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Abstract: Computed tomography (CT) images play a vital role in diagnosing rib fractures and
determining the severity of chest trauma. However, quickly and accurately identifying rib fractures in
a large number of CT images is an arduous task for radiologists. We propose a U-net-based detection
method designed to extract rib fracture features at the pixel level to find rib fractures rapidly and
precisely. Two modules are applied to the segmentation network—a combined attention module
(CAM) and a hybrid dense dilated convolution module (HDDC). The features of the same layer of
the encoder and the decoder are fused through CAM, strengthening the local features of the subtle
fracture area and increasing the edge features. HDDC is used between the encoder and decoder to
obtain sufficient semantic information. Experiments show that on the public dataset, the model test
brings the effects of Recall (81.71%), F1 (81.86%), and Dice (53.28%). Experienced radiologists reach
lower false positives for each scan, whereas they have underperforming neural network models in
terms of detection sensitivities with a long time diagnosis. With the aid of our model, radiologists
can achieve higher detection sensitivities than computer-only or human-only diagnosis.

Keywords: U-net; rib fractures; CT; deep learning

1. Introduction

At present, artificial intelligence technology has developed rapidly in medical image
analysis. Deep learning [1] has achieved significant success in classification [2], detection [3–5],
and segmentation [6–8] tasks for 2D and 3D medical images. More and more researchers have
started to explore the applications of machine learning methods to medical images and have
made apparent progress, such as brain tumor detection [9,10] and lung nodule detection [4].
The segmentation of large organs, such as liver segmentation [6,7], atrial segmentation [11,12],
etc., has reached high accuracy.

Rib fractures are a common disease in orthopedics and traumatology, and CT exami-
nation is one of the most effective methods for the clinical diagnosis of rib fractures. With
the popularity of CT equipment, the burden on orthopedic surgeons to interpret images
has increased. Because many rib fractures only have unobservable cracks or differences,
the missed diagnosis [13] caused by artificial diagnosis is usually inevitable.

The introduction of machine learning methods for rib detection can effectively reduce
the missed diagnosis rate because of doctors’ clinical experience, detection skills, and
mental state. Additionally, rib fracture diagnosis is often employed to assess the level of
accident injury. Computer-aided diagnosis is expected to improve the accuracy and speed
of detection and improve the doctor–patient relationship. Therefore, artificial intelligence
for the automatic positioning of rib fractures has vital practical significance.

Some methods have been published for detecting rib fractures in recent years. Gunz et al. [5]
unfold the ribs, reconstruct the rib images, and correctly detect the rib fractures using object
models. Zhou et al. [14] detect and classify rib fractures using Faster R-CNN two-stage target
detection model. Although the two stages improve accuracy, the speed is relatively slow, and it
is difficult to achieve the real-time detection effect. Simultaneously, the rib occupies a small area
in the axial CT image, and many fracture lines are blurred. As shown in Figure 1, the complete
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fracture features are apparent, while most of the occult fractures have subtle features that are
easily overlooked. Therefore, pixel-level detection is more applicable.

Figure 1. Examples of several common fractures. (a) Complete fractures, (b) occult fractures.

U-net [15] is a classic medical image segmentation model that uses an asymmetric
encoded-decoded structure. It skips a connection in the same stage in which multi-scale pre-
diction and deep supervision are performed. U-net is optimal to accelerate the convergence
of the neural network and obtain smoother convolution kernels. However, segmentation
tasks with small-areas and significant data imbalances have always been a difficult point in
deep learning, and this is a problem for U-net as well.

In U-net, low-level features from the bottom layers have rich detail and local infor-
mation, such as point, line, or edge, but contain complex background information simul-
taneously. In contrast, high-level features preserve more global features, while low-level
features preserve more local ones. We propose a combined attention module (CAM) instead
of a direct connection between high-level and low-level features according to the above
characteristics. High-level and low-level features condense valuable information through
the channel attention mechanism to intensify local features. CAM is beneficial in increasing
the microfracture features’ weight and reducing the background information interference.

In addition, dilated convolution is employed to expand the field of convolutional
kernels in many image segmentation tasks [16,17]. Wang et al. [18] use a different dilation
rate for each layer to solve the problem. Enlightened by the above discussion and the
Inception structure [19], we design a HDDC module to enlarge the field of convolutional
kernels. Multi-scale dilated convolution operation is performed using a mixed cascade
mode to capture deeper and wider semantic features.

