Forecasting Tourist Arrivals for Hainan Island in China with Decomposed Broad Learning before the COVID-19 Pandemic
Abstract
:1. Introduction
2. Methodology
2.1. Empirical Wavelet Transform
2.2. Fuzzy Entropy
2.3. Broad Learning System
3. Results and Discussion
3.1. Model Performance Evaluation
3.2. Results of Decomposition
3.3. Analysis of Forecasting Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Olya, H.G.T.; Mehran, J. Modelling tourism expenditure using complexity theory. J. Bus. Res. 2017, 75, 147–158. [Google Scholar] [CrossRef]
- Khaidi, S.M.; Abu, N.; Muhammad, N. Tourism demand forecasting—A review on the variables and models. J. Phys. Conf. Ser. 2019, 1366, 012111. [Google Scholar] [CrossRef]
- Volchek, K.; Liu, A.; Song, H.; Buhalis, D. Forecasting tourist arrivals at attractions: Search engine empowered methodologies. Tour. Econ. 2018, 25, 425–447. [Google Scholar] [CrossRef]
- Jiao, E.X.; Chen, J.L. Tourism forecasting: A review of methodological developments over the last decade. Tour. Econ. 2018, 25, 469–492. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.; Sun, S.; Tang, L.; Wang, S. Decomposition methods for tourism demand forecasting: A comparative study. J. Travel Res. 2022, 61, 1682–1699. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.; Sun, S.; Wang, S. A novel deep learning approach for tourism volume forecasting with tourist search data. Int. J. Tour. Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Assaf, A.G.; Li, G.; Song, H.; Tsionas, M.G. Modeling and Forecasting Regional Tourism Demand Using the Bayesian Global Vector Autoregressive (BGVAR) Model. J. Travel Res. 2018, 58, 383–397. [Google Scholar] [CrossRef]
- Calantone, R.J.; Di Benedetto, C.A.; Bojanic, D. A Comprehensive Review Of The Tourism Forecasting Literature. J. Travel Res. 1987, 26, 28–39. [Google Scholar] [CrossRef]
- Saayman, A.; Botha, I. Non-linear models for tourism demand forecasting. Tour. Econ. 2015, 23, 594–613. [Google Scholar] [CrossRef]
- Rezaei, H.; Faaljou, H.; Mansourfar, G. Stock price prediction using deep learning and frequency decomposition. Expert Syst. Appl. 2021, 169, 114332. [Google Scholar] [CrossRef]
- Gilles, J.J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, T.; Chen, C.P.; Liu, Z. Research review for broad learning system: Algorithms, theory, and applications. IEEE Trans. Cybern. 2021, 52, 8922–8950. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, Q.; Li, P. Online prediction and correction control of static voltage stability index based on Broad Learning System. Expert Syst. Appl. 2022, 199, 117184. [Google Scholar] [CrossRef]
- Hao, F.; Jin, J. A Broad Learning Ensemble System Using Bagging for Typhoon Trajectory Forecasting. In Proceedings of the 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 14–16 January 2022; pp. 729–733. [Google Scholar]
- Chen, C.P.; Liu, Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. 2017, 29, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Zhou, J.; Zhang, C.; Fu, W. Streamflow Forecasting Using Empirical Wavelet Transform and Artificial Neural Networks. Water 2017, 9, 406. [Google Scholar] [CrossRef]
- Cao, H.; Fan, F.; Zhou, K.; He, Z.J.M. Wheel-bearing fault diagnosis of trains using empirical wavelet transform. Measurement 2016, 82, 439–449. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Yang, Y.; Deng, Z. Multiscale symbolic fuzzy entropy: An entropy denoising method for weak feature extraction of rotating machinery. Mech. Syst. Signal Process. 2022, 162, 108052. [Google Scholar] [CrossRef]
- Narayanamoorthy, S.; Geetha, S.; Rakkiyappan, R.; Joo, Y.H. Interval-valued intuitionistic hesitant fuzzy entropy based VIKOR method for industrial robots selection. Expert Syst. Appl. 2019, 121, 28–37. [Google Scholar] [CrossRef]
- Ishikawa, A.; Mieno, H. The fuzzy entropy concept and its application. Fuzzy Sets Syst. 1979, 2, 113–123. [Google Scholar] [CrossRef]
