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Abstract: The Conditional Independence (CI) test is a fundamental problem in statistics. Many non-
parametric CI tests have been developed, but a common challenge exists: the current methods perform
poorly with a high-dimensional conditioning set. In this paper, we considered a nonparametric CI
test using a kernel-based test statistic, which can be viewed as an extension of the Hilbert–Schmidt
Independence Criterion (HSIC). We propose a local bootstrap method to generate samples from
the null distribution H0 : X ⊥⊥ Y | Z. The experimental results showed that our proposed method
led to a significant performance improvement compared with previous methods. In particular, our
method performed well against the growth of the dimension of the conditioning set. Meanwhile, our
method can be computed efficiently against the growth of the sample size and the dimension of the
conditioning set.

Keywords: conditional independence test; dependence measure; local bootstrap

1. Introduction

The Conditional Independence (CI) test is a statistical hypothesis test that examines
whether variables X and Y are conditionally independent given another variable Z, denoted
as X ⊥⊥ Y | Z, when we observe the actual values of the three variables. The CI test plays a
critical role in Bayesian network structure learning [1,2] and causal discovery [3].

The task is relatively easy when the sample size n is large and the variable Z is discrete,
because then, we can test the independence of X, Y for each value of Z [4]. On the other
hand, if X, Y, Z have a joint Gaussian distribution, then the CI reduces to a zero partial
correlation between X and Y given Z [5], which can also be easily tested. In this paper, we
considered X, Y, Z without making any assumption on the joint distribution. X, Y, Z can be
either continuous or discrete variables. The problem becomes challenging with a growing
dimension dZ due to the curse of dimensionality [6], when Z may be a set of dZ variables
or any dZ-dimensional random vector.

Another major challenge in CI tests is the need to sample from the null distribution
H0 : X ⊥⊥ Y | Z. In general, statistical hypothesis tests require us to obtain the distribution
of the test statistic under the null hypothesis H0. However, when we are only given the
observations, the exact distribution for any test statistic under the CI case (H0 : X ⊥⊥ Y | Z)
is unknown. The two approaches below are the most-popular ways to obtain an approxi-
mated null distribution:

• Permutation method:
One approach is by permuting the observed samples. In the independence test, where
H0 : X ⊥⊥ Y, though X and Y in each pair (x1, y1), . . . , (xn, yn) are not independent,
we may regard X and Y of shifted pairs of (x1, y2), . . . , (xn−1, yn), (xn, y1) to be inde-
pendent. Thus, we can compute the test statistic values on the shifted pairs, which
mimic H0, and obtain a histogram as an approximated null distribution. However, in
the CI test, as the conditioning set Z exists, we cannot shift {xi}, {yi}, {zi} in order to
make them conditionally independent [7,8].
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• Asymptotic method:
The other approach utilizes the asymptotic distributions of the test statistics [9–11].
For some test statistics, their asymptotic distributions are derived. In that case, the
asymptotic distribution of a test statistic can be used to approximate the null distribu-
tion. Though these asymptotic distributions can be generated efficiently, they are less
accurate when the sample size n is small or with a high-dimensional Z [8,12].

Our contributions: In this paper, we propose a new CI test including a novel test
statistic and a local bootstrap method to sample from H0 : X ⊥⊥ Y | Z. In many CI tests,
test statistics directly evaluate the conditioning set Z, which becomes difficult when Z is
high-dimensional or has a complex density. Our proposed test statistic does not directly
access conditioning set Z, which alleviates the curse of dimensionality. Such a test statistic
is expected to be more robust for a high-dimensional conditional set. The experiment result
showed that our proposed test had a comparable performance when Z is low-dimensional
and notably outperformed others when Z is high-dimensional. Moreover, our proposed
method can be computed efficiently regarding the growing sample size n and growing
dimension of Z. We summarize our main contributions as follows:

• We designed a novel test statistic in the following procedure: we first subdivided Z
into several local clusters, then measured the unconditional independence in each
cluster, and finally, combined the unconditional independence measures into a single
number as the measure of conditional independence. In particular, we used k-means
to find clusters of Z and the Hilbert–Schmidt Independence Criterion (HSIC) [13] as
the measure of unconditional independence in each cluster. We took the sum of the
local HSIC values as our test statistic for conditional dependence.