Furthermore, rib fractures are often accompanied by changes in the morphology of
the surrounding ribs, such as pneumothorax and pleural effusion. The tissue morphology
around rib fractures becomes an indirect clue for the network to identify fractures. There-
fore, the effect of fracture detection and training based on samples with surrounding tissues
is visibly better than that of only rib fractures.

Our contributions are summarized as follows:

1. We design a CAM module integrated with the channel attention mechanism according
to the characteristics of high and low-level features for tiny features;

2. Inspired by Inception [19] and hybrid dilated convolution [18], we propose a hybrid
dense dilated convolution (HDDC), which is used to mine semantic features and
improve the interpretability of the model;

3. We propose a modified U-net network with CAM and HDDC for rib fracture recog-
nition. Our approach outperforms classical semantic segmentation models in each
quantitative indicator (F1, precision, Recall, and Dice).

The rest of the paper is organized as follows. Section 2 introduces the related works.
Section 3 details the proposed method. Section 4 presents the experimental results and
comparison with other networks. In Section 5, we draw some conclusions and offer future
research directions.
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2. Related Work
2.1. U-Net Network

The U-net network with the encoder-decoder structure is entirely symmetrical. The up-
sampling and down-sampling stages have the same number of layers connected by the
skip connection. The skip connection allows the features extracted by the down-sampling
layer to be directly concatenated to the up-sampling layer. This unique structure shows
a decisive advantage in medical image segmentation, and when processing biomedical
datasets with a small amount of data, a better segmentation effect is obtained.

Because of the excellent performance of the U-net network, it has attracted widespread
attention in the field of medical image segmentation. Many researchers have optimized
this basis and derived many branch networks [20–24]. H-DenseUNet [7] is a novel end-
to-end network, including a 2D DenseUNet for extracting intra-slice features and a 3D
DenseUNet for aggregating volumetric contexts for liver tumor segmentation. Unet++ [25]
is a flexible feature fusion network whose skip connection is redesigned in the decoder
sub-network to aggregate features of different semantic scales. Isensee et al. proposed
nnU-Net [26], an adaptive framework based on 2D and 3D U-net. The author believes that
model performance and generalization are more critical than network design details.

Since the rise of the U-net network, many researchers have improved the U-net to detect
rib fractures. Jin et al. [27] designed a novel model improved by 3D U-net, FracNet, which
adopted a sampling strategy during training and achieved a high sensitivity. Zhang et al. [28]
proposed a rib fracture recognition model, which consists of a nnU-Net [26] as the region
segmentation model and a Densenet [29] as the classification model. The two-stage recognition
model effectively reduced the FP (false positive) and FN (false negative) rates of rib fracture
detection. The above works provide us with referable solutions for detecting rib fractures.
However, most of them are carried out on a 3D basis, requiring a high-performance hardware
environment and not meeting real-time requirements. For the convenience of training and
application, we research a 2D network. We integrate the attention mechanism and hybrid
dense dilated convolution into the U-net network with a residual structure to detect rib
fractures more accurately.

2.2. Inception Modules

Inception modules are layers that perform multiple convolutions of different sizes
and pooling operations in parallel. The outputs of these parallel operations are then
concatenated and fed into the next layer. The idea behind this design is to capture features
of different scales and complexity levels in a single layer, which can help improve the
model’s ability to recognize objects of different sizes and shapes in images.

The original Inception model [30] has undergone several iterations since its introduc-
tion, with each version adding improvements and optimizations. These later versions
include Inception V2 [31], V3 [32], V4 [19], and Inception-ResNet [19], which incorporate
additional techniques such as batch normalization, factorized convolutions, and residual
connections to improve the performance.

2.3. Attention Mechanism

Attention mechanisms have extensive applications in computer vision tasks [33–38].
Hu et al. [33] first proposed channel attention, which adaptively recalibrates the weight
of each channel. Wang et al. [39] proposed the residual attention network (RAN) by
combining a spatial attention mechanism with residual connections.

