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Abstract: We propose a new model selection method, named the posterior averaging information
criterion, for Bayesian model assessment to minimize the risk of predicting independent future
observations. The theoretical foundation is built on the Kullback–Leibler divergence to quantify the
similarity between the proposed candidate model and the underlying true model. From a Bayesian
perspective, our method evaluates the candidate models over the entire posterior distribution in
terms of predicting a future independent observation. Without assuming that the true distribution is
contained in the candidate models, the new criterion is developed by correcting the asymptotic bias
of the posterior mean of the in-sample log-likelihood against out-of-sample log-likelihood, and can
be generally applied even for Bayesian models with degenerate non-informative priors. Simulations
in both normal and binomial settings demonstrate superior small sample performance.

Keywords: Bayesian modeling; expected out-of-sample likelihood; Kullback–Leibler divergence;
misspecified model; predictive model selection

1. Introduction

Model selection plays a key role in statistical modeling and machine learning. Informa-
tion theoretic criteria, such as Akaike information criterion (AIC) [1] minimum description
length [2] and Schwarz information criterion [3], have been frequently and widely exploited
with profound impact on many research fields.

Among these popular methods, a substantial group of model selection criteria was
proposed based on the Kullback–Leibler (K-L) information divergence [4]. In the context
of model selection, it provides an objective measure to quantify the overall closeness
of a probability distribution (the candidate model) and the underlying true model. On
both theoretical and applied fronts, K-L based information criteria have drawn a huge
amount of attention, and a rich body of literature now exists for both frequentist and
Bayesian modeling.

Here we will focus on predictive model selection. To choose a proper criterion for a
statistical data analysis project, it is essential to distinguish the ultimate goal of modeling.
Geisser & Eddy [5] challenged researchers with two fundamental questions that should be
asked in advance of any procedure conducted for model selection:

• Which of the models best explains a given set of data?
• Which of the models yields the best predictions for future observations from the same

process that generated the given set of data?

The first question, which concerns the accuracy of the model in describing the cur-
rent data, has been an empirical problem for many years. It represents the explanatory
perspective. The second question, which represents the predictive perspective, concerns
the accuracy of the model in predicting future data, having drawn substantial attention in
recent decades. If an infinitely large quantity of data is available, the predictive perspective
and the explanatory perspective may converge. However, with a limited number of ob-
servations we encounter in practice, predictive model selection methods should achieve
an optimal balance between goodness of fit and parsimony, for example, as we have seen
in AIC.
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Compared with frequentist methods, Bayesian approaches to statistical inference have
unique concerns regarding the interpretation of parameters and models. However, many
earlier Bayesian K-L information criteria, such as Deviance Information Criterion (DIC) [6],
follow essentially the frequentist philosophy insofar as they select a model using plug-in
estimators of the parameters. Subsequently, the parameter uncertainty is largely ignored.
Such a paradigm has changed since the Bayesian predictive information criterion (BPIC) [7],
as model selection criteria were developed over the entire posterior distribution. Never-
theless, BPIC has its own limitations, particularly with asymmetric posterior distributions.
More importantly, BPIC is undefined under improper prior distributions, which limits its
use in practice. More details can be found in Section 3 with a review of alternative methods.

The rest of this article is organized as follows. To explain the motivation of the
proposed Bayesian criterion, in Section 2 we review the K-L divergence, its application
and development in frequentist statistics, and the adaption to Bayesian modeling based
on plug-in parameter estimation. In Section 3, major attention is given to the K-L based
predictive criterion for models evaluated by averaging over the posterior distributions of
parameters. To select models with better predictive performance, a generally applicable
method, named the posterior averaging information criterion (PAIC), is proposed for
comparing different Bayesian statistical models under mild regularity conditions. The new
criterion is developed by correcting the asymptotic bias of using the posterior mean of
the log-likelihood as an estimator of its expected log-likelihood, and we prove that the
asymptotic property holds even though the candidate models are misspecified. In Section 4,
we present some numerical studies in both normal and binomial cases to investigate
its performance with small sample sizes. We also provide a real data variable selection
example in Section 5 to exhibit possible differences between the explanatory and predictive
approaches. We conclude with a few summary remarks and discussions in Section 6.

2. Kullback–Leibler Divergence and Model Selection

Kullback & Leibler [4] derived an information measure to assess the dissimilarity
between any two models. If we assume that f (y) and g(y), respectively, represent the
probability density distributions of the ‘true model’ and the ‘approximate model’ on the
same measurable space, the K-L divergence is defined by

KL( f ||g) =
∫

f (y) · log
f (y)
g(y)

dy = Ey[log f (y)]− Ey[log g(y)], (1)

which is always non-negative, reaching the minimum value of 0 when f is the same as g
almost surely. It is interpreted as the ‘information’ loss when g is used to approximate f .
Namely, the smaller the value of KL( f ||g), the closer we consider the model g to be to the
true distribution.

Only the second term of KL( f ||g) in (1) is relevant in practice to compare different
possible models g without full knowledge of the true distribution. This is because the first
term, Ey[log f (y)], is a constant that depends on only the unknown true distribution f , and
can be neglected in model comparison for given data.