• We propose to use a local bootstrap method to sample from the CI case H0 : X ⊥⊥ Y | Z.
We extended the local bootstrap strategy in [14] and showed the theoretical consistency
of the bootstrap distribution. The local bootstrap method worked well combined with
the proposed test statistic, but can also be applied to other CI tests.

The paper is organized as follows. In Section 2, we discuss some related works on the
CI test. In Section 3, we introduce the notations and provide an overview of the HSIC, a
kernel-based measure of unconditional independence. In Section 4, we show the details
about the test procedure and explain both the test statistic and the local bootstrap method.
In Section 5, we compare with other representative CI tests based on the synthetic data.
Finally, we summarize our results in Section 6.

2. Related Work

Recently, numerous nonparametric methods have been proposed for CI testing. Many
test statistics have been constructed by embedding distributions in Reproducing Kernel
Hilbert Spaces (RKHSs). Fukumizu et al. [7] proposed a measure of CI based on cross-
covariance operators. However, its asymptotic distribution under the null hypothesis
is unknown, and the bin-based permutation degrades as the dimension of conditioning
variable Z grows. Later, Zhang et al. [10] proposed the KCIT, based on the partial association
of functions in some universal RKHS. A major advantage of the KCIT is a known asymptotic
distribution that can be efficiently approximated using Monte Carlo simulations. For the
CI test on a large-scale dataset, Strobl et al. [11] proposed the RCIT and RCoT to use
random Fourier features to approximate the KCIT efficiently. Huang et al. [15] proposed
a Kernel Partial Correlation (KPC), a generalization of a partial correlation to measure
conditional dependence. Beyond kernel-based methods, Runge [12] used a Conditional
Mutual Information (CMI) estimator as the test statistic and proposed a k-nearest-neighbor-
based permutation to generate samples from the null distribution. Shah and Peters [16]
proposed a Generalized Covariance Measure (GCM) as the test statistic based on regression
method. Doran et al. [8] turned the CI test into a two-sample test by finding a permutation
matrix and measuring the Maximum Mean Discrepancy (MMD) [17] between the two
distributions. Sen et al. [18] proposed a method called the CCIT, which turns the CI test
into a classification problem. In [8,18], they both gave an additional sampling step involving
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data splitting, potentially reducing the power when the dataset is small. Some other model-
powered methods also make use of the GAN [19,20] and Double-GAN [21].

While nonparametric CI tests make no assumption about the joint distribution of
X, Y, Z, imposing additional assumptions helps to simplify the problem. Some milder
assumptions are considered. In particular, X and Y are assumed to be in function forms of
variable Z plus an additive independent noise term, which has a zero mean:

X = f (Z) + εx, Y = g(Z) + εy.

If the estimated noise terms are independent εx ⊥⊥ εy, we conclude that X ⊥⊥ Y | Z [22–26].
The methods in this category need to find a regression function and then test for the
unconditional independence of the residuals.

For further details about the different characterizations of CI, see [27]. From a theoreti-
cal perspective, Shah and Peters [16] proved there exists no universally valid CI testing for
all CI cases. Precisely, no CI test can control Type-I error for all the CI cases while having
a higher power against any alternative. However, a desirable CI test is supposed to be
computationally efficient.