- Aggarwal, M. Redefining fuzzy entropy with a general framework. Expert Syst. Appl. 2021, 164, 113671. [Google Scholar] [CrossRef]
- Yang, J.; Huang, S.; Tang, R.; Hu, Q.; Lan, K.; Wang, H.; Zhao, Q.; Fong, S. Broad learning with attribute selection for rheumatoid arthritis. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 552–558. [Google Scholar]
- Feng, S.; Chen, C.L.P. Fuzzy Broad Learning System: A Novel Neuro-Fuzzy Model for Regression and Classification. IEEE Trans. Cybern. 2018, 50, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition Method and the Hilbert Spectrum for Non-stationary Time Series Analysis. R. Soc. Lond. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Woosnam, K.M.; Maruyama, N.; Boley, B.B. Perceptions of the ‘Other’ Residents: Implications for Attitudes of Tourism Development Focused on the Minority Ethnic Group. J. Travel Tour. Mark. 2016, 33, 567–580. [Google Scholar] [CrossRef]
- Wang, L.; Yotsumoto, Y. A different interpretation from Cornet’s on tourism development in an ethnic minority village in China. Asia Pac. J. Tour. Res. 2018, 23, 847–861. [Google Scholar] [CrossRef]
- Gholamian, A.; Maleki, F.; Rezaii, A. Are they the ‘other’? The ethno-nationalism experiences of Iranian Kurdish ethnic tourists. J. Tour. Cult. Chang. 2021, 19, 587–605. [Google Scholar] [CrossRef]
- Maleki, F.; Gholamian, A. Antecedents and consequences of ethnic tourist satisfaction: The moderating role of ethnic identity. J. Herit. Tour. 2020, 15, 597–611. [Google Scholar] [CrossRef]
- Han, H.; Al-Ansi, A.; Koseoglu, M.A.; Lin, P.M.C.; Park, J.; Yu, J.; Kim, W. Halal tourism: Travel motivators and customer retention. J. Travel Tour. Mark. 2019, 36, 1012–1024. [Google Scholar] [CrossRef]
- Ruiz Reina, M.Á. Entropy Method for Decision-Making: Uncertainty Cycles in Tourism Demand. Entropy 2021, 23, 1370. [Google Scholar] [CrossRef]
Country | FEWT-BL | BL | BPNN | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAPE | R2 | RMSE | MAPE | R2 | RMSE | MAPE | R2 | |
JP | 16.86 | 4.45 | 0.93 | 27.04 | 6.44 | 0.86 | 30.06 | 12.58 | 0.84 |
KR | 7.56 | 2.68 | 0.95 | 14.54 | 3.67 | 0.92 | 17.41 | 4.46 | 0.9 |
MY | 20.87 | 11.05 | 0.91 | 30.3 | 12.68 | 0.87 | 34.88 | 14.24 | 0.81 |
GB | 7.6 | 10.96 | 0.95 | 11.7 | 12.02 | 0.92 | 18.07 | 14.24 | 0.89 |
FR | 10.42 | 1.4 | 0.94 | 15.54 | 1.37 | 0.89 | 16.7 | 1.99 | 0.88 |
DE | 17.18 | 1.14 | 0.92 | 27.07 | 1.23 | 0.86 | 29.44 | 1.48 | 0.85 |
IT | 6.54 | 0.71 | 0.96 | 9.3 | 1.41 | 0.93 | 15.57 | 1.6 | 0.88 |
CH | 17.75 | 0.62 | 0.92 | 30.43 | 1.8 | 0.85 | 33.69 | 2.33 | 0.82 |
RU | 10.6 | 1.16 | 0.93 | 18.1 | 2.27 | 0.9 | 12.48 | 2.11 | 0.91 |
US | 9.04 | 0.31 | 0.94 | 11.26 | 1.3 | 0.91 | 18.38 | 2.19 | 0.89 |
CA | 9.89 | 0.83 | 0.94 | 14.66 | 1.77 | 0.92 | 12.16 | 1.45 | 0.91 |
AU | 11.57 | 1.12 | 0.92 | 13.18 | 1.33 | 0.91 | 26.37 | 2.66 | 0.87 |
Models | BPNN and BL | FEWT-BL and BL | FEWT-BL and BPNN |
---|---|---|---|
DM value | 1.4209 | 5.9589 | 4.0377 |
p | 0.1553 | 2.5394 × 10−9 | 5.3978 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yang, J.; Huang, S.; Li, X.; Liu, G. Forecasting Tourist Arrivals for Hainan Island in China with Decomposed Broad Learning before the COVID-19 Pandemic. Entropy 2023, 25, 338. https://doi.org/10.3390/e25020338
Chen J, Yang J, Huang S, Li X, Liu G. Forecasting Tourist Arrivals for Hainan Island in China with Decomposed Broad Learning before the COVID-19 Pandemic. Entropy. 2023; 25(2):338. https://doi.org/10.3390/e25020338
Chicago/Turabian StyleChen, Jingyao, Jie Yang, Shigao Huang, Xin Li, and Gang Liu. 2023. "Forecasting Tourist Arrivals for Hainan Island in China with Decomposed Broad Learning before the COVID-19 Pandemic" Entropy 25, no. 2: 338. https://doi.org/10.3390/e25020338
APA StyleChen, J., Yang, J., Huang, S., Li, X., & Liu, G. (2023). Forecasting Tourist Arrivals for Hainan Island in China with Decomposed Broad Learning before the COVID-19 Pandemic. Entropy, 25(2), 338. https://doi.org/10.3390/e25020338