Let y = (y1, y2, · · · , yn) be n independent observations of the data following prob-
ability density function f (y). ỹ is a future independent observation following the same
density function f (y), representing an unknown but potentially observable quantity [8].
Without exactly knowing f (y), we denote a model m with density gm(y|θm) among a list
of potential operating models m = 1, 2, · · · , M. For notational purposes, we ignore the
model index m when there is no ambiguity. The true model f is referred to as the unknown
data generating mechanism, not necessarily to be encompassed in any approximate model
family of gm.

As the sample size n→ ∞, the average of the log-likelihood

1
n

L(θ|y) = 1
n

n

∑
i=1

log g(yi|θ)
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tends to Eỹ[log g(ỹ|θ)] by the law of large numbers, which suggests how we can estimate
the second term of KL( f ||g).

The model selection based on the K-L divergence is straightforward when all the
operating models are fixed probability distributions, i.e., g(y|θ) = g(y). The model with
the largest empirical log-likelihood ∑i log g(yi) is favored, when the observed data y are
used as the test sample. However, when the distribution family g(ỹ|θ) contains some
unknown parameters θ, the direct comparison becomes no longer feasible. A typical
strategy is to conduct the model fitting first, and then compare the operating models
specified at the fitted parameters. In this case, the same data are indeed used twice—in
both model fitting (as the training sample) and evaluation (as the test sample). Therefore,
the in-sample log-likelihood is not optimal for the predictive modeling. For a desirable
out-of-sample predictive performance, a common idea is to identify a bias correction term
to rectify the over-estimation bias of the in-sample estimator, which is also the focus of
this work.

In the frequentist setting, the general model selection procedure chooses candidate
models specified by some point estimate θ̂ based on a certain statistical principle such as
maximum likelihood. A considerable amount of theoretical research has addressed this
problem by correcting for the bias of 1

n ∑i log g(yi|θ̂) in estimation of Eỹ[log g(ỹ|θ̂)] [1,9–11].
A nice review can be found in Burnham & Anderson [12].

Since the introduction of the AIC [1], researchers have commonly applied frequentist
model selection methods into Bayesian modeling. However, the differences in the underly-
ing philosophies between Bayesian and frequentist statistical inference caution against such
direct applications. There also have been a few attempts to specialize the K-L divergence
for Bayesian model selection (see, for example, [5,13,14]) in the last century. These methods
are limited either in the scope of methodology or computational feasibility, especially when
the parameters of the Bayesian models are in high-dimensional hierarchical structures.

The seminal work of Spiegelhalter et al. [6,15] proposed DIC,

DIC = D(θ̄) + 2pD

as a Bayesian adaption of AIC and implemented it using Gibbs sampling (BUGS) [16],
where D(θ) is the deviance function, θ̄ is the posterior mean and pD is the effective number
of parameters. Although its establishment lacks a theoretical foundation [17,18], −dic/2n,
as a model selection measure, heuristically estimates Eỹ[log g(ỹ|θ̄)], the expected out-of-
sample log-likelihood specified at the posterior mean, after assuming that the proposed
model encompasses the true model. Alternative methods can be found either using a
similar approach for mixed-effects models [19–21] or using numerical approximation [22]
to estimate cross-validative predictive loss [23].

3. Posterior Averaging Information Criterion

The preceding methods in general can be viewed as Bayesian adaptation of the infor-
mation criteria originally designed for frequentist statistics, when each model is assessed
in terms of the similarity between the true distribution f and the model density function
specified by the plug-in parameters. This may not be ideal since, in contrast to frequentist
modeling, “Bayesian inference is the process of fitting a probability model to a set of data
and summarizing the result by a probability distribution on the parameters of the model and
on unobserved quantities such as predictions for new observations” [8]. Rather than con-
sidering a model specified by a point estimate, it is more reasonable to assess the goodness
of a Bayesian model in terms of the posterior distribution.

3.1. Rationale and the Proposed Method

Ando [7] proposed an estimator for the posterior averaged discrepancy function,

η = Eỹ[Eθ|y log g(ỹ|θ)].
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Under certain regularity conditions, it was shown that an asymptotic unbiased estimator of
η is

η̂BPIC =
1
n

Eθ|y log L(θ|y)− 1
n
[ Eθ|y log{π(θ)L(θ|y)} − log{π(θ̂)L(θ̂|y)}

+tr{J−1
n (θ̂)In(θ̂)}+

K
2
] (2)

,
1
n

Eθ|y log L(θ|y)− BC1.

Here, π(θ) is the prior distribution, θ̂ is the posterior mode, K is the cardinality of θ, and
matrices Jn and In are some empirical estimators for the Bayesian asymptotic Hessian ma-
trix,

J(θ) = −Eỹ

(
∂2 log{g(ỹ|θ)π0(θ)}

∂θ∂θ′

)
and Bayesian asymptotic Fisher information matrix,

I(θ) = Eỹ

(
∂ log{g(ỹ|θ)π0(θ)}

∂θ

∂ log{g(ỹ|θ)π0(θ)}
∂θ′

)
,

where log π0(θ) = limn→∞ n−1 log π(θ).
The Bayesian predictive information criterion (BPIC) was introduced as−2n · η̂BPIC. It

is applicable when the true model f is not necessarily in the specified family of probability
distributions. In model comparison, the candidate model with a minimum BPIC value is
favored. However, it has the following limitations in practice.

