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Abstract: Fault diagnosis of complex equipment has become a hot field in recent years. Due to
excellent uncertainty processing capability and small sample problem modeling capability, belief rule
base (BRB) has been widely used in the fault diagnosis. However, previous BRB models almost did
not consider the diverse distributions of observation data which may reduce diagnostic accuracy. In
this paper, a new fault diagnosis model based on BRB is proposed. Considering that the previous
triangular membership function cannot address the diverse distribution of observation data, a new
nonlinear membership function is proposed to transform the input information. Then, since the
model parameters initially determined by experts are inaccurate, a new parameter optimization
model with the parameters of the nonlinear membership function is proposed and driven by the
gradient descent method to prevent the expert knowledge from being destroyed. A fault diagnosis
case of laser gyro is used to verify the validity of the proposed model. In the case study, the diagnosis
accuracy of the new BRB-based fault diagnosis model reached 95.56%, which shows better fault
diagnosis performance than other methods.
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1. Introduction

With the rapid development of industrial technology, the fault diagnosis of complex
equipment has received extensive attention and become a hot topic in Prognostics Health
Management (PHM) [1–3]. At present, due to the complexity and intelligence of complex
equipment in industrial production and national defense science and industry, it is tough
to diagnose their faults through the appearance of the equipment. Therefore, establishing a
fault diagnosis model is an effective method.

Current popular fault diagnosis models can be divided into three categories: mechanism-
based models, knowledge-based models and data-driven models [4]. (1) Mechanism-based
model: such models require that the mechanism of complex equipment can be clearly under-
stood and corresponding mathematical or physical models can be established, such as the
Kalman filter [5] and Kirchhoff law [6]. However, with the increasing complexity of equipment,
its mechanism is difficult to grasp and such models are rarely used. (2) Knowledge-based
model: this kind of model is established by the qualitative knowledge of domain experts, but
it is generally difficult to achieve high modeling accuracy such as fault tree analysis (FTA) [7]
and analytic hierarchy process (AHP) [8]. Since such models cannot learn by themselves, when
the equipment is running, it cannot update knowledge and can only be modified by experts.
(3) Data-driven model: with the advent of the big data era, data-driven fault diagnosis models
have attracted a lot of attention. This kind of model does not need to master the mechanics of
the equipment and can achieve modeling of the input and output relationship through the
observation data. Simultaneously, they also have good learning abilities and can constantly
be updated by data, such as with the support vector machines [9], decision trees [10] and
deep learning algorithms [11]. However, in many fault diagnosis fields, the high-value fault
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samples are very limited, causing the data-driven model to fall into the problem of overfitting.
On the other hand, due to the black-box nature of most data-driven models, the diagnosis
results are not transparent and difficult to be convincing.

Belief rule base (BRB) is a generic rule-based modeling approach that was formally
proposed by Yang et al. in 2006 [12]. It differs from traditional ML-type fuzzy rules:
the consequent part of the “if-then” rule in BRB is composed of the belief distribution of
all possible results, which means that BRB can handle fuzzy, uncertain and incomplete
information together. Since rule-based knowledge representation is easy to understand
by experts, BRB can embed expert knowledge easily and has good interpretability [13].
Therefore, as a knowledge-data hybrid-driven modeling method [14], BRB has been widely
used in the field of fault diagnosis [15]. Xu et al. developed a fault diagnosis model of
diesel engines based on BRB for the first time and realized the diagnosis of concurrent
faults [16]. Feng et al. established a fault diagnosis model for oil pipelines based on
BRB after considering the correlation of attributes [17]. Zhang et al. established the fault
diagnosis and location model of the bus network based on BRB [18]. Li et al. developed an
adaptive interpretable fault diagnosis model based on BRB [19]. Chen et al. proposed a
mechanical equipment fault diagnosis model based on combination BRB [20]. Ming et al.
proposed an interpretable fault diagnosis method based on probability table and BRB [21].
Wang et al. proposed a BRB-based fault diagnosis method for multi-agent systems [22].

As a typical fuzzy system, the first step of BRB in fault diagnosis is the transforma-
tion of input information. Since the observation information of most fault indicators in
engineering are quantitative data, it needs to be fuzzified. In the previous BRB-based fault
diagnosis model, the rule and utility based method is used to fuzzy quantitative data [23]:
this is a triangular membership function [24]. The triangular membership function has a
simple structure and can accurately transform the uniformly distributed observation data.
However, in engineering, many observation data are not subject to the uniform distribution.
Moreover, the small sample characteristics of fault data may present a distribution form that
is difficult to be directly understood by people. In these cases, the triangular membership
function is not accurate enough and will reduce the diagnostic accuracy. Therefore, it is
necessary to adopt a membership function that can adapt the data distribution to transform
the input information to improve the modeling accuracy.

As a commonly used membership function, the gaussian membership function can
adapt to the distribution of data by adjusting its expectation and variance. Some research on
this membership function in BRB has been carried out. Liu et al. introduced the Gaussian
membership function in BRB-based engineering system safety analysis [25]; Zhang et al.
also considered the Gaussian membership function when establishing the fault diagnosis
model of the bus network [18]. However, it is worth noting that the adaptive ability of
the Gaussian membership function is limited by the shape of the exponential curve. The
Gaussian membership function is not ideal for the transformation of uniformly distributed
observation data.

Therefore, a nonlinear membership function is proposed in this paper to make up
for the shortcomings of the Gaussian membership function. In the exponential part of
the original triangular membership function, a new parameter is considered to control
the shape of the membership function curve. When the parameters change, the nonlinear
membership function can adaptively transform the observation data under various distri-
butions. Since the shape of the curve of the function changes more flexibly, the nonlinear
membership function can more accurately convert the input information than the Gaussian
membership function.

On the other hand, as an expert system, parameters of BRB model are initially deter-
mined by experts. Due to the inherent subjectivity and ignorance of experts, the diagnostic
accuracy of the initial BRB is often not ideal and needs to be optimized. In recent years,
many swarm intelligent algorithms have been developed for BRB parameter optimization,
such as DE [26], PSO [27] and P-CMAES [28]. The common problem of these swarm
intelligence algorithms is that expert knowledge is destroyed after optimization due to the
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random initialization of the population. This will cause BRB to lose its advantage in fault
diagnosis. However, the gradient descent method searches from the parameters initially
determined by experts, which allows retention of expert knowledge to the greatest extent.
Therefore, a new optimization model based on the gradient descent method, which can
further improve the modeling accuracy while maintaining expert knowledge, is developed.
Therefore, the contributions of this paper are the following:

(1) A new BRB considering nonlinear membership function, which can adaptively
deal with the non-uniform distribution of observation data in fault diagnosis, is proposed.

