this mathe-
matical evaluation should be further verified. A detailed study, replacing the derivative
operation with a discrete operation, may be explored in future work.

In conclusion, the JQN can be used for a quantitative analysis of signal transduction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/e25020326/s1, Figure S1: The vertical axis indicates ρi(t)/ρi, and the
horizontal axis shows the time course after the EGF stimulation of the A431 cell. The error value
indicates the standard error. The measurements were carried out four times. The mean of KLD rate
in (a), (b), (c), and (d) were 3.52, 3.06, 2.79, and 3.43.
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Appendix A. Calculation for Equation (18) in the Text

The following is the calculation deriving for Equation (18).

a! = aa exp(−a)
√
(2πa)(1 + O(1/a)),

ai(t)! = ai(t)
ai(t) exp(−ai)

√
(2πai)(1 + O(1/ai)),

Accordingly,
log a!

a1(t)!a2(t)!...an(t)!
ρ1

a1(t)ρ2
a2(t) · · · ρn

an(t)

∼= log ∏n
i=1

(
ρi(t)

ρi

)−ai(t) 1+O( 1
a )√

(2πa)n−1 ∏n
i=1 ρi(t)

∼= log ∏n
i=1

(
ρi(t)

ρi

)−ρi(t)

=
n
∑

i=1
log
(

ρi(t)
ρi

)−ρi(t)

In the above, we used Equations (16) and (17).

References
1. Liu, A.C.H.; Cathelin, S.; Yang, Y.; Dai, D.L.; Manikoth Ayyathan, D.; Hosseini, M.; Minden, M.D.; Tierens, A.; Chan, S.M.

Targeting STAT5 signaling overcomes resistance to IDH inhibitors in acute myeloid leukemia through suppression of stemness.
Cancer Res. 2022, 82, 4325–4339. [CrossRef]

2. Vilaplana, J.; Solsona, F.; Abella; Filgueira, R.; Rius, J. The cloud paradigm applied to e-Health. BMC Med. Inform. Decis. Mak.
2013, 13, 35. [CrossRef]

3. Barankai, N.; Fekete, A.; Vattay, G. Effect of network structure on phase transitions in queuing networks. Phys. Rev. E 2012, 86,
066111. [CrossRef] [PubMed]

4. Lin, C.J.; Wu, C. Mathematically modelling the effects of pacing, finger strategies and urgency on numerical typing performance
with queuing network model human processor. Ergonomics 2012, 55, 1180–1204. [CrossRef]

5. Wu, C.; Liu, Y. Queuing network modeling of the psychological refractory period (PRP). Psychol. Rev. 2008, 115, 913–954.
[CrossRef]

6. Koizumi, N.; Kuno, E.; Smith, T.E. Modeling patient flows using a queuing network with blocking. Health Care Manag. Sci. 2005,
8, 49–60. [CrossRef]

7. Kendall, D.G. Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov
Chain. Ann. Math. Statist. 1953, 24, 338–354. [CrossRef]

8. Horowitz, J.M.; Kulkarni, R.V. Stochastic gene expression conditioned on large deviations. Phys. Biol. 2017, 14, 03LT01. [CrossRef]
[PubMed]

9. Cho, K.W.; Kim, S.M.; Chae, Y.M.; Song, Y.U. Application of Queueing Theory to the Analysis of Changes in Outpatients’ Waiting
Times in Hospitals Introducing EMR. Healthc. Inform. Res. 2017, 23, 35–42. [CrossRef] [PubMed]

10. Franco, C.; Herazo-Padilla, N.; Castañeda, J.A. A queueing Network approach for capacity planning and patient Scheduling: A
case study for the COVID-19 vaccination process in Colombia. Vaccine 2022, 40, 7073–7086. [CrossRef]

11. Qureshi, S.M.; Bookey-Bassett, S.; Purdy, N.; Greig, M.A.; Kelly, H.; Neumann, W.P. Modelling the impacts of COVID-19 on nurse
workload and quality of care using process simulation. PLoS ONE 2022, 17, e0275890. [CrossRef]

12. Lee, K.H.; Kimmel, M. Analysis of two mechanisms of telomere maintenance based on the theory of g-Networks and stochastic
automata networks. BMC Genom. 2020, 21, 587. [CrossRef] [PubMed]

13. Stein, V.; Alexandrov, K. Protease-based synthetic sensing and signal amplification. Proc. Natl. Acad. Sci. USA 2014, 111,
15934–15939. [CrossRef] [PubMed]

14. Steiner, P.J.; Williams, R.J.; Hasty, J.; Tsimring, L.S. Criticality and Adaptivity in Enzymatic Networks. Biophys. J. 2016, 111,
1078–1087. [CrossRef] [PubMed]

15. Hochendoner, P.; Ogle, C.; Mather, W.H. A queueing approach to multi-site enzyme kinetics. Interface Focus 2014, 4, 20130077.
[CrossRef] [PubMed]

16. Clement, E.J.; Schulze, T.T.; Soliman, G.A.; Wysocki, B.J.; Davis, P.H.; Wysocki, T.A. Stochastic Simulation of Cellular Metabolism.
IEEE Access 2020, 8, 79734–79744. [CrossRef] [PubMed]
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