3. Background on Kernel Methods

This section introduces the notations and gives the basic definitions related to the
kernel methods. For further details, see [13,28,29]. We use X, Y, Z and x ∈ X , y ∈ Y , z ∈ Z
to represent random variables and their observed samples and use X ,Y ,Z to denote
the associated domains. We considered a positive definite kernel k : X × X → R that
corresponds to a Hilbert spaceH and a feature map Ψ : X → H such that

k(x1, x2) = 〈Ψ(x1), Ψ(x2)〉H

for x1, x2 ∈ X , where 〈·, ·〉H is the inner product of the Hilbert space H. Such an H is a
Reproducing Kernel Hilbert Space (RKHS) with respect to the kernel k, denoted asHk. For
example, the Gaussian kernel k(x1, x2) = exp (−‖x1 − x2‖2/σ) is a positive definite kernel,
and we considered it a default choice in the paper. Let k be a kernel defined on X and its
corresponding RKHS beHk. We fixed a set P of measures.

Definition 1 (Kernel embedding). The kernel embedding of the measure µ into the RKHSHk is
the map mk : P → Hk defined by

P 3 µ 7→ mk(µ) :=
∫

k(·, x)dµ(x) ∈ Hk .

From the above definition, a direct consequence is∫
f (x)dµ(x) = 〈 f , mk(µ)〉Hk , ∀ f ∈ Hk.

Definition 2 (MMD). The Maximum Mean Discrepancy (MMD) between P, Q ∈ P is

MMD(P, Q) := ‖mk(P)−mk(Q)‖2
Hk

.

It is easy to see that the MMD takes non-negative values. In particular, for characteristic
kernels (e.g., the Gaussian kernel), the MMD(P, Q) becomes zero if and only if the measures
P, Q coincide [17].

Finally, we considered an unconditional dependence measure for variables X and Y.
Let kX and kY be kernels on X and Y andHkX andHkY be the corresponding RKHSs. Gret-
ton et al. [13] defined the Hilbert–Schmidt Independence Criterion (HSIC), which can be
viewed as the MMD between a measure PXY of X, Y and the product PXPY of the marginal-
ized measures PX , PY. The HSIC is a state-of-the-art dependence measure, which suits both
continuous and discrete variables. The HSIC has been well studied as a test statistic in
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independence testing [10,13,17]. For a characteristic kernel, the HSIC(X, Y) is zero if and
only if PXY = PXPY, which indicates X ⊥⊥ Y.

More precisely, we may express the HSIC as follows:

Definition 3 (HSIC).

HSIC(X, Y) := ‖mk −mkXmkY ‖
2
H

= ‖EXY[kX (X, ·)kY (Y, ·)]−EX [kX (X, ·)]EY[kY (Y, ·)]‖2
H,

whereH is the corresponding RKHS of the kernel k := kX kY defined by

k((x, y), (x′, y′)) = kX (x, x′)kY (y, y′)

for (x, y), (x′, y′) ∈ X ×Y .

The HSIC(X, Y) is known to have an alternative expression:

HSIC(X, Y) = EXYX′Y′ [C(X, Y, X′, Y′)] (1)

where C(X, Y, X′, Y′) is[
kX (X, X′)−EX′′

[
kX (X, X′′)

]][
kY (Y, Y′)−EY′′

[
kY (Y′, Y′′)

]]
, (2)

and (X′, Y′) are independent copies of (X, Y). Given data points (x1, y1), . . . , (xn, yn), we
considered the following estimator [13]:

ĤSIC(X, Y) =
1
n2 tr(KX HKY H) (3)

where (KX)ij = k(xi, xj), (KY)ij = k(yi, yj), H = I − 1
n11

T , and 1 is an n vector of ones.
Intuitively, we expect an estimator of the HSIC to be a small value when X ⊥⊥ Y.

4. Proposed Method

In this section, we introduce our proposed method. First, we present a novel test
statistic. We considered using characteristic kernels as a default choice, i.e., the Gaussian
kernel. Next, we explain the local bootstrap algorithm to generate samples from H0 :
X ⊥⊥ Y | Z. The test is summarized in Algorithm 1. Finally, we discuss the effect of the
parameters and provide a time complexity analysis of the overall procedure.