1. Equation (2) was from the original presentation for BPIC in Equation (5) of Ando [7].
After some math canceling out the term 1

n Eθ|y log L(θ|y) in both estimator and bias
correction term, η̂BPIC can be simplified as

η̂BPIC =
1
n

log L(θ̂|y)− 1
n
[ Eθ|y log π(θ)− log π(θ̂) + tr{J−1

n (θ̂)In(θ̂)}+
K
2
] (3)

,
1
n

log L(θ̂|y)− BC2,

which shows that it was actually the plug-in estimator 1
n log L(θ̂|y), rather than natural

estimator 1
n Eθ|y log L(θ|y), was used in estimation of η for bias correction. Compared with

the natural estimator, the estimation efficiency of η using plug-in estimator is suboptimal
when the posterior distribution is asymmetric.

2. The BPIC cannot be calculated when the prior distribution π(θ) is degenerate, a
common situation in Bayesian analysis when an objective non-informative prior
is selected. For example, if we use non-informative prior π(µ) ∝ 1 for the mean
parameter µ of the normal distribution in the following Section 4.1, the values of
log π(θ̂) and Eθ|y log π(θ) in Equation (3) are undefined.

In order to avoid those drawbacks, we propose a new model selection criterion
in terms of the posterior mean of the empirical log-likelihood η̂ = 1

n Eθ|y log L(θ|y) =
1
n ∑i Eθ|y[log g(yi|θ)], a natural estimator of estimand η. Without losing any of the attractive
properties of BPIC, the new criterion expands the model scope to all regular Bayesian
models. As we will show in the simulation study, empirically it also improves the unbiased
property for small samples, and enhances the robustness of the estimation.

Because all the data y are used for both model fitting and model selection, η̂ always
overestimates η. To correct the estimation bias from the overuse of the data, we have the
following theorem.
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Theorem 1. Let y = (y1, y2, · · · , yn) be n independent observations drawn from the probability
cumulative distribution F(ỹ) with density function f (ỹ). Consider G = {g(ỹ|θ); θ ∈ Θ ⊆ Rp} as
a family of candidate statistical models that do not necessarily contain the true distribution f , where
θ = (θ1, . . . , θp)′ is the p-dimensional vector of unknown parameters, with prior distribution π(θ).
Under the following three regularity conditions:

C1: Both the log density function log g(ỹ|θ) and the log unnormalized posterior density
log{L(θ|y)π(θ)} are twice continuously differentiable in the compact parameter space Θ;

C2: The expected posterior mode θ0 = arg maxθ Eỹ[log{g(ỹ|θ)π0(θ)}] is unique in Θ;
C3: The Hessian matrix of Eỹ[log{g(ỹ|θ)π0(θ)}] is non-singular at θ0,

the bias of η̂ for η can be approximated asymptotically without bias by

η̂ − η = b̂θ
∼=

1
n

tr{J−1
n (θ̂)In(θ̂)}, (4)

where θ̂ is the posterior mode that maximizes the posterior distribution ∝ π(θ)∏n
i=1 g(yi|θ) and

Jn(θ) = − 1
n

n

∑
i=1

(
∂2 log{g(yi|θ)π

1
n (θ)}

∂θ∂θ′
)

In(θ) =
1

n− 1

n

∑
i=1

(
∂ log{g(yi|θ)π

1
n (θ)}

∂θ

∂ log{g(yi|θ)π
1
n (θ)}

∂θ′
).

Proof. Recall that the quantity of interest is EỹEθ|y log g(ỹ|θ). To estimate it, we first check
EỹEθ|y log{g(ỹ|θ)π0(θ)} = EỹEθ|y{log g(ỹ|θ) + log π0(θ)} and expand it about θ0,

EỹEθ|y log{g(ỹ|θ)π0(θ)} = Eỹ log{g(ỹ|θ0)π0(θ0)}+ Eθ|y(θ − θ0)
′ ∂Eỹ log{g(ỹ|θ)π0(θ)}

∂θ
|θ=θ0

+
1
2

Eθ|y[(θ − θ0)
′ ∂

2Eỹ log{g(ỹ|θ)π0(θ)}
∂θ∂θ′

|θ=θ0(θ − θ0)] + op(n−1)

= Eỹ log{g(ỹ|θ0)π0(θ0)}+ Eθ|y(θ − θ0)
′ ∂Eỹ log{g(ỹ|θ)π0(θ)}

∂θ
|θ=θ0

−1
2

Eθ|y[(θ − θ0)
′ J(θ0)(θ − θ0)] + op(n−1)

, I1 + I2 + I3 + op(n−1) (5)

The first term I1 can be linked to the empirical log likelihood function as follows:

Eỹ log{g(ỹ|θ0)π0(θ0)} = Eỹ log g(ỹ|θ0) + log π0(θ0)

= Ey
1
n

log L(θ0|y) + log π0(θ0)

= Ey
1
n

log{L(θ0|y)π(θ0)} −
1
n

log π(θ0) + log π0(θ0)

= EyEθ|y
1
n

log{L(θ|y)π(θ)} − 1
2n

tr{J−1
n (θ0)I(θ0)}

+
1

2n
tr{J−1

n (θ̂)Jn(θ0)} −
1
n

log π(θ0) + log π0(θ0) + op(n−1)

where the last equation holds due to Lemma A5 (together with other Lemmas, provided in
the Appendix A).