(2) For the new BRB model, a new optimization model based on the gradient descent
method is proposed to improve the accuracy of fault diagnosis and keep expert knowledge
from being destroyed.

The structure of this paper is as follows: In Section 2, the problem and basic knowledge
are introduced. In Section 3, a new BRB-based fault diagnosis model with an adaptive
membership function is proposed. In Section 4, a fault diagnosis case of the laser gyro is
used to verify the validity of the proposed model. This paper is summarized in Section 5.

2. Problem Description and Basic Knowledge
2.1. Problem Description

Faced with the characteristics of few high-value fault samples and existing expert
knowledge in the fault diagnosis for the complex equipment, this paper mainly solves the
following three problems:

Problem 1: How to use a small amount of test data and existing expert knowledge to
establish the fault diagnosis model. Due to the working characteristics of most complex
equipment, the capacity of its observation data is very limited. Therefore, the data-driven
fault diagnosis model is prone to overfitting since it cannot reflect all fault modes. On the
other hand, in the long-term operation of the equipment, experts in the field have accu-
mulated abundant expert knowledge that can be used to help judge the fault mode of the
complex equipment. Therefore, the following mapping relationships need to be established:

Y = R(x1, x2, . . . , xM, EK) (1)

where [x1, x2, . . . , xM] represent M fault indicators. Y is the fault mode to be diagnosed.
R(·) is the mapping function of the fault diagnosis model. EK is the expert knowledge.

Problem 2: For Problem 1, a belief rule-based fault diagnosis model will be proposed in
Section 2.2. In engineering, observation data usually do not obey the uniform distribution.
However, the triangular membership function in the previous BRB-based fault diagnosis
model cannot accurately convert the non-uniformly distributed data, which will lead to
poor fault diagnosis accuracy. Therefore, a new fuzzy membership function is needed to
reflect the influence of uneven data on information transformation.

Problem 3: As an expert system, the parameters in the membership function of BRB
are generally determined intuitively by experts according to domain knowledge and the
distribution characteristics of observation data. However, due to the subjectivity and
fuzziness of expert knowledge, these parameters cannot be given accurately, leading to
a decrease in the modeling accuracy. Therefore, it is necessary to further improve the
accuracy of fault diagnosis through parameter optimization.

2.2. Belief Rule-Based Fault Diagnosis Model

As a generalized ML-type fuzzy system, BRB is composed of a series of “if-then” belief
rules, as shown below:

Rk : IF x1 is Hk
1 ∧ x2 is Hk

2 ∧ . . . ∧ xM is Hk
M,

THEN
{
(D1, β1,k), (D2, β2,k) . . . (DN , βN,k)

}
, (∑N

n=1 βn,k ≤ 1),
with a rule weight θk(k = 1, 2 . . . , L) and attibute weight δi(i = 1, 2 . . . , Tk)

(2)
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where [x1, x2, . . . , xM] is the input vector and consists of m dimensions components. In
fault diagnosis, xi is the ith fault indicator. Hk

i (i = 1, 2, . . . , Tk) is the referential value of the
Ui(i = 1, 2, . . . , Tk) attribute in the kth rule. It is generally determined by experts according
to industry standards or observation data. L is the number of rules. Dn(n = 1, 2, . . . , N)
represents N possible faults. βn,k (n = 1, 2, . . . , N) represents the belief degree of the nth
fault Dn, reflecting the support of the kth rule for this consequence. θk is the rule weight of
the kth rule, which represents the relative importance of each rule. δi is the weight of the
ith attribute, which reflects the relative importance of fault indicators.

Benefited from the knowledge representation based on the belief rule, BRB has the
following advantages in fault diagnosis:

(1) Expert knowledge. Due to the natural advantages of language models, BRB
uses rules to represent the nonlinear mapping relationship between fault indicators and
fault modes, enabling experts and users to easily understand the behavior of the model.
Therefore, compared with neural networks, support vector machines and decision tree
models, the initial parameters of BRB can be determined by experts based on domain
knowledge and existing observation data and the model is able to roughly reflect the
mapping relationship of the system.

(2) Small sample modeling ability. The fault data of much equipment are characterized
by high values and a small number of samples. Fortunately, due to the embedding of expert
knowledge, BRB can model the system comprehensively with very limited observation
data, even if the initial mapping relationship is rough. This means that BRB will not fall into
the overfitting problem like the data-driven model. On the other hand, Chen et al. proved
that BRB is a general approximation model [29], so this model has ideal modeling accuracy.

(3) Ability to process uncertain information. Compared with general fuzzy systems,
BRB extends the “then” part of the rule to the belief distribution of all possible results,
enabling BRB to deal with the probability uncertainty while solving the fuzzy uncertainty.
Therefore, BRB can also show good performance when partial observation data are missing
in the engineering application.

3. The Proposed Method

In this section, a BRB model with an adaptive nonlinear membership function is
proposed to model the fault diagnosis considering non-uniform distribution observation
data. In Section 3.1, the shortcomings of the existing triangular membership function and
Gaussian membership function are analyzed in detail. Then, a nonlinear membership
function is proposed to solve Problem 2. In Section 3.2, based on the gradient descent
method, an optimization model considering the parameters of the nonlinear membership
function is proposed to solve Problem 3.