Some approaches combine spatial and channel attention, allowing the network to
focus selectively on both spatial locations and features. CBAM [40] stacks channel attention
and spatial attention in series to enhance informative channels and important regions.
Zhang et al. [41] leverage self-attention mechanisms for channel and spatial attention to
explore pairwise interaction. Roy et al. [42] propose spatial and channel SE blocks (scSE),
which are used to provide spatial attention weights to focus on important regions.
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These attention mechanisms can be incorporated into various CNN architectures and
have been shown to improve the performance on various computer vision tasks.

3. Method
3.1. The Proposed Model

The proposed composite attention residual U-net structure is shown in Figure 2. The
network includes two parts: encoding and decoding. The encoding part on the left is
responsible for feature extraction. As the network layer deepens, the network channels
increase, and the feature map gradually becomes smaller. The function of the decoding
part on the right is to restore the features. The corresponding coding layer information is
added to the network during decoding to avoid information loss.
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Figure 2. The architecture of the composite attention residual U-net network.

In our proposed method, each encoding module in the U-net network is replaced with
the corresponding residual module [43] in ResNet34. In contrast to the original module,
a direct mapping part is added to the residual module, effectively avoiding gradient
explosion and disappearance problems. Besides, we introduce a hybrid dense dilated
convolution module after coding and fuse an attention mechanism model in the decoding
stage. Finally, the detection bounding box is obtained according to the segmentation results,
and the fracture location is marked.

3.2. Hybrid Dense Dilated Convolution Module

Dilated convolution injects gaps into the standard convolution map to expand the
reception field. In the dilated convolution, the dilation rate indicates the degree of expansion
of the convolution kernel (the standard convolution dilation rate is 1).

Unfortunately, the dilated convolution kernel is not continuous. Using the convolution
kernel with the same dilated ratio is superimposed multiple times. Some pixels are ignored.
In addition, when only a convolution kernel with a large dilation rate is utilized, it will do
more harm than good for small objects.

Inception [19] is a classical architecture in deep learning. Inception adopts different
receptive fields to widen the structure of a network. Inspired by the Inception and hybrid
dilated convolution [18], we propose a hybrid dense dilated convolution (HDDC). HDDC,
which combines Inception and dilated convolution, inherits the advantages of both approaches.
Convolutions of different sizes capture various receptive fields, and features of different scales
are merged through the final stitching. For easy alignment, the convolution kernel employs
1 × 1 and 3 × 3. Because the dilation rate increases, the dilated convolution kernel is much
larger than the original 3 × 3 convolution kernel, so the 5 × 5 is not employed in HDDC.
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The detail of HDDC is shown in Figure 3. The final output feature map of the encoding part is
processed through several convolutions. These outputs are adjusted to be consistent by 1 × 1
convolution and are then superimposed as the input of the decoding part. HDDC completely
captures the object information and effectively reduces the loss of pixel information while
expanding the convolution’s receptive field. Meanwhile, more semantic representations are
extracted, and then the feature extraction efficiency is improved.

Conv 3×3

Conv 3×3

rate=3
Conv 1×1

Conv 3×3

rate=5

Conv 3×3

rate=3
Conv 1×1

Conv 1×1

16×16×512 16×16×512

Figure 3. The architecture of the hybrid dilated dense convolution module. It cascades standard and
dilated convolution to extract feature information from different scales. Here, all channels are 512,
and the rate represents the dilation rate.

3.3. Combined Attention Module

High-level feature maps contain rich semantic information, while low-level feature
maps contain more detailed information. The decoder recovers detailed information
through deconvolution upsampling. However, upsampling will cause blurred edges and
a loss of detail. Directly connecting low-level and high-level features such as residual
networks will bring much background information, which may interfere with the seg-
mentation of the target object. This paper utilizes coordinate attention [44] to integrate
high-level and low-level features instead of direct concatenation. The subtle features are
strengthened, and the noise interference in the low-level features is reduced. The combined
attention module is shown in Figure 4. First, we encode each channel of high-level and
low-level features along two directions. The pooling kernels are (H, 1) and (1, W). These
output features are formulated as follows:

zh
t (h) =

1
W ∑

0≤i<W
xt(h, i) (1)

zh
l (h) =

1
W ∑

0≤i<W
xl(h, i) (2)

zw
t (w) =

1
H ∑

0≤j<H
xt(j, w) (3)

zw
l (w) =

1
H ∑

0≤j<H
xl(j, w) (4)

where xt and xl refer to high-level and low-level features, respectively.
The above four operations differ from direct squeeze [33], which captures features

along two coordinate directions. By combining the two transformations, long-range spatial
dependencies and positional information are preserved along two directions. The concate-
nation is done following the two levels’ superposition of the two directions. Then, 1 × 1
convolutional function F1×1 and non-linear activation function δ are executed. The former
can be written as

y = δ
(

F1×1

(
concat

[
zh

t + zh
l , zw

t + zw
l

]))
(5)
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here, y ∈ RC/r×(H+W) represents the feature map in a horizontal and vertical orientation
as in the coordinate attention block. r is the channel compression ratio. Next, the features
are split into two direction tensors yw and yh.