The second term I2 vanishes since

∂Eỹ log{g(ỹ|θ)π0(θ)}
∂θ

|θ=θ0 = 0

as θ0 is the expected posterior mode.
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Using Lemma A4, the third term I3 can be rewritten as

I3 = −1
2

Eθ|y(θ − θ0)
′ J(θ0)(θ − θ0)

= −1
2

tr{Eθ|y[(θ − θ0)(θ − θ0)
′]J(θ0)}

= − 1
2n

(tr{J−1
n (θ0)I(θ0)J−1

n (θ0)J(θ0)}+ tr{J−1
n (θ̂)J(θ0)}) + op(n−1)

By substituting each term in Equation (5) and neglecting the residual term, we obtain

EỹEθ|y log{g(ỹ|θ)π0(θ)} ' EyEθ|y
1
n

log{L(θ|y)π(θ)} − 1
2n

tr{J−1
n (θ0)I(θ0)}

+
1

2n
tr{J−1

n (θ̂)Jn(θ0)} −
1
n

log π(θ0) + log π0(θ0)

− 1
2n

(tr{J−1
n (θ0)I(θ0)J−1

n (θ0)J(θ0)}+ tr{J−1
n (θ̂)J(θ0)})

Recall that we have defined log π0(θ) = limn→∞ n−1 log π(θ), so that asymptotically
we have

log π0(θ0)− 1
n log π(θ0) ' 0,

Eθ|y log{π0(θ)} − Eθ|y
1
n log{π(θ)} ' 0.

Therefore, EỹEθ|y log{g(ỹ|θ)} can be estimated by

EỹEθ|y log{g(ỹ|θ)} = EỹEθ|y log{g(ỹ|θ)π0(θ)} − Eθ|y log{π0(θ)}

' EyEθ|y
1
n

log{L(θ|y)π(θ)} − 1
2n

tr{J−1
n (θ0)I(θ0)}+

1
2n

tr{J−1
n (θ̂)Jn(θ0)}

− 1
2n

(tr{J−1
n (θ0)I(θ0)J−1

n (θ0)J(θ0)}+ tr{J−1
n (θ̂)J(θ0)})

− 1
n

log π(θ0) + log π0(θ0)− Eθ|y log{π0(θ)}

' EyEθ|y
1
n

log{L(θ|y)} − 1
2n

tr{J−1
n (θ0)I(θ0)}+

1
2n

tr{J−1
n (θ̂)Jn(θ0)}

− 1
2n

(tr{J−1
n (θ0)I(θ0)J−1

n (θ0)J(θ0)}+ tr{J−1
n (θ̂)J(θ0)})

Replacing θ0 by θ̂, J(θ0) by Jn(θ̂) and I(θ0) by In(θ̂), we obtain Eθ|y
1
n log{L(θ|y)} −

1
n tr{J−1

n (θ̂)In(θ̂)} as an asymptotically unbiased estimate for EỹEθ|y log{g(ỹ|θ)}.

With the above result, we propose a new predictive criterion for Bayesian modeling,
named the Posterior Averaging Information Criterion (PAIC),

PAIC = −2 ∑
i

Eθ|y[log g(yi|θ)] + 2tr{J−1
n (θ̂)In(θ̂)}. (6)

The candidate models with small criterion values (6) are preferred for the purpose of
model selection.

Remark 1. PAIC selects the candidate models with optimal performance to predict a future outcome.

The optimality is defined in a sense to maximize the out-of-sample log density η,
which is equivalent to minimize the posterior predictive K-L divergence.

Remark 2. PAIC is derived without assuming that the approximating distributions contain
the truth.
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In another word, PAIC is generally applicable even if all candidate models are mis-
specified. In such settings, rather than select the true model, the goal is to identify the best
candidate model(s) with small PAICs among all models under consideration. Similar to
other K-L based information criteria, we consider a model is better if its PAIC is smaller
with a difference larger than 2.

Remark 3. The averaging over the posterior distribution in empirical likelihood helps differentiate
the candidate models.

The posterior distribution function, rather than a point estimator, represents the
current best knowledge from a Bayesian perspective. In some cases, two candidate models
may have identical posterior mean but different posterior distributions. (A simple example
could be in the setting of Section 4.1, when model A has τ0 = 1000 and model B has τ0 = 1
in the prior distribution.) Apparently, Bayesian model assessment with respect to the
posterior distribution is more effective in model selection. When the posterior distribution
of the parameters is asymmetric, the estimation of information criterion averaged over the
posterior is also more robust than plugging in a point estimator.

Remark 4. PAIC can be applied to Bayesian models with flexible prior structures.