3.1. Inference Process Based on the Nonlinear Membership Function

In fault diagnosis, all belief rules constitute a knowledge base. After the input infor-
mation of the fault indicator is obtained, the fault mode can be diagnosed based on this
knowledge base. It is worth noting that, as a fuzzy system, belief rules in BRB are expressed
as mappings to linguistic values. However, the observation data of fault indicators are
mostly quantitative information. Therefore, it is necessary to convert quantitative observa-
tion data into membership degree of all linguistic referential grades through a membership
function, which is so-called “fuzzification” as follows:

S(xi) =
{
(Hij, αij); j = 1, . . . , Ji

}
, i = 1, 2, . . . M (3)

where Hij is the jth referential grade of the ith fault indicator and αij is the corresponding
membership degree. xi are the quantitative observation data.
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In previous BRB models, the most commonly applied membership function is the
triangular membership function, which is used in rule (or utility) based transformation
methods, as shown below:

αij =


ai(k+1)−xi
ai(k+1)−aik

, j = k if aik ≤ A∗i ≤ ai(k+1)
xi−aik

ai(k+1)−aik
, j = k + 1

0. j = 1, 2, . . . , L, j 6= k, k + 1

(4)

where αij is a quantitative value corresponding to Hij, which is usually determined by experts.
The curve of the above membership function is shown in Figure 1. It can be seen

from Figure 1 and Equation (4) that, since the derivative of this function is constant, the
changing trend of membership of each referential grade is a straight line. However, when
the observation data are uneven, such as when the data are concentrated in a certain area,
this membership function cannot accurately reflect the corresponding membership, as
shown in Figure 2. It can be seen from Figure 2a that the observation data are distributed
evenly between the two referential grades. Therefore, it is easy to understand that the
change in membership degree is linear in this case. But, in Figure 2b, the observation data
are concentrated near the referential grade Hn+1. Therefore, for the two points marked
by the red dotted line, their membership degree distribution should be different. The
membership of the yellow point is assigned as Hn = Hn+1 = 0.5. For the green point in
Figure 2b, since this point is closer to Hn in the whole dataset, the membership degree
of Hn shall be greater than 0.5 and the membership degree of Hn+1 shall be less than
0.5, correspondingly.
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Figure 2. Comparison of uneven data distribution. The uniformly distributed data is shown in
(a), and the non-uniformly distributed data is shown in (b).

For example, the two referential grades in Figure 2 correspond to the semantic values
“low” and “high”, respectively. For the point marked in red in Figure 2b, it should be a
lower value in the entire dataset. Therefore, the membership degree of the referential grade
“low” should be higher.
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The inaccurate quantitative data fuzzification will reduce the modeling accuracy of
the fault diagnosis model. Thus, a nonlinear membership function is proposed for the
fuzzification of uneven quantitative data in this paper, which can be described as follows:

αij =


( ai(k+1)−xi

ai(k+1)−aik

)s
, j = k if aik ≤ A∗i ≤ ai(k+1)

1−
( ai(k+1)−xi

ai(k+1)−aik

)s
, j = k + 1

0. j = 1, 2, . . . , L, j 6= k, k + 1

(5)

where s ∈ (0,+∞) is the parameter of the function, which can reflect the distribution of
observation data.

With the change of s, the new membership function can adaptively reflect the impact
of different distributions of data. For example, when s is 0.25, 0.5, 1,2 and 5, respectively,
the curves of the membership function are shown in Figure 3. It can be seen that with the
increase of n, the function changes from convex to concave. In particular, when s equals 1,
the nonlinear membership function degenerates into a triangular membership function.
Correspondingly, for the distribution of data in Figure 2b, the nonlinear membership
function at s = 0.25 or 0.5 can more accurately conduct the fuzzification of quantitative
data in this case.
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It is worth noting that, as another commonly used membership function in fuzzy
systems, the Gaussian membership function can also realize adaptive fuzzification of input
data through changes in expectation and standard deviation, as shown below:

αij = exp

−1
2

(
xi − cij

σij

)2
 (6)

where cij is the expectation and σij is the standard deviation.
However, it has the following two shortcomings: firstly, the Gaussian membership

function cannot achieve accurate transformation of uniformly distributed input information,
which is limited by the characteristics of its nonlinear curve. However, when s = 1, the
nonlinear membership function proposed in this paper can avoid this problem. Secondly,
the adaptive ability of the Gaussian membership function is insufficient. For the data
distribution within an interval, the Gaussian membership function can only self-adapt the
data distribution under partial circumstances, as shown in Figure 4. The standard variance
of the Gaussian membership function is 0.25, 0.5, 1, 2 and 5, respectively, in Figure 4. With
the increase of variance, the shape of the exponential function curve cannot properly reflect
the distribution characteristics of the dataset close to Hn+1. Furthermore, when the input
is at Hn+1, the membership degree of Hn is still quite high, which is difficult for users
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to understand. Therefore, the Gaussian membership function is only applicable when
the observation data are concentrated near the referential grade Hn. Based on the above
analysis, it can be seen that the nonlinear membership function proposed in this paper can
more accurately reflect the distributions of data.
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Therefore, based on the nonlinear membership function, when observation data are
obtained, the steps for fault diagnosis can be described as follows:

Step 1: Fuzzification of quantitative data. The referential grade of each fault indicator
is a fuzzy partition, which is assigned to the nonlinear membership function R(·)ij. For the
observation data of ith fault indicator, the membership degree of each referential grade is
calculated as follows:

αij = Rij(xi) =


( ai(k+1)−xi

ai(k+1)−aik

)sij
, j = k if aik ≤ xi ≤ ai(k+1)

1−
( ai(k+1)−xi

ai(k+1)−aik

)sij
, j = k + 1

0. j = 1, 2, . . . , L, j 6= k, k + 1

(7)

where xi are the input data. sij is the parameter of the nonlinear membership function,
which is usually determined by experts after observing the distribution of data or calculated
based on statistical methods.

Step 2: Activation of belief rules. The activation weight of the rule is calculated
as follows:

wk =
θkαk
L
∑

l=1
θlαl

(8)

where

αk =
Mk

∏
i=1

(αk
i )

δi ,δi =
δi

max
i=1,2,...Mk

{δi}
(9)

Step 3: Reasoning of activated rules. In this paper, the analytic ER algorithm [30] is
used to fuse the activated rules to obtain the belief degree of each failure mode as follows:

β̂n =
µ[∏L

k=1 (wk βn,k+1−wk∑N
j=1 β j,k)−∏L

k=1 (1−wk∑N
j=1 β j,k)]

1−µ[∏L
k=1 (1−wk)]

,

n = 1, 2, . . . N,
µ = [∑N

n=1 ∏L
k=1 (wkβn,k + 1− wk ∑N

j=1 β j,k)− (N − 1)∏L
k=1 (1− wk ∑N

j=1 β j,k)]
−1

(10)

where β̂n represents the belief degree of the nth failure mode Dn.



Entropy 2023, 25, 442 8 of 19

In general, the failure mode with the highest belief degree is regarded as a possible
failure as the output of the model as follows:

n̂ = argmax
n

(β̂n) (11)

where n̂ indicates the diagnosed fault mode.