low-level

feature

high-level

feature

C×H×W
H-AP

Concat&

Conv1×1

BN&

ReLU

σ

output

feature

C×H×W

W-AP

H-AP

W-AP

C×H×W

C×H×1

C×1×W

C×H×1

C×1×W

C/r×1×(W+H) C/r×1×(W+H)

Conv

1×1

Conv

1×1
σ

C×H×1

C×1×W

split

Figure 4. The architecture of the combined attention module (CAM). Attention information from
high-level and low-level features is extracted to strengthen the parts that need attention in high-level
features. H-AP and W-AP refer to the global average pooling along horizontal and vertical directions.

Two 1 × 1 convolutional functions Fw
1×1 and Fh

1×1 are applied to get fw and fh with the
number of input channels C. The processes can be shown as follows:

fw = σ
(

Fw
1×1(y

w)
)

(6)

fh = σ
(

Fh
1×1

(
yh
))

(7)

here, σ is the sigmoid function.
Finally, attention weights for two directions are enhanced on the low-level features

maps and then added to the high-level features maps. The calculation process can be
expressed as follow:

xo = xl(i, j)× fh(i)× fw(j) + xt (8)

where xo is the output feature map.

3.4. Loss Function

Cross entropy is defined as measuring the difference between two probability distri-
butions for a given random variable or set of events. It is widely used for classification
tasks. Since segmentation is pixel-level classification, cross-entropy can also be utilized in
segment tasks. Cross entropy loss is defined in Equation (9)

LCE = − 1
w× h ∑

0≤i<w
∑

0≤j<h
yij log

(
ỹij
)

(9)

where w, h denote the width and the height of the input picture. yij and ỹij represent the
ground truth and the prediction of a pixel, respectively.

The cross-entropy loss function separately evaluates the class prediction of each pixel
vector and then averages all pixels from Equation (9), so the pixels in the image are learned
equally. The fracture area occupies a small part of the picture in the rib fracture segmentation
task. That means the number of negative samples is much greater than the number of positive
samples. The components of negative samples in the loss function will dominate, and only the
cross-entropy loss makes the model heavily biased towards the background.

Dice coefficient [45], defined as Equation (10), is suitable for highly unbalanced sam-
ples, but simple dice loss will adversely affect backpropagation and make training unstable.
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To effectively use the cross-entropy loss function and the Dice loss function, we combine
these two losses as Equation (11).

Dice =
2×∑w

i=1 ∑h
j=1 yijỹij

∑w
i=1 ∑h

j=1 yij + ∑w
i=1 ∑h

j=1 ỹij
(10)

L = (1− θ)LCE − θ log(Dice) (11)

here, θ is an introduced hyperparameter that can balance Dice loss and cross-entropy loss.
When the prediction deviates far from the ground truth, Dice will be tiny, and the loss

will increase to penalize this poor prediction eventually. This method can also improve the
sensitivity of loss. This compound loss combines cross-entropy and Dice to maximize strengths
and avoid weaknesses. Compared with any loss alone, it has a more remarkable improvement.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets

The rib fracture radiography images are from MICCAI 2020 RibFrac Challenge (Rib
Fracture Detection and Classification) [27]. The image dataset includes 500 cases of chest-
abdomen CT scans. The image-sufficient artificial annotation process participated in the
annotation process to ensure higher annotation quality. We divide 420 as a training dataset,
and the remaining 80 cases are test sets used for verification. First, the 2D images are
extracted from the nii format CT images. For clarity and retaining the tissue voxels around
some ribs, the CT image window width is set to 1000, and the window level is set to
600. Images are removed if the total pixel value of the annotated image is less than 100.
Therefore, our training dataset has 38,330 2D images (to train the deep learning network),
and our test dataset has 5005 2D images (to evaluate the network performance).