We start by looking at the CI definition: X ⊥⊥ Y | Z means X and Y are independent for
any fixed value of Z. Here, we used HSIC(X, Y | Z = z) := EXYX′Y′ [C(X, Y, X′, Y′)|Z = z]
to represent the HSIC on (X, Y) with a fixed Z value, where (X′, Y′) are copies of (X, Y).

X ⊥⊥ Y | Z ⇐⇒ X ⊥⊥ Y | Z = z, ∀z ∈ Z .

⇐⇒ HSIC(X, Y | Z = z) = 0, ∀z ∈ Z .

As a direct result, we have the following proposition.

Proposition 1 (Characterization of CI).

X ⊥⊥ Y | Z ⇐⇒
∫

HSIC(X, Y | Z)dµ(Z) = 0 (4)

where µ(Z) is the probability measure on Z.
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Proof sketch: By definition, HSIC(X, Y | Z = z) = 0 always takes non-negative values.
Thus, for a characteristic kernel, the integral becomes zero if and only if HSIC(X, Y | Z =
z) = 0, ∀z ∈ Z , which indicates X ⊥⊥ Y | Z.

Based on the above fact, conditional dependence can be measured by the marginal
unconditional dependence measure. Here, we considered the following procedure to
calculate our test statistic:

1. Perform the clustering algorithm to subdivide Z into M clusters, and let its index set
be CM.

2. Measure the unconditional dependence ĤSICCm(X, Y) for each cluster Cm.
3. Combine the sum of the values as the test statistic:

T =
M

∑
m=1

ĤSICCm(X, Y). (5)

We used the sum of the local unconditional dependence measure as the conditional
dependence measure, which is similar in spirit to [4]. Margaritis [4] considered dividing
a univariate Z ∈ R1 into local bins and using the product of the local measure as a single
number. Our method applies to a high-dimensional Z and takes the sum of kernel-based
measures. Given the data (xi, yi, zi), i = 1, . . . , n, we divided them into M clusters based on
the value of Z, and the estimator is

ĤSICCm(X, Y) =
1
|Cm|2

tr(K(m)
X HK(m)

Y H)

where |Cm| is the size of Cm and K(m)
X and K(m)

Y are the corresponding kernel matrices
for samples (xi, yi), ∀i ∈ Cm. It is easy to see that the conditioning set Z is only used in
deciding the local clusters. By doing that, we alleviate the influence of the dimension of Z.

4.1. Local Bootstrap

In this subsection, we introduce the local bootstrap method to sample from H0 : X ⊥⊥
Y | Z, which completes the CI test. The key is to break the dependence between X and
Y while keeping the dependence between (X, Z) and (Y, Z). An example of an ideal CI
permutation is explained in Figure 1.

Permute x Fix y, z

x̃3

x̃2

x̃1

x

x̃3(π3)

x̃2(π2)

x̃1(π1) z = z1

z = z2

z = z3

x̃ y z

Figure 1. An ideal permutation in the CI. Given the data, we first divided different bins (green, red,
and blue), and each bin x̃ includes samples that have the same z. From that, we fixed y and z and
shuffled x within each bin with some permutations (π1, π2, π3) to generate new data (x̃, y, z). An
ideal permutation successfully generates samples that keep the dependence between (X, Z) and
(Y, Z) while satisfying X ⊥⊥ Y.

In practice, it is impossible to perform the ideal permutation because we do not have
enough samples that have the same z. As an alternative method, we used a local bootstrap.
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First, given with different z∗, we generated (x∗, y∗) independently from the following
discrete distribution:

x∗ ∼ Ĝx|z∗ :
(

x1 x2 . . . , xn
w1 w2 . . . , wn

)
,

y∗ ∼ Ĝy|z∗ :
(

y1 y2 . . . , yn
w1 w2 . . . , wn

)
,

(6)

where wj =
K(zj−z∗/γ)

∑n
j=1 K(zj−z∗/γ)

are the probabilities to sample the index j. Under the mild

assumptions [30], we show the consistency of the bootstrap distribution at each z∗. See the
proof in Appendix A.