3.2. Model Optimization Based on the Gradient Descent Method

Due to the subjectivity and fuzziness of expert knowledge, the modeling accuracy of
the initially constructed fault diagnosis model is generally difficult to meet the requirements
of practical engineering. Therefore, the model parameters initially determined by experts in
the BRB need to be optimized to improve the diagnostic accuracy of the model. In general,
for classification problems such as fault diagnosis, the cross-entropy loss function is used
as the objective function as follows:

Q(Ω) = − 1
T

T

∑
t=1

N

∑
j=1

yt
j log2 β̂t

j, yt
j =

{
0(j 6= ŷt)
1(j = ŷt)

(12)

where ŷ ∈ {1, 2 . . . , N} indicates the category of the real fault. T is the capacity of observa-
tion data. Ω = {θ, δ, β, s} is a parameter vector, which is composed of rule weight, attribute
weight, basic belief degree and parameters of the membership function.

Considering the constraint conditions of parameters in BRB model, the following
parameter optimization model can be constructed:

min Q({θ, δ, β, s}) = − 1
T

T
∑

t=1

N
∑

j=1
yt

j log2 β̂t
j, yt

j =

{
0(j 6= ŷt)
1(j = ŷt)

s.t.

0 ≤ θk ≤ 1, 0 ≤ δi ≤ 1, 0 ≤ βn,k ≤ 1,
N
∑

n=1
βn,k ≤ 1, sij > 0

(k = 1, 2, . . . , L, i = 1, 2, . . . , M, n = 1, 2, . . . , N, j = 1, 2, . . . , Ji)

(13)

In recent years, many optimization algorithms have been developed for BRB model pa-
rameter optimization, such as DE, PSO, P-CMAES and other swarm intelligence algorithms.
Yang et al. [31] pointed out that when BRB is used as an expert system, the optimization of
model parameters should only be “fine-tuning”, which is also a major difference between
BRB and artificial neural networks. Feng et al. [32] pointed out that due to the operation of
population initialization of swarm intelligence algorithm, the expert knowledge in BRB is
likely to be destroyed and the reasoning results may conflict with intuition. This may cause
the fault diagnosis results to be difficult to be convincing and weaken the interpretability
of the model. Compared with the swarm intelligence algorithm, the gradient descent
method directly uses derivative information and takes the parameters initially determined
by experts as the initial value of optimization to search, retaining initial expert knowledge
to the greatest extent. Therefore, in this paper, stemming from the derivability of the BRB
reasoning process, an optimization algorithm based on gradient descent is used to train
the model.

There are 4 types of parameters as optimization variables. Therefore, it is necessary to
calculate the first-order partial derivative of the objective function with respect to them.

First, the first-order partial derivative of the objective function Q with respect to the
reasoning result β̂n is calculated as follows:

∂Q
∂β̂n

= − 1
T

T

∑
t=1

yt
j

1
β̂t

n
, yt

j =

{
0 (j 6= ŷt)
1 (j = ŷt)

(14)
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The first-order partial derivative of the reasoning result β̂n with respect to the basic
belief degree βr, f is:

∂β̂n

∂βr, f
=



[
N
∑

p=1
ξ(p)−(N−1)

L
∏

k=1
(1−wk)

]
ξ(n)

w f
w f βr, f +1−w f[

N
∑

p=1
ξ(p)−N

L
∏

k=1
(1− wk)


2

[
L
∏

k=1
(1−wk)−ξ(n)

]
ξ(r)

w f
w f βr, f +1−w f[

N
∑

p=1
ξ(p)−N

L
∏

k=1
(1−wk)

]2 , r 6= n

(15)

where

ξ(p) =
L

∏
k=1

(wkβp,k + 1− wk) (16)

So far, the first-order partial derivative of the first type of parameter has been calculated
as follows:

∂Q
∂βr,k

=
N

∑
n=1

∂Q
∂β̂n

∂β̂n

∂β̂r,k
(17)

Then, we need to calculate the first-order partial derivative of rule weight, attribute
weight and parameters of the membership function. According to the chain rule, the
first-order partial derivative of the reasoning result β̂n with respect to the activation weight
wg needs to be obtained as follows:

∂β̂n
∂w f

=
[A(n)C(n)

N
∑

p=1
A(p)−A(n)

N
∑

p=1
A(p)C(p)−NBA(n)C(n)−

[
N
∑

p=1
A(p)−NB]

2

=

L
∏

k = 1
k 6= f

(1−wk)
N
∑

p=1
A(p)+NA(n)

L
∏

k = 1
k 6= f

(1−wk)+B
N
∑

p=1
A(p)C(p)]

[
N
∑

p=1
A(p)−NB]

2

(18)

where

A(n) =
L
∏

k=1
(wkβn,k + 1− wk)

B =
L
∏

k=1
(1− wk)

C(n) = βn,t−1
wt βn,t+1−wt

(19)

The first derivative of the activation weight wt with respect to the rule weight θ f is
calculated as follows:

∂wt

∂θ f
=



L
∑

l=1,l 6=t
θlαl α f

(
L
∑

l=1
θlαl)2

, t = f

− θtαtα f

(
L
∑

l=1
θlαl)2

, t 6= f
(20)

For the attribute weight δi, the normalization of this parameter in Equation (9) is
nondifferentiable. Therefore, only the first order partial derivative of the normalized
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attribute weight δi can be calculated here. First, the first derivative of the activation weight
wt with respect to the rule matching degree α f needs to be calculated:

∂wt

∂α f
=



L
∑

l=1,l 6=t
θlαl θ f

(
L
∑

l=1
θlαl)2

, t = f

− θtαtθ f

(
L
∑

l=1
θlαl)2

, t 6= f
(21)

Then, the first derivative of rule matching degree α f with respect to normalized
attribute weight δi is calculated as follows:

∂α f

∂δi

= α f log(αk
i ) (22)

Therefore, according to the chain rule, the partial derivative of the objective function
with respect to the rule weight and the normalized attribute weight can be calculated
as follows:

∂Q
∂θk

=
L

∑
t=1

N

∑
n=1

∂Q
∂β̂n

∂β̂n

∂wt

∂wt

∂θk
(23)

∂Q
∂δi

=
L

∑
k=1

L

∑
t=1

N

∑
n=1

∂Q
∂β̂n

∂β̂n

∂wt

∂wt

∂αk

∂αk

∂δi
(24)