For example, in cases when the prior distributions are consistent and sample size
dependent [24,25], the information in the prior distribution does not degenerate asymptoti-
cally, but is accommodated spontaneously in empirical log-likelihood and bias-correction
for predictive assessment. Unlike the BPIC, PAIC relaxes the restriction in common prior
distribution specification. It is well-defined and can cope with degenerate non-informative
prior distributions for parameters. The bias correction term tr{J−1

n (θ̂)In(θ̂)} is closely
related to the concept of measuring a Bayesian model’s complexity [26]. Particularly, when
the candidate model is true and has no hierarchical structures, and the prior distribution
is non-informative with a dimension of p, we have exactly tr{J−1

n (θ̂)In(θ̂)} = p, which is
similar to the bias correction in AIC [1].

3.2. Relevant Methods for the Posterior Averaged K-L Discrepancy

Rather than deriving the bias correction analytically, resampling approaches, such as
cross-validation and bootstrap, can also be used to measure the posterior averaged K-L
discrepancy. Plummer [22] introduced the expected deviance penalized loss with ‘expected
deviance’ defined as

Le(yi, z) = −2Eθ|z log g(yi|θ),

which is a special case of the predictive discrepancy measure [27]. The standard cross-
validation method can also be applied in this circumstance to estimate η, simply by consid-
ering the K-L discrepancy as the utility function of [28] and further investigated by [29].
The estimation of the bootstrap error correction η(b) − η̂(b) with bootstrap analogues

η(b) = Eỹ∗ [Eθ|y∗ log g(ỹ|θ)]

and
η̂(b) = Eỹ∗ [n

−1Eθ|y∗ log L(θ|y∗)]

for η − η̂ was discussed by Ando [7] as a Bayesian adaptation of frequentist model
selection [10]. Although numeric algorithms such as importance sampling can be used
for intensive computation, one caveat is that it may cause inaccurate estimation in prac-
tice if some observation yi was influential [28]. To address that problem, Vehtari [30]
proposed Pareto smoothed importance sampling, a new algorithm for regularizing impor-
tance weights, and developed a numerical tool [31] to facilitate computation. Watan-
abe [32] established a singular learning theory and proposed a new criterion named
Watanabe–Akaike [29], or widely applicable information criterion (WAIC) [33,34], while



Entropy 2023, 25, 468 8 of 18

WAIC1 was proposed for the plug-in discrepancy and WAIC2 for the posterior averaged
discrepancy. However, compared with BPIC and PAIC, we found that WAIC2 tends to have
a larger bias and variation for regular Bayesian models, as shown in simulation studies in
the next section.

4. Simulation Study

In this section, we present some numerical results to illustrate the performance of
the proposed method under small sample sizes. Assuming K-L divergence is a good
measure for model selection, our goal is simply to assess how it can be estimated with the
smallest bias. In the simulation experiments, we estimate the true expected bias η either
analytically in a Gaussian setting (Section 4.1) or numerically by averaging Eθ|y[log g(ỹ|θ)]
over a large number of extra independent draws of ỹ when there is asymmetric posterior
distribution and no closed form for the integration (Section 4.2). To have BPIC well-defined
for comparison, only the proper prior distributions are considered.

4.1. A Case with Closed-Form Expression for Bias Estimators

Suppose observations y = (y1, y2, . . . , yn) are a vector of iid samples generated from
N(µT , σ2

T), with unknown true mean µT and variance σ2
T = 1. Assume the data are analyzed

by the approximating model g(yi|µ) = N(µ, σ2
A) with prior π(µ) = N(µ0, τ2

0 ), where σ2
A

is fixed, but not necessarily equal to the true variance σ2
T . When σ2

A 6= σ2
T , the model is

misspecified.
The posterior distribution of µ is normally distributed with mean µ̂ and variance σ̂2,

where

µ̂ = (µ0/τ2
0 +

n

∑
i=1

yi/σ2
A)/(1/τ2

0 + n/σ2
A)

σ̂2 = 1/(1/τ2
0 + n/σ2

A).

Therefore, the K-L discrepancy function and its estimator are

η = Eỹ[Eµ|y[log g(ỹ|µ)]] = −1
2

log(2πσ2
A)−

σ2
T + (µT − µ̂)2 + σ̂2

2σ2
A

η̂ =
1
n

n

∑
i=1

Eµ|y[log g(yi|µ)]] = −
1
2

log(2πσ2
A)−

1
n

n

∑
i=1

(yi − µ̂)2 + σ̂2

2σ2
A

.

We assess the bias estimator defined in Theorem 1, b̂PAIC
µ and four other bias estimators:

b̂BPIC
µ [7], b̂WAIC2

µ [33], b̂
popt
µ [22], and b̂CV

µ [35].

b̂PAIC
µ =

1
n− 1

σ̂2
n

∑
i=1

((µ0 − µ̂)/(nτ2
0 ) + (yi − µ̂)/σ2

A)
2

b̂BPIC
µ =

1
n

σ̂2
n

∑
i=1

((µ0 − µ̂)/(nτ2
0 ) + (yi − µ̂)/σ2

A)
2

b̂WAIC2
µ =

σ̂2

σ4
A
(nσ̂2/2 +

n

∑
i=1

(yi − µ̂)2)

b̂
popt
µ =

1
2n

popt = 1/(1/τ2
0 + (n− 1)/σ2

A)/σ2
A

b̂CV
µ = η̂ − (

n

∑
i=1

(yi − (µ0/τ2
0 + ∑

j 6=i
yj/σ2

A)/(1/τ2
0 + (n− 1)/σ2

A))
2/n + σ̂2)/σ2

A/2.
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We compare them with the true bias

bµ = Ey(η̂ − η) = Ey{
σ2

T
2σ2

A
+

(µT − µ̂)2

2σ2
A

− 1
n

n

∑
i=1

(yi − µ̂)2

2σ2
A
} = σ2

T σ̂2/σ4
A.