Proposition 2. The empirical bootstrap distribution converges to a conditional distribution with
each fixed point of z∗:

|Ĝx|z∗ Ĝy|z∗ − P(X | Z = z∗)P(Y | Z = z∗)| → 0, as n→ ∞. (7)

The local bootstrap strategy is an extension of [14], which was original designed for
sampling (x, y) according to a regression model. We extended it using a Nadaraya–Watson
kernel estimator [31] to assign the weights for indexes to be sampled. If zj is close to z∗,
wj is large; thus, the index j has a larger possibility of being sampled. Moreover, x∗ and
y∗ are sampled independently. Thus, it is less possible for both xj and yj to be sampled
simultaneously, which breaks the dependence between X and Y. Shi [14] suggested that
the bandwidth γ should be varied for different z∗. Here, we narrowed the candidates from
1, . . . , n to the 10-nearest neighbors of each z∗ and let the local bandwidth γ of z∗ be the
squared Euclidean distance between z∗ and its 10-th nearest neighbor.

The local bootstrap is summarized in Algorithm 1. Each time, we generated n samples
as if they come from H0 : X ⊥⊥ Y | Z and calculated the test statistic value T. We repeated
this K-times on the generated samples and calculated the p-value based on the histogram.
We reject H0 if the p value is smaller than a predefined significance level. Otherwise, we
accept H0. We summarize the procedure in Algorithm 2.

Algorithm 1: Local bootstrap

Input: Data (xi, yi, zi), i = 1, . . . , n.
Output: New samples: (x∗i , y∗i , z∗i ), i = 1, . . . , n

1 for i← 1 to n do
2 Let z∗i = zi

3 Sample x∗i ∼ Ĝx|z∗i , y∗i ∼ Ĝy|z∗i .
4 end

Algorithm 2: Test
Input: Data (xi, yi, zi), i = 1, . . . , n.

Cluster number M.
Times to repeat K.

Output: p-value.
1 Find M clusters.
2 Estimate the T.
3 for k← 1 to K do
4 Generate samples with Algorithm 1
5 Estimate Ti on the generated samples.
6 end
7 Compute the p-value:

p = 1
K ∑T

t=1 {Tk ≥ T}.
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4.2. Effect of M

The choice of the cluster number M affects the test performance. M needs to be
chosen properly so that we can focus on the pairs (x, y) who have similar z values while
having enough pairs (x, y) in each local cluster to make a good estimation of the local HSIC.
Besides, the number of M has an effect on the computational complexity: a smaller M
makes bigger clusters on average and takes more time to find local HSICs. In practice, we
fixed the average cluster size and used k-means to decide the clusters. We let M be dn/C̄e,
where dxe takes the least integer that is not smaller than x, and C̄ is the average cluster size.

4.3. Complexity Analysis

We discuss the time complexity of the test procedure. In the beginning, our method
found M clusters and weights w in the bootstrap. Both were calculated once and took
little time. The major computational cost was in repeatedly finding the test statistic Tk.
Estimating T scales less than O(M|C̃|2), where M is the number of clusters and the |C̃| is
the maximum set size among all clusters and is smaller than n. This was repeated T-times
over the generated samples to construct the histogram of the null distribution. The test
took O(Mn2K). The bootstrap part can be easily parallelized to promote the speed further,
but this was beyond the scope of the paper.