The CT detector irradiated the human measured X-ray attenuation coefficient to get
the CT value. It is a quantitative density concept used to describe the value density in
the CT image, and the unit is HU (Hounsfield Unit). The general practice is to position
the water CT value of 0HU, the cortical bone CT value of +1000 Hu, the air CT value of
−1000 Hu, and the other tissue between −1000 Hu +1000 Hu. CT images are expressed in
different gray levels, reflecting the degree of absorption of X-rays by organs and tissues.
The window width, which affects the contrast and sharpness of the image, refers to the
range of CT values displayed in the CT image. The window level is the center position of
the CT value in the CT image. Suitable window width and window level can reflect the
anatomical content and lesion image performance. Here, we set the window width to 1000,
and the window level is set to 600.

4.1.2. Experimental Details

These experiments are conducted on the workstation with two INTEL XEON E5-2678
CPUs and two GeForce RTX 2080S GPUs. The deep learning model is trained on the
Pytorch framework. The training details are as follows: (1) training with 25 epochs; (2)
optimizer that uses stochastic gradient descent (SGD) with 0.0005 weigh decay and 0.9
momentum parameter; (3) batch size, which is set to 16.

4.1.3. Evaluation Metrics

We adopt Precision, Recall, and F1 as the metrics to evaluate our method. When com-
paring the effect with other networks, we add Dice, as formulated in Equation (10) for
evaluation, which is the most popular metric in medical image segmentation. The metrics
mentioned above are defined as follows:

Precision =
TP

TP + FP
(12)
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Recall =
TP

TP + FN
(13)

F1 =
2× Precision× Recall

Precision + Recall
(14)

where TP and FN denote the numbers of fractures that are detected correctly or not,
respectively. FP represents the number of healthy images that are detected as fractures.

4.2. Main Results
4.2.1. Parameter Sensitivity

Our model introduces a new hyper-parameter θ to balance cross-entropy loss and Dice
loss. In our experiment, θ is a fixed value, ranging from 0 to 1. When θ is 0, the loss function
equals cross-entropy loss. As θ increases, the loss function becomes more and more biased
toward Dice loss. When θ is 1, the loss function is entirely equal to log(Dice). Table 1
shows that when θ is 0.2, the model’s performance is the best, and when θ is 0.1, there is a
significant fluctuation in the training process, and the training is extremely unstable. When
θ ranges from 0.4 to 1.0, fluctuations in the results indicate that the effect of cross-entropy
loss is negligible.

Table 1. Varying θ on the loss function.

θ 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

F1 / 80.01 81.86 79.64 79.98 78.06 78.35 78.15
Recall / 79.06 81.71 80.61 79.05 80.81 77.99 79.01

Precision / 80.98 82.02 78.70 80.93 75.49 78.71 77.31

4.2.2. Ablation Studies

We evaluate the effect of two modules in the rib fracture dataset in Table 2. (1) HDDC:
hybrid dense dilated convolution with multi-scale dilated convolution. (2) CAM: we
combine high-level and low-level features in the decoding stage.

Experimental results are shown in Table 2. Unet-34 represents U-net with ResNet34.
The context information in the low-level features is integrated into the high-level features
by CAM, which helps eliminate some irrelevant information and get strong feature repre-
sentations (Recall: +5.27%; F1:+2.28%). HDDC improves the performance by 2.85% (Recall)
and 2.59% (F1), which shows that the network benefits from multi-scale dilated convolution.
The low dilation rate focuses on short-distance information, and the large dilation rate
focuses on long-distance details to obtain more features while expanding the receptive field.
HDDC enhances the ability to fetch remote information and enables the network to capture
more semantic information. We combine the high-level and low-level features to represent
multi-scale rib fractures, achieving 81.71% (Recall) and 81.86% (F1).

Table 2. Performance comparison between the different strategies. “X” represents that the module
has been incorporated into the network for training.

HDDC CAM Recall F1 Precision

75.56 76.75 77.97
X 78.41 79.34 80.29

X 80.83 79.03 77.31
X X 81.71 81.86 82.02

4.2.3. Comparison with Other Networks

To verify the effectiveness of the network in this paper, we conduct some comparative
studies with other state-of-the-art segmentation networks. Considering the fairness of the
experiments, the experiments of Unet-34, CE-net, Unet++, and RAUNet adopt the same



Entropy 2023, 25, 466 9 of 12

optimization algorithm, loss function, and initial experimental parameters as the model in
this paper. The comparison results are shown in Table 3.