Finally, the first order partial derivative of the individual membership degree αk
i with

respect to the parameters of the membership degree function sij is calculated as follows:

∂αij

∂sij
=


( ai(k+1)−xi

ai(k+1)−aik

)sij
log(

ai(k+1)−xi
ai(k+1)−aik

), j = k if aik ≤ xi ≤ ai(k+1)

−
( ai(k+1)−xi

ai(k+1)−aik

)sij
log(

ai(k+1)−xi
ai(k+1)−aik

), j = k + 1

0. j = 1, 2, . . . , L, j 6= k, k + 1

(25)

According to the chain rule, the partial derivative of the objective function with respect
to the parameters of the membership function is calculated as follows:

∂Q
∂sij

=
L

∑
k=1

L

∑
t=1

N

∑
n=1

∂Q
∂β̂n

∂β̂n

∂wt

∂wt

∂αk

∂αk

∂αk
i

∂αk
i

∂sij
(26)

Therefore, the gradient vector of the optimization variable can be obtained as follows:

d = [
∂Q

∂βn,k

∂Q
∂θk

∂Q
∂δi

∂Q
∂sij

]
T

(27)

Since each parameter in the optimization model has corresponding constraints, they
should be approximated to meet the optimization constraints after the parameter is updated
based on the gradient. Thus, the steps of parameter optimization can be summarized
as follows:

Step 1: The model parameters initially given by experts: basic belief degree, rule
weight, attribute weight and parameters of membership function are taken as the initial
value zk = z0.

Step 2: Calculate the gradient of the optimization variable dk.
Step 3: The optimization variables are updated as follows:

zk+1 = zk − λdk (28)
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where λ is the step size of iteration and is determined by the one-dimensional search method.
Step 4: Approximate projection operation. For inequality constraints of each param-

eter, when the value of the parameter does not meet the constraint conditions, take the
adjacent bound as the approximate value. For example, if θk+1 < 0, then θ′k+1 = 0. More-
over, the basic belief degree of a belief rule is normalized so that the sum is 1. Therefore,
z′k+1 is obtained.

Step 5: Calculate the gradient vector dk+1 at this time. Judge whether the termination
condition of the algorithm is reached. If yes, end. Otherwise, let dk = dk+1, zk = z′k+1 and
go to Step 3.

Finally, the fault diagnosis model proposed in this paper can be summarized as shown
in Figure 5.
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4. Case Study

A fault diagnosis case of a laser gyro will be used in this section to verify the effective-
ness of the proposed model. In Section 4.1, the background of laser gyro fault diagnosis
is briefly introduced. In Section 4.2, the BRB-based fault diagnosis model is built and
optimized. In Section 4.3, a comparative study between the proposed model and other
models is conducted. Analysis and discussions are carried out in Section 4.4.

4.1. Background Description

As an important navigation device, the laser gyro plays an extremely important role in
many fields, such as automobiles, ships, rockets, etc. However, in the storage process of the
laser gyro, due to the inevitable external interference and its own performance degradation,
it is very likely to be in the fault state. Once these laser gyros are used in the failure state,
it may cause unbearable personnel and property losses. For the laser gyro, it is difficult
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to judge whether it is in the fault state from appearance. However, the observation data
of its drift coefficient can reflect the degree of the fault. In general, the greater the drift
coefficient, the higher the degree of the fault. Therefore, in this paper, the zero-order term
drift coefficient D0, the first-order term drift coefficient D1 and the second-order term drift
coefficient D2 are used as indicators of laser gyro fault diagnosis. For a certain laser gyro,
180 groups of observation data within a storage period are shown in Figure 6. According
to the fault degree of laser gyro and the industry standard, the three fault modes are,
respectively, slight fault (S), moderate fault (M) and bad fault (B). This is shown in Figure 6.

Entropy 2023, 25, x FOR PEER REVIEW 14 of 21 
 

 

Data number

0 20 40 60 80 100 120 140 160 180
-8.5

-8

-7.5 10-4

D0

0 20 40 60 80 100 120 140 160 180
6.5

7

7.5 10-3

D1

0 20 40 60 80 100 120 140 160 180
2.35

2.4

2.45 10-3

D2

0 20 40 60 80 100 120 140 160 180
0

2

4

Real fault mode

 
Figure 6. Observation data of fault indicators. 

4.2. Construction and Optimization of the Fault Diagnosis Model 
In this case study, the three drift coefficients of the laser gyro are fault indicators 

which are used to diagnose three types of fault modes, namely slight fault (S), moderate 
fault (M) and bad fault (B). Therefore, the following BRB can be established: 

( ) ( ) ( ){ }0 1 1 2 2 3 1, 2, 3,: IF         ,THEN , , , ,k k k
k k k kR D is H D is H D is H B M Sβ β β∧ ∧ ，  

According to expert knowledge and industry standards, each fault indicator has 
three referential grades, namely low (L), medium (M) and high (H), whose corresponding 
referential values are shown in Table 1. Thus, the “then” part of the rules in the initial BRB 
is shown in Table 2. All rule weights are initially set to one. Since 0D  can most obviously 

reflect the degree of fault and 1D  takes the second place, the attribute weights are set to 

1 21, 0.7δ δ= =  and 3 0.5δ = . According to the distribution of the observation data, the in-
itial parameters of the nonlinear membership function are shown in Table 3. 

Table 1. Referential values of fault indicators. 

 L M H 

0D  −8.32 × 10−4 −8.01 × 10−4 −7.69 × 10−4 

1D  6.8 × 10−2 7.1 × 10−2 7.5 × 10−2 

2D  2.36 × 10−2 2.4 × 10−2 2.43 × 10−2 
 

Table 2. The rules of initial BRB. 