5. Experiments

In this section, we compare the proposed methods with other nonparametric CI
tests. We denote our proposed method as a Bundle of HSICs (BHSIC). The evaluation
was focused on the Type-I error rate, Type-II error rate, and runtime. A lower Type-II
error rate and computational efficiency are essential for a good CI test. In particular, we
compared with some representative methods: KCIT [10], RCIT, RCoT [11], CCIT [18],
and CMIknn [12]. For details about these methods, see Section 2. All methods have
source codes that are available online. Different methods are implemented in different
programming languages, and we focused on how these methods scale with the sample size
and the dimension of Z instead of a direct comparison of the runtimes.

We were interested in the performance of the methods with different settings. In
our simulations, we considered the following two models. The first model was a simple
linear regression model. The second model was a post-nonlinear noise model, which is a
commonly used setting in evaluating CI tests [10–12]. The functional forms of X and Y on
Z are as follows:

Model 1 : X =
dZ

∑
i=1

αiZi + cεb + ε1, Y =
dZ

∑
i=1

βiZi + cεb + ε2,

Model 2 : X = g1(
dZ

∑
i=1

Zi + cεb + ε1), Y = g2(
dZ

∑
i=1

Zi + cεb + ε2),

where Z = (Z1, . . . , ZdZ ), ε1, ε2, and εb are independent standard Gaussian. The coefficients
αi, βi ∼ Uni f orm(−0.5/dz, 0.5/dz) and the functions g1(·) and g2(·) were uniformly chosen
from {(·), (·)2, (·)3, tanh(·), exp(−‖ · ‖2)}. We considered (a) H0 : X ⊥⊥ Y | Z with c = 0
and (b) H1 : X 6⊥⊥ Y | Z with c = 1.

In the following simulations, we studied the test performance on different sample sizes
and dimensions of Z. The sample sizes n varied from {100, 200, 400, 600, 800} with fixed
dimensions of dZ = 1 and dZ = 10. The dimensions dZ varied from {1, 2, 5, 10, 20} with
a fixed sample size of n = 400. We also studied the effect of the cluster number M in our
proposed method. The significance levels were set to be α = 0.05 in all the simulations. The
evaluations of the Type-I error rate, Type-II error rate, and mean runtimes are reported over
100 replications. The Type-I error rate is the false rejection percentage when the underlying
truth is H0 : X ⊥⊥ Y | Z with c = 0, and the Type-II error rate is the false acceptance
percentage when the underlying truth is H1 : X 6⊥⊥ Y | Z with c = 1. Runtime is the average
time to perform one test.
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5.1. Hyperparameters

The choice of the hyperparameters affects the results. For the KCIT, RCIT, and RCoT,
the bandwidths in the Gaussian kernels were set to be the squared median Euclidean
distance between (X, Y) using all the pairs (or the first 500 pairs if n > 500) double the
conditioning set size, which was recommended in [11]. Thew CMIknn has two hyperpa-
rameters: the neighbor size kCMI = 0.1n in finding the estimator of the CMI, and kperm = 5
in the permutation, respectively. The permutation in CMIknn was repeated 1000-times as
the default [12].

In our proposed methods, the bandwidths were set to be the squared median Euclidean
distance between (X, Y) in each local cluster. The number of clusters M was set to be dn/50e
when n <= 200 and dn/80e when n > 200, where dxe takes the least integer that is bigger
than or equal to x. On average, each cluster had 50 samples when n <= 200 and 80 samples
otherwise. The local bootstrap was repeated 1000-times.

5.2. When Z Is Low-Dimensional

We first examined the test performance when Z is generated independently of a
standard Gaussian distribution. The sample size n changed from 100 to 800. The simulation
results on Linear Model 1 and Nonlinear Model 2 are reported in Figure 2 and Figure 3,
respectively. Both the Type-I error rate and Type-II error rate are reported. Because runtime
is independent of the model, we only report it in Figure 3.

Figure 2. Simulation results on Linear Model 1 (dZ = 1). The significance level is α = 0.05. Type-I
error rates and Type-II error rates are reported.