As the basic model, the performance of Unet-34 is the worst. Unet++, which is more
complex and has more learnable parameters, performs slightly better than CE-net and
RAUNet. Our model only makes local improvements based on Unet-34 without increasing
the computational burden too much, and it significantly improves the model performance.
In experiments, the Dice similarity coefficient of our algorithm is 53.28%, which is 0.37%
higher than that of Unet++. Our model results are the best in terms of Recall, Precision,
and F1. It can be concluded that the rib fracture identification of our network is better
than other segmentation networks. The significant performance improvement shows that
HDDC and CAM have played a vital role.

Table 3. Comparison with three networks on the test dataset (5005 2D images).

Model Recall Precision F1 Dice

Unet-34 [43] 75.56 77.97 76.75 49.32
CE-Net [23] 81.66 76.04 78.75 52.03
Unet++ [25] 78.59 81.59 80.06 52.89
RAUNet [24] 80.21 79.06 79.63 51.87

Ours 81.71 82.02 81.86 53.28

For the intuitive comparison, some of the recognition effects of these networks are
visualized in Figure 5. Here, the green curve denotes the contour of the ground truth, and
the red box marks the location of the rib fracture.

In Figure 5, the Unet-34 network has significantly more missed and false detections
than the others. It is clear that the labeling boxes with our method fit more with the
ground truth and more completely capture the fracture area. The observation shows the
effectiveness of our learning method, i.e., HDDC and CAM. However, some fracture areas
in the figure are identified as two areas. This situation shows that identifying fractures by
segmentation focuses more on the pixel level. Such parts can be merged through image
post-processing as needed.

Figure 5. Examples of the detection results of several methods on the validation area in the chest CT images
dataset. The green and red boxes denote the contours of the ground truth and detection results, respectively.

5. Discussion

This paper proposes a deep learning model-based 2D U-net network to detect and
segment rib fractures from CT. Through CAM, features from the encoder and the decoder
are combined, allowing for the detection of subtle features of occult fractures. HDDC
is used between the encoder and decoder to expand the convolutional receptive field
through multi-scale cascaded dilated convolution kernels, extract rich semantic features,
and improve fracture recognition accuracy.
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In detection, our model achieved recall (81.71%) and FPs (25.41), outperforming the
average of human experts (about 77.5%, 1.13) [27]. Besides, our network performed 53.28%
in Dice, which was acceptable on 2D rib fracture segmentation.

Prior to our study, there were two deep learning-based rib fracture detection models that
performed well. Zhou et al. [14] presented a rib fractures detection and classification model
based on Faster R-CNN. Their results show high sensitivity and specificity with a diagnosis
time of only about 23 seconds. We employ an improved U-net network to detect rib fractures,
and our precision and recall are comparable to those of Zhou et al, but our diagnosis time is
significantly shorter, at only about 5 s. Jin et al. [27] used the FracNet algorithm for rib fractures
detection and segmentation, achieving a sensitivity of up to 92.9% and 71.5% in Dice for image
segmentation, with a diagnosis time of 31 s. FracNet outperforms our model in sensitivity and
Dice, but our detection time is only one-sixth of that of FracNet, making it suitable for real-time
clinical assistance. Computer-aided diagnosis is a human–computer collaboration approach
that improves the performance while reducing the clinical time.

In addition, we tried to adjust the HU value of CT images to obtain 2D images that
only kept bones for training and found that this operation damaged the detection effect.
It has been proved that the surrounding tissues help identify rib fractures. Unlike natural
images, the target in medical images has a closer relationship with surrounding tissues.
The addition of the feature information of peripheral tissues will be beneficial for target
recognition and segmentation.

There are limitations in our study. Many manual annotations, which are time-consuming
and labor-intensive and may be inaccurate, are employed during training. In further studies,
we will study how to design an effective self-supervised learning method for the characteristics
of medical images. We expect to further improve the accuracy of medical image segmentation
and detection by utilizing massive unlabeled images. In conclusion, our detection model
can assist clinicians in improving the efficiency of diagnosis in finding rib fractures, which
is worth in-depth research.
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