No. lθ  0 1 2D D D∧ ∧  
Consequent 

{ , , }B M S  
No. lθ  0 1 2D D D∧ ∧  

Consequent 
{ , , }B M S  

1 1 L L L∧ ∧  {0 0 1} 15 1 M M H∧ ∧  {0.4 0.5 0.1} 
2 1 L L M∧ ∧  {0 0.1 0.9} 16 1 M H L∧ ∧  {0.4 0.6 0} 
3 1 L L H∧ ∧  {0.1 0.1 0.8} 17 1 M H M∧ ∧  {0.5 0.3 0.2} 
4 1 L M L∧ ∧  {0.1 0.2 0.7} 18 1 M H H∧ ∧  {0.5 0.4 0.1} 
5 1 L M M∧ ∧  {0.1 0.3 0.6} 19 1 H L L∧ ∧  {0.4 0.3 0.3} 
6 1 L M H∧ ∧  {0 0.4 0.6} 20 1 H L M∧ ∧  {0.5 0.3 0.2} 
7 1 L H L∧ ∧  {0.1 0.4 0.5} 21 1 H L H∧ ∧  {0.6 0.2 0.2} 

Figure 6. Observation data of fault indicators.

4.2. Construction and Optimization of the Fault Diagnosis Model

In this case study, the three drift coefficients of the laser gyro are fault indicators which
are used to diagnose three types of fault modes, namely slight fault (S), moderate fault (M)
and bad fault (B). Therefore, the following BRB can be established:

Rk: IF D0 is Hk
1 ∧ D1 is Hk

2 ∧ D2 is Hk
3 , THEN

{
(B, β1,k), (M, β2,k), (S, β3,k)

}
According to expert knowledge and industry standards, each fault indicator has

three referential grades, namely low (L), medium (M) and high (H), whose corresponding
referential values are shown in Table 1. Thus, the “then” part of the rules in the initial BRB
is shown in Table 2. All rule weights are initially set to one. Since D0 can most obviously
reflect the degree of fault and D1 takes the second place, the attribute weights are set to
δ1 = 1, δ2 = 0.7 and δ3 = 0.5. According to the distribution of the observation data, the
initial parameters of the nonlinear membership function are shown in Table 3.

Table 1. Referential values of fault indicators.

L M H

D0 −8.32 × 10−4 −8.01 × 10−4 −7.69 × 10−4

D1 6.8 × 10−2 7.1 × 10−2 7.5 × 10−2

D2 2.36 × 10−2 2.4 × 10−2 2.43 × 10−2
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Table 2. The rules of initial BRB.

No. θl D0∧D1∧D2 Consequent {B,M,S} No. θl D0∧D1∧D2 Consequent {B,M,S}

1 1 L ∧ L ∧ L {0 0 1} 15 1 M ∧M ∧ H {0.4 0.5 0.1}
2 1 L ∧ L ∧M {0 0.1 0.9} 16 1 M ∧ H ∧ L {0.4 0.6 0}
3 1 L ∧ L ∧ H {0.1 0.1 0.8} 17 1 M ∧ H ∧M {0.5 0.3 0.2}
4 1 L ∧M ∧ L {0.1 0.2 0.7} 18 1 M ∧ H ∧ H {0.5 0.4 0.1}
5 1 L ∧M ∧M {0.1 0.3 0.6} 19 1 H ∧ L ∧ L {0.4 0.3 0.3}
6 1 L ∧M ∧ H {0 0.4 0.6} 20 1 H ∧ L ∧M {0.5 0.3 0.2}
7 1 L ∧ H ∧ L {0.1 0.4 0.5} 21 1 H ∧ L ∧ H {0.6 0.2 0.2}
8 1 L ∧ H ∧M {0.2 0.2 0.6} 22 1 H ∧M ∧ L {0.6 0.3 0.1}
9 1 L ∧ H ∧ H {0.2 0.3 0.5} 23 1 H ∧M ∧M {0.6 0.2 0.2}

10 1 M ∧ L ∧ L {0 0.5 0.5} 24 1 H ∧M ∧ H {0.7 0.2 0.1}
11 1 M ∧ L ∧M {0.1 0.6 0.3} 25 1 H ∧ H ∧ L {0.8 0.2 0}
12 1 M ∧ L ∧ H {0.2 0.5 0.3} 26 1 H ∧ H ∧M {0.9 0.1 0}
13 1 M ∧M ∧ L {0.2 0.6 0.2} 27 1 H ∧ H ∧ H {1 0 0}
14 1 M ∧M ∧M {0.3 0.6 0.1}

Table 3. Initial parameters of the nonlinear membership function.

sij j=1 j=2

i = 1 0.5 0.7
i = 2 2 1.5
i = 3 1 2

Since it is difficult for the initially constructed BRB to achieve ideal modeling accuracy,
observation data are required to optimize the model. For 180 groups of observation
data, 30% are randomly selected as the training set and the rest as the test set to reflect
the modeling ability of BRB in small sample problems. The gradient descent method in
Section 4.3 is used as the optimization engine. The optimized model parameters are shown
in Table 4. In addition, optimized parameters of the nonlinear membership function are
shown in Table 5. The fault diagnosis results of optimized BRB and initial BRB are shown
in Figure 7.

Table 4. The rules of optimized BRB.

No. θl D0∧D1∧D2 Consequent {B,M,S} No. θl D0∧D1∧D2 Consequent {B,M,S}

1 0.81 L ∧ L ∧ L {0.13 0.06 0.81} 15 0.80 M ∧M ∧ H {0.44 0.46 0.10}
2 0.91 L ∧ L ∧M {0.13 0.16 0.71} 16 0.14 M ∧ H ∧ L {0.35 0.61 0.04}
3 0.13 L ∧ L ∧ H {0.10 0.11 0.79} 17 0.42 M ∧ H ∧M {0.41 0.33 0.26}
4 0.91 L ∧M ∧ L {0.20 0.25 0.55} 18 0.92 M ∧ H ∧ H {0.54 0.34 0.12}
5 0.63 L ∧M ∧M {0.18 0.25 0.57} 19 0.79 H ∧ L ∧ L {0.39 0.28 0.33}
6 0.10 L ∧M ∧ H {0.02 0.41 0.58} 20 0.74 H ∧ L ∧M {0.52 0.29 0.19}
7 0.28 L ∧ H ∧ L {0.13 0.34 0.54} 21 0.66 H ∧ L ∧ H {0.51 0.23 0.27}
8 0.55 L ∧ H ∧M {0.26 0.19 0.55} 22 0.34 H ∧M ∧ L {0.50 0.36 0.14}
9 0.96 L ∧ H ∧ H {0.27 0.32 0.41} 23 0.85 H ∧M ∧M {0.57 0.26 0.18}