Figure 3. Simulation results on Nonlinear Model 2 (dZ = 1). The significance level is α = 0.05. Type-I
error rates, Type-II error rates, and mean runtimes are reported.

The Linear Model 1 setting with a single conditioning variable Z is very simple.
All methods had controlled Type-I error rates around α = 0.05 and almost zero Type-II
error rates, except for the CCIT. In our experiments, the performance of the CCIT was
constantly among the worst. The data splitting procedure in the CCIT seems to reduce
the power of the test when the sample size is small. In the Nonlinear Model 2 setting,
all methods had controlled Type-I error rates around α = 0.05. However, it was shown
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that the proposed method and the CMIknn had better powers against the others when the
sample size n was smaller. This matched the result in [12] that CMIknn performed well
with a low-dimensional conditioning set Z. When the sample size n was larger than 400,
most methods had relatively low Type-II error rates. From the runtime plot, the proposed
method was less efficient than the KCIT, RCIT, and RCoT, which are based on an asymptotic
distribution. Though the BHSIC and CMIknn were slower, the sampling procedure can
readily be parallelized.

5.3. When Z Is High-Dimensional

We next examined the test performance when Z was a set of 10 variables, and each
variable in conditioning set Z was generated independently from a standard Gaussian
distribution. The sample size n changed from 100 to 800. The simulation results on Linear
Model 1 and Nonlinear Model 2 are reported in Figure 4 and Figure 5, respectively.

Figure 4. Simulation results on Linear Model 1 (dZ = 10). The significance level α = 0.05. Type-I
error rates and Type-II error rates are reported.

Figure 5. Simulation results on Nonlinear Model 2 (dZ = 10). The significance level α = 0.05. Type-I
error rates, Type-II error rates, and mean runtimes are reported.

In both linear and nonlinear settings, the RCIT and RCoT failed and had high Type-I
error rates. The RCIT and RCoT approximated the KCIT by using random Fourier features
and were designed for large-scale datasets. Though they are more scalable than the KCIT,
their performances were poor when the sample size was relatively small. The KCIT,
CMIknn, and BHSIC performed well in the linear model setting. In the nonlinear model
setting, the KCIT showed greater Type I error rates and Type II error rates because the
high-dimensional Z led to a less accurate estimation of the asymptotic distribution. We
noticed that the BHSIC showed a higher power than the other methods. As we expected, it
was beneficial to avoid evaluating the high-dimensional Z directly, which made the method
more robust.
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5.4. When dZ Changes

Next, we examined the performance when the dimension of Z changes. We fixed
the sample size n = 400 and changed dZ from 1 to 20 in Nonlinear Model 2. The results
are shown in Figure 6. Our proposed method performed well against the growth of the
dimension of Z and showed a higher power than other methods. Moreover, the dimension
of Z did not affect the runtimes since Z was used in k-means only once, which coincided
with our complexity analysis.

Figure 6. Simulation results on different dimensions of Z (dZ = 1, 5, 10, 15, 20). The sample size
n = 400 was fixed. The significant level α = 0.05. Type-I error rates, Type-II error rates, and mean
runtimes are reported.

5.5. Effect on M

Now, we study the effect on the cluster number M. We fixed the sample size n = 400
in Nonlinear Model 2 and changed M from 2 to 20. We examined both low-dimensional
(dZ = 1) and high-dimensional (dZ = 10) cases. The results are shown in Figure 7.

Figure 7. Simulation results on a different cluster number M. The sample size n = 400 was fixed.
Results on different dimensionality of Z are reported (dZ = 1, red line; dZ = 10, blue line). The
significant level α = 0.05. Type-I error rates, Type-II error rates, and mean runtimes are reported.

We noticed that the Type I error rates were controlled when dZ = 1 and dZ = 10.
As the cluster number M grew to more than 10, the Type-II error rate increased, but the
runtimes reduced. The reason is that when we divided the sample points into more clusters,
each cluster had fewer points. Thus, the estimation of each local HSIC value became less
accurate. On the other hand, the computational cost of the proposed test reduced as the
clusters became smaller when the cluster number M grew. The number of samples in each
cluster depends on the choice of the clustering algorithms as well. In our experiment, we
simply used naive k-means.