The results are in accordance with the theory (Figure 1). All of the estimates are close to
the true bias-correction values when the model is well-specified with σ2

A = σ2
T = 1, especially

when the sample size becomes moderately large (Figure 1, panels (a), (b), and (c)). The
estimated values based on the PAIC are consistently closer to the true values than either those
based on Ando’s method, which underestimates the bias, or the WAIC2, cross-validation or
expected deviance penalized loss, which overestimate the bias, especially when the sample
size is small. When the models are misspecified, it is not surprising that in all of the plots given
in panels (d)–(i) of Figure 1, only the expected deviance penalized loss misses the target even
asymptotically since its assumption is violated, whereas all the other approaches converge to
bµ. In summary, PAIC achieves the best overall performance.
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Figure 1. Performance of the bias estimators for n× Ey(η̂ − η). The top panels are under a relatively
non-informative prior with τ2

0 = 104; the middle panels are under the case that the prior distribution
grows with sample size with τ2

0 = 104/n; the bottom panels are under an informative prior with
τ2

0 = 0.25. The left panels (a–c) are under the scenario of σ2
A = σ2

T = 1, i.e., the true distribution is
contained in the candidate models. The middle panels (d–f) are under the scenario of σ2

A = 2.25 and
right panels (g–i) are under the scenario of σ2

A = 0.25 when the proposed model is misspecified from
σ2

T = 1. The true bias bµ is curved by (—) as a function of sample size n. The averages of the different
bias estimators are marked by (•) for PAIC; (◦) for BPIC; (�) for popt; (+) for WAIC2; and (×) for
cross-validation. Each mark represents the mean of the estimated bias of 100,000 replications of y.
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4.2. Bayesian Logistic Regression

Consider frequencies y = {y1, . . . , yN}, which are independent observations from
binomial distributions with respective true probabilities ξT

1 , . . . , ξT
N , and sample sizes,

n1, . . . , nN . To draw the inference of the ξ’s, we assume that the logits

βi = logit(ξi) = log
ξi

1− ξi

are random effects that follow the normal distribution βi ∼ N(µ, τ2). The weakly-informative
joint prior distribution N(µ; 0, 10002) · Inv-χ2(τ2; 0.1, 10) is proposed on the hyper-parameter
(µ, τ2) so that the BPIC is properly defined and computable. The posterior distribution is
asymmetric due to the logistic transformation.

We compare the performance of four asymptotically unbiased bias estimators in this
hierarchical, asymmetric setting. The true bias η does not have an analytical form. We
estimate it through numerical computation using independent simulation from the same
data generating process, assuming the underlying true values of µ = 0 and τ = 1. The
simulation scheme is as follows:

1. Draw βT,i ∼ N(0, 1), yi ∼ Bin(ni, logit−1(βT,i)), i = 1, . . . , N from the true distribution.
2. Simulate the posterior draws of (β, µ, τ)|y.
3. Estimate b̂PAIC

β , b̂BPIC
β , b̂WAIC2

β , and b̂CV
β .

4. Draw z(j) ∼ Bin(n, logit−1(βT
0 )), j = 1, . . . , J, for approximation of true η.

5. Compare each b̂β with true bias bβ = η̂ − η.
6. Repeat steps 1–5.

Table 1 summarizes the bias and standard deviation of the estimation error when we
choose N = 15 and n1 = . . . = nN = 50, and the β’s are independently simulated from
the standard normal distribution assuming the true hyper-parameter mean µ = 0 and
variance τ2 = 1. The simulation is repeated for 1000 scenarios, each with J = 20,000 for
out-of-sample η estimation. PAIC and BPIC were calculated based on definition; leave-
one-out cross-validation and WAIC2 were estimated using R package loo v2.5.1 [31]. The
actual error, mean absolute error, and mean square error were considered to assess the
estimation error using the bias correction estimates. With respect to all three different
metrics, the bias estimation of PAIC is consistently superior to other methods. Compared to
BPIC, the second best performed model selection criterion, the bias, and the mean squared
error of PAIC are reduced by about 40%, while the absolute bias is reduced by about one
quarter, which matches our expectation that the natural estimate 1

n ∑i Eθ|y[log g(yi|θ)] will
estimate the posterior averaged K-L discrepancy more precisely than plug-in estimate
1
n ∑i log g(yi|θ̂) when the posterior distribution is asymmetric and correlated. Compared
to WAIC2, the bias, absolute error, and mean square error of PAIC are dramatically reduced
by at least 60%. In practice, we expect the improvement is even larger when proposed
models have more complicated hierarchical structures.

Table 1. The estimation error of bias correction: the mean and standard deviation (in parentheses)
from 1000 replications.