10 0.84 M ∧ L ∧ L {0.13 0.43 0.43} 24 0.93 H ∧M ∧ H {0.69 0.20 0.12}
11 0.16 M ∧ L ∧M {0.10 0.52 0.38} 25 0.68 H ∧ H ∧ L {0.67 0.24 0.09}
12 0.93 M ∧ L ∧ H {0.25 0.44 0.31} 26 0.76 H ∧ H ∧M {0.76 0.17 0.07}
13 0.45 M ∧M ∧ L {0.30 0.46 0.24} 27 0.74 H ∧ H ∧ H {0.92 0.03 0.06}
14 0.49 M ∧M ∧M {0.33 0.57 0.11}

Table 5. Optimized parameters of the nonlinear membership function.

sij j=1 j=2

i = 1 0.65 0.84
i = 2 2.12 1.76
i = 3 1.05 2.41
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4.3. Comparative Study

In order to fully verify the effectiveness of the model in this paper, comparative
experiments are carried out in this section from the following two aspects, namely, the
previous BRB model and data-driven models.

a. The previous BRB model

(1) The BRB model with triangular membership function, named BRB-t: the input
information transformation function of this BRB adopts the triangular membership func-
tion in Equation (4). BRB-tri also uses the gradient descent method to optimize model
parameters.

(2) The BRB model with Gaussian membership function, is named BRB-g: the opti-
mization method of this model is the same as BRB-t.

Correspondingly, the BRB proposed in this paper is named BRB-n. The fault diagnosis
results of three BRBs on 180 sets of observation data are shown in Figure 8. The accuracy of
test data is shown in Table 6.
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Table 6. Comparison of modeling accuracy of different BRBs.

Initial BRB BRB-n BRB-g BRB-t

Diagnostic accuracy 65.68% 95.56% 90.74% 87.21%
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b. Data-driven models

Data-driven fault diagnosis methods have been widely used. In this paper, Ran-
dom forest (RF), Naive Bayes (NB) and K-nearest neighbor (KNN) models are used for
comparative study.

(1) RF: RF is a type of powerful tree ensemble model [33]. Its basic model is the
decision tree (DT). Compared with general DT, RF has a stronger generalization ability, so
it is widely used in classification and regression problems.

(2) NB: NB is a nonparametric model based on the Bayesian theorem [34]. This model
has no explicit learning process. Generally, it calculates the prior probability and the
conditional probability directly from the training set and infers a posteriori probability.

(3) KNN: KNN is a lazy machine learning model [35], which means that it has no
model training process. For the data to be predicted, the training data closest to this data
are first obtained according to the defined distance formula. Then, their weighted averages
or votes are calculated.

The hyper-parameters of these models are the default settings in the Python “sklearn”
library. They are then adjusted by the “GridSearchCV” function. Their diagnostic results
and accuracy are shown in Figure 9 and Table 7, respectively.
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Table 7. Comparison of modeling accuracy of data-driven models.

BRB-n RF NB KNN

Diagnostic
accuracy 95.56% 84.72% 76.30% 72.91%

c. Swarm intelligence algorithms

To illustrate the advantages of the gradient-based optimization algorithm proposed in
this paper, three swarm intelligence algorithms, that is, DE, PSO and P-CMAES, are used
to optimize the initial BRB model. Their parameter settings are the same as those in [23–25].
The optimized BRBs are named BRB-DE, BRB-PSO and BRB-PCMAES, respectively. For
comparison, the BRB optimized by the proposed method is named BRB-GB. The accuracy
of fault diagnosis of these models is shown in Table 8.

Table 8. Comparison of modeling accuracy of different optimization algorithms.

BRB-DE BRB-PSO BRB-PCMAES BRB-GB

Diagnostic accuracy 88.59% 89.41% 92.74% 95.56%
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4.4. Analysis and Discussions

Firstly, the advantages of the BRB-based fault diagnosis model are described by
comparing it with data-driven models. In this paper, 30% of samples of the dataset are
selected as the training set to train a wide variety of fault diagnosis models. Under this
circumstance, the drawbacks of the data-driven model are revealed. Since the training set
may not comprehensively reflect the overall mapping relationship, these models almost
fall into the problem of overfitting. Among them, with the advantage of a double random
sampling of features and samples, the random forest model alleviates the problem to
some extent and has the highest diagnostic accuracy among several data-driven models.
By comparing Tables 5 and 6, it can be seen that after model optimization, the fault
diagnosis accuracy of several BRBs are higher than that of data-driven models. Among
them, the diagnostic accuracy of BRB-n has been improved by 12.8%, 25.24% and 31.07%,
respectively. This reveals the advantage of expert knowledge in small sample modeling; that
is, experts construct a generally correct but rough model by virtue of domain knowledge
and experience. Then, the diagnosis accuracy of the model is further improved through
the existing small sample dataset. On the other hand, as a “white-box” model, the BRB
model provides explicit knowledge representation and reasoning compared with data-
driven methods, enabling the results of fault diagnosis to be traceable and transparent. In
order to further illustrate the interpretability of BRB, the fault diagnosis process of the first
observation data [−7.94 × 10−4 6.82 × 10−2 2.38 × 10−2] is shown in Figure 10.

Entropy 2023, 25, x FOR PEER REVIEW 18 of 21 
 

 

4.4. Analysis and Discussions 
Firstly, the advantages of the BRB-based fault diagnosis model are described by com-

paring it with data-driven models. In this paper, 30% of samples of the dataset are selected 
as the training set to train a wide variety of fault diagnosis models. Under this circum-
stance, the drawbacks of the data-driven model are revealed. Since the training set may 
not comprehensively reflect the overall mapping relationship, these models almost fall 
into the problem of overfitting. Among them, with the advantage of a double random 
sampling of features and samples, the random forest model alleviates the problem to some 
extent and has the highest diagnostic accuracy among several data-driven models. By 
comparing Tables 5 and 6, it can be seen that after model optimization, the fault diagnosis 
accuracy of several BRBs are higher than that of data-driven models. Among them, the 
diagnostic accuracy of BRB-n has been improved by 12.8%, 25.24% and 31.07%, respec-
tively. This reveals the advantage of expert knowledge in small sample modeling; that is, 
experts construct a generally correct but rough model by virtue of domain knowledge and 
experience. Then, the diagnosis accuracy of the model is further improved through the 
existing small sample dataset. On the other hand, as a “white-box” model, the BRB model 
provides explicit knowledge representation and reasoning compared with data-driven 
methods, enabling the results of fault diagnosis to be traceable and transparent. In order 
to further illustrate the interpretability of BRB, the fault diagnosis process of the first ob-
servation data [−7.94 × 10−4 6.82 × 10−2 2.38 × 10−2] is shown in Figure 10. 