6. Conclusions

In this paper, we proposed a novel CI test including a new test statistic and a local
bootstrap method to generate samples from the null hypothesis. We first performed
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clustering to avoid directly evaluating the high-dimensional conditioning set Z. Then, we
used the clustering result and combined several local dependence measures as a measure of
conditional dependence. Consequently, the problems caused by a high-dimensional Z can
be suppressed. The experimental results showed that our method is robust and performs
well against the growth of the dimension of the conditioning set.
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Appendix A. Proof of Proposition 2

We assumed that
X = gx(Z) + ε, Y = gy(Z) + ε, (A1)

and the local bootstrap method generates samples from X ⊥⊥ Y | Z.
For each z∗i = zi, the empirical conditional probability density functions are

Ĝx|z∗(x < t) =
n

∑
j=1

wj1xj<t, (A2)

Ĝy|z∗(y < t) =
n

∑
j=1

wj1yj<t. (A3)

where wj =
K
(

zj−z∗

γ

)
∑n

j=1 K
(

zj−z∗
γ

) . We used Gx|z∗ and Gy|z∗ to denote the underlying truth:

Gx|z∗(x < t) = P(X < t | Z = z∗),

Gy|z∗(y < t) = P(Y < t | Z = z∗).

Consider pairs (x, z) ∈ R×Rd. Devroye and Wagner (1980) proved the Lp conver-
gence of ĝx(z) := ∑n

j=1 wjxj to gx(z):

A1 E[|Z|p] ≤ ∞, p ≥ 1.
A2 γ→ 0 as n→ ∞.
A3 nγd → 0 as n→ ∞.
A4 The kernel K satisfies the following:

– K is a nonnegative function on Rd bounded by k∗ < ∞.
– K has a compact support A.
– k ≥ β1B for some β > 0 and some closed sphere B centered at the origin with

positive radius.

Lemma A1 (Devroye and Wagner, 1980). Under the above assumption, we have

EX [
∫
|ĝx(z)− gx(z)|pdz]→ 0, as n→ ∞. (A4)
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Let xi = 1xi<t, and notice that

1xi<t = P(Xi < t) + ei

where E(ei) = 0 and supi E(ek
i ) ≤ 1 for all k ≥ 2. This can be viewed as another non-

parametric regression model as in (1). We have

EX [
∫
|Ĝx|z − Gx|z|pdz]→ 0, as n→ ∞.

Using Lemma 1, we proved the Lp convergence of ĝx(z)ĝy(z):

Lemma A2.

EXY[
∫
|ĝx(z)ĝy(z)− gx(z)gy(z)|pdz]→ 0, as n→ ∞. (A5)

Proof:
EXY[

∫
|ĝx(z)ĝy(z)− gx(z)gy(z)|pdz]

= EXY[
∫
|ĝx(z){ĝy(z)− gy(z)}+ gy(z){ĝx(z)− gx(z)}|pdz]

≤ EXY[
∫
|ĝx(z)|p|ĝy(z)− gy(z)|pdz]

+EXY[
∫
|gy(z)|p|ĝx(z)− gx(z)|pdz]

≤(k∗)p
{
EY[

∫
|ĝy(z)− gy(z)|pdz] +EX [

∫
|ĝx(z)− gx(z)|pdz]

}
(A6)

and the right side becomes 0 as n→ ∞.
Similarly, we have

EXY[
∫
|Ĝx|zĜy|z − Gx|zGy|z|pdz]→ 0, as n→ ∞, (A7)

and
|Ĝx|z∗ Ĝy|z∗ − Gx|z∗Gy|z∗ | → 0, as n→ ∞.
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