Criterion
Actual Error Mean Absolute Error Mean Square Error
η̂− η− b̂β

∣∣∣η̂− η− b̂β

∣∣∣ (η̂− η− b̂β)
2

PAIC 0.160 (0.238) 0.206 (0.199) 0.082 (0.207)
BPIC 0.259 (0.244) 0.272 (0.229) 0.127 (0.267)
CV 0.840 (0.285) 0.840 (0.285) 0.786 (0.633)

WAIC2 0.511 (0.248) 0.511 (0.248) 0.323 (0.389)

As suggested by reviewers, we also assessed PAIC in bias estimation with different
priors, including the commonly used Inv-Gamma2(τ2; 0.001, 0.001) [36]. Although these
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priors may produce different posterior distributions, we found almost identical results
in terms of bias estimation error to Table 1, suggesting the robustness of the proposed
method. Furthermore, we examined the BPIC and PAIC for uncorrelated posterior dis-
tributions of βs, by fixing the hyperparameters (µ, τ2) either at its true value or at the
posterior mode. In the simulation replications containing extreme observations (i.e., ∃
i ∈ {1, . . . , N}, such that either yi = 0 or yi = ni), we observed a large deviation of the
plug-in estimate 1/N log L(θ̂|y) to η, which cannot be properly recovered by BPIC’s bias
correction term in Equation (3) and yields significant estimation error; meanwhile, the
plug-in estimand Eỹ[log g(ỹ|β̂)] was also much more vulnerable to the observed data than
η = Eỹ[Eβ|y log g(ỹ|β)] given the extreme value, suggesting that the latter (the posterior
averaged discrepancy) could be a better choice for model assessment.

5. Application

This is a variable selection example that uses real data to illustrate the practical difference
between criteria proposed in either the explanatory or predictive perspective. We explore the
problem of finding the best model to predict the selling of new accounts in branches of a large
bank. The data were introduced in example 5.3 of George & McCulloch [37], analyzed with
their method, the stochastic search variable selection (SSVS) technique to select the promising
subsets of predictors. Their report on the 10 most frequently selected models after 10,000
iterations of Gibbs sampling for potential subsets, is listed in the first column of Table 2.

The original data consist of the numbers of new accounts sold in some time period as
the outcome y, together with 15 predictor variables X in each of 233 branches. Multiple
linear regressions are employed to fit the data in the form of

yi|β(m), σ2
y ∼ N(X(m)β(m), σ2

y )

with prior β
(m)
i ∼ N(0, 10002) and σ2

y ∼ Inv-Gamma(0.001, 0.001), when m indicates the
specific model with a subset of predictor X(m).

Table 2. Comparison of model performance using K-L based model selection criteria for SSVS
example. The first row indicates the independent variables (x) to be excluded in each model. The mid
rule separates the models most frequently appeared using SSVS method (above) vs. the models with
lower PAIC (below).

Exclusion SSVS LOO-CV KCV PLpe
opt

BPIC PAIC

4, 5 827 2603.85 2580.74 2527.32 2528.89 2529.60
2, 4, 5 627 2572.98 2564.92 2544.77 2533.90 2534.44

3, 4, 5, 11 595 2583.63 2572.59 2545.23 2539.79 2540.20
3, 4, 5 486 2593.10 2579.97 2567.85 2541.75 2542.32

3, 4 456 2590.36 2571.76 2538.80 2533.37 2533.97
4, 5, 11 390 2589.76 2573.04 2526.77 2527.94 2528.58

2, 3, 4, 5 315 2576.66 2577.17 2561.57 2553.29 2553.77
3, 4, 11 245 2579.53 2566.28 2565.22 2532.87 2533.42

2, 4, 5, 11 209 2564.67 2559.36 2540.41 2533.60 2534.03
2, 4 209 2741.46 2741.17 2737.46 2740.42 2740.51

5, 10, 12 n/a 2602.23 2572.86 2519.41 2525.07 2525.61
4, 12 n/a 2596.51 2570.94 2520.52 2524.31 2524.94
5, 12 n/a 2595.86 2570.32 2520.51 2524.19 2524.90

4, 5, 12 n/a 2596.67 2574.73 2525.65 2526.19 2526.86
4, 10, 12 n/a 2603.05 2573.80 2520.62 2525.17 2525.70

4, 5, 10, 12 n/a 2603.51 2577.86 2526.53 2527.06 2527.56

Several model selection estimators for −2n · η, including the leave-one-out cross-
validated estimator (LOO-CV), K-fold cross-validated estimator (KCV), the expected de-
viance penalized loss with pe

opt, BPIC, and PAIC, are calculated based on a large number
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of MCMC draws of the posterior distribution for model selection inference. In KCV, the
original data are randomly partitioned for the K-fold cross-validation with a common
choice of K = 10. All the posterior samples are simulated from three parallel chains based
on MCMC techniques for model selection inference. To generate 15,000 effective draws
of the posterior distribution, only one out of five iterations after convergence are kept to
reduce the serial correlation.