1x
2x

3x

M

H

L

M

L

M

-7.94× 10-4

6.82× 10-2

2.38× 10-2

M∩L∩L
M∩L∩M
M∩M∩L
M∩M∩M

H∩L∩L
H∩L∩M
H∩M∩L
H∩M∩M

{0.13 0.43 0.43}
{0.10 0.52 0.38}
{0.30 0.46 0.24}
{0.33 0.57 0.11}

{0.39 0.28 0.33}
{0.52 0.29 0.19}
{0.50 0.36 0.14}
{0.57 0.26 0.18}

0.2888

0.2299

0.1938

0.0103

0.0744

0.0873

0.0736

0.0419

ER 
algorithm

R10

R11

R13

R14

R19

R20

R22

R23

Activated rules Activation 
weight

{0.16 0.21 0.63}

Diagnostic 
results

Slight fault

Belief degree

Fuzzification of 
quantitative data
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Secondly, the advantages of the gradient-based optimization method are analyzed. 
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ing ability. Compared with the other three swarm intelligence algorithms, the modeling 
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hand, the proposed optimization algorithm can keep expert knowledge from being de-
stroyed, which is reflected in that the optimized model parameters will not be significantly 
changed, but rather, fine-tuned. For simplicity, the belief degrees of the first rule in four 
BRBs are shown in Table 9. Table 9 shows that, due to random initialization, the distribu-
tion of belief degree of the BRB optimized by the swarm intelligence algorithm has seri-
ously deviated from the initial judgment of experts, even if they can achieve good fault 
diagnosis accuracy. This will make the rules difficult to understand; when the referential 
value of the evaluation indicator is low, the fault degree is generally “slight” according to 
common sense and experience. When these BRBs are used for fault diagnosis, the inter-
pretability of the diagnosis results will be weakened. 
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Secondly, the advantages of the gradient-based optimization method are analyzed. On
the one hand, the gradient-based optimization algorithm shows powerful model training
ability. Compared with the other three swarm intelligence algorithms, the modeling accu-
racy of BRB-GB has improved by 7.87%, 6.44% and 2.95%, respectively. On the other hand,
the proposed optimization algorithm can keep expert knowledge from being destroyed,
which is reflected in that the optimized model parameters will not be significantly changed,
but rather, fine-tuned. For simplicity, the belief degrees of the first rule in four BRBs are
shown in Table 9. Table 9 shows that, due to random initialization, the distribution of
belief degree of the BRB optimized by the swarm intelligence algorithm has seriously
deviated from the initial judgment of experts, even if they can achieve good fault diagnosis
accuracy. This will make the rules difficult to understand; when the referential value of
the evaluation indicator is low, the fault degree is generally “slight” according to common
sense and experience. When these BRBs are used for fault diagnosis, the interpretability of
the diagnosis results will be weakened.
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Table 9. The distribution of belief degree of the first rule in the four BRBs.

Model Belief Degree of the First Rule The Most Supported Grade

Initial BRB {0 0 1} S
BRB-GB {0.13 0.06 0.81} S
BRB-DE {0.21 0.52 0.27} M

BRB-PSO {0.15 0.65 0.20} M
BRB-PCMAES {0.43 0.28 0.29} B

Finally, the importance of the nonlinear membership function is analyzed. First, the
uneven distribution of observation data will affect the accuracy of the fault diagnosis model.
It can be seen from Table 6 that the diagnosis accuracy of BRB is improved after considering
the adaptive membership function. This is easy to understand since the original triangular
membership function cannot reflect the diversity of different data distributions, leading
to errors in the fuzzification of input information. Therefore, it is necessary to consider
the adaptive membership function when building a fault diagnosis model based on BRB.
Then, compared with the other two BRBs, the diagnostic accuracy of BRB-n is increased by
5.31% and 9.57%, respectively. It is worth noting that the Gaussian membership function
has more adjustment parameters than the nonlinear membership function. For BRB-g and
BRB-n in this paper, the optimization parameters are 123 and 117, respectively. With the
increase of the number of the referential grade, the difference in the number of parameters
will continue to expand. However, the nonlinear membership function can show better
performance. This is because, compared with the Gaussian membership function, the
nonlinear membership function can adapt to a wider range of data distributions and can
more precisely conduct the fuzzification of quantitative data.

In order to further verify the role of information transformation of nonlinear member-
ship function, part of the observation data of D2 is shown in Figure 11. The observation
data are concentrated on H32 in the interval [a32, a33]. Therefore, in the entire dataset, the
red-marked areas are more subordinate in H33. In other words, this point should belong
to the referential grade “high” in the entire dataset to a greater extent. According to the
optimized BRB reasoning process, the membership degrees of H32 and H33 are 0.18 and
0.82, respectively, which is consistent with the real distribution of the dataset. Therefore,
when the nonlinear membership function is used to transform the input information, BRB
can achieve a more ideal modeling accuracy.
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5. Conclusions

In this paper, a new fault diagnosis model based on BRB has been proposed. In order
to address the distribution of different data, an adaptive nonlinear membership function
has been proposed to conduct the fuzzification of quantitative data. Since the parameters
of the membership function initially determined by experts may not be accurate in the
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new BRB model, a new parameter optimization model considering the parameters of the
membership function has been proposed with the aid of by the gradient descent algorithm.
Finally, the proposed model is verified by a laser gyro fault diagnosis case.

In summary, the proposed method has two advantages: firstly, in the transformation
of input information, the limitations of the triangular membership function in the fuzzifica-
tion of non-uniformly distributed observation data are considered for the first time and an
adaptive nonlinear membership function is designed. This function can adapt to the distri-
bution of various data and improve the accuracy of information transformation. Secondly,
considering the subjectivity and ignorance of experts in determining the parameters of the
model, the parameters of the membership function are added to the optimization model;
the gradient descent method is used to optimize the fault diagnosis model, enabling expert
knowledge to not be destroyed and improving modeling accuracy.

Furthermore, the model optimization of BRB is a non-convex optimization problem,
which means that the traditional gradient descent method may fall into the local optimal
value. Therefore, it is interesting to get higher modeling accuracy by jumping out of the
local optimal value. This issue will be considered in the future.
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