The results are presented in Table 2, in which the models that have the smallest estima-
tion value by each criterion are highlighted. The first 10 models with SSVS frequencies were
originally picked by SSVS as shown in George & McCulloch [37]. An interesting finding
is that the favored models selected by the K-L based criteria and SSVS are quite different.
All of the K-L based criteria are developed in a predictive perspective, whereas SSVS is a
variable selection method to pursue the model that best describes the given set of data. This
illustrates that with different modeling purposes, either explanatory or predictive, the ‘best’
models found may not coincide. The estimated PLpe

opt
, BPIC, and PAIC values for every

candidate model are quite close to each other; whereas the cross-validation estimators
are noisy due to the simulation error and tendency to overestimate the value. It is worth
mentioning that the estimators of LOO-CV, K-fold-CV, and PLpe

opt
are relatively unstable,

even with 15,000 posterior draws. Those methods have been much more computationally
intensive than BPIC and PAIC.

6. Discussion

A clearly defined model selection criterion or score usually lies at the heart of any
statistical selection and decision procedure. It facilitates the comparison of competing
models through the assignment of some sort of preference or ranking to the alternatives.
One of the typical scores is the K-L divergence, a non-symmetric measure of the difference
between two probability distributions. By further acknowledging uncertainty in parameters
and randomness in data, frequentist statistics theoretically employing K-L divergence into
parametric model selection emerged during the 1970s. Since then, the development of
related theories and applications has rapidly accelerated.

A good assessment measure helps establish attractive properties. To guide the
Bayesian method development, two important questions should be first investigated.

1. What is a good estimand, based on K-L discrepancy, to evaluate Bayesian models?
2. What is a good estimator to estimate the estimand for K-L based Bayesian model

selection?

The prevailing plug-in parameter methods, such as DIC, presume the candidate
models are correct, and assess the goodness of each candidate model with a density
function specified by the plug-in parameters. However, from a Bayesian perspective, it
is inherent to examine the performance of a Bayesian model over the entire posterior
distribution, as stated by (Celeux et al. [18], p. 703): “. . . we concede that using a plug-in
estimate disqualifies the technique from being properly Bayesian.” Accordingly, statistical
approaches to estimate the K-L discrepancy as evaluated by averaging over the posterior
distribution are of great interest.

We have proposed PAIC, a versatile model selection technique for Bayesian models
under regularity assumptions, to address this problem. From a predictive perspective,
we consider the asymptotic unbiased estimation of a K-L discrepancy, which averages
the conditional density of the observable data against the posterior knowledge about the
unobservable data. Empirically, the proposed PAIC measures the similarity of the fitted
model and the underlying true distribution, regardless of whether or not the approximating
distribution family contains the true model. The range of applications of the proposed
criterion can be quite broad.

PAIC and BPIC are similar in many aspects. In addition to all the asymptotic properties
and similar computational costs both methods share, PAIC has some unique features,
mainly because it employs the natural posterior-averaged estimator. For example, PAIC
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can be well applied even if the prior distribution of the parameters degenerates, in which
case BPIC becomes uninterpretable. In the illustrative experiments, we focused on the
comparison of estimation accuracy between the proposed criterion and other Bayesian
model selection criteria including BPIC and WAIC2. PAIC showed the least bias and
variance to estimate the posterior averaged discrepancy.

Because the regularity condition assumes twice continuously differentiability and
non-singularity, it could be problematic if the posterior mode is on the boundary of the
parameter space Θ. For example, as pointed out by one reviewer, τ̂ = 0 in the famous
eight-school example [8]. This is a common concern for K-L based model selection since
the method derivation relies on the the Taylor series expansion. However, in practice, a
reparameterization may help. In the eight-school example, we can introduce the uniform
prior φ = log τ ∼ Uni f (0, 1) to pair with the weakly informative prior µ ∼ N(0, 100),
which yields a posterior mode for τ̂ = 1.125.

There are some future directions for the current work. In the current simulation
setting, we made a default assumption that the estimand, i.e., the posterior-averaged
out-of-sample log-likelihood, can be distinguished between candidate models. A more
comprehensive comparison of Bayesian predictive methods for empirical model selection
can be investigated by taking into account the likely over-fitting in the selection phase,
similar to [38]. Because the users of PAIC and BPIC have to specify the first and second
derivatives of the posterior distribution in their modeling, development of advanced
computational tools for simultaneous calculations will be helpful. In singular learning
machines, the regularity conditions can be relaxed to singular in a sense that the mapping
from parameters to probability distributions is not necessarily one-to-one. Although here
we focused on only the regular models, it is also possible to generalize PAIC to singular
settings with a modified bias correction term, after an algebraic geometrical transformation
of the singular parameter space to a real d-dimensional manifold. Finally, other metrics
for comparing the distance or dissimilarity between two distributions, such as Hellinger
distance [39] or Jensen–Shannon divergence [40], may be explored further and employed
as alternative metrics in Bayesian model assessment.
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Appendix A. Supplementary Materials for Proof of Theorem 1

Appendix A.1. Some Important Notations

By the law of large numbers we have 1
n log{L(θ|y)π(θ)} → Eỹ[log{g(ỹ|θ)π0(θ)}] as

n tends to infinity. Denote θ0, θ̂ the expected and empirical posterior mode of the log
unnormalized posterior density log{L(θ|y)π(θ)}, i.e.,

θ0 = arg max
θ

Eỹ[log{g(ỹ|θ)π0(θ)}]

θ̂ = arg max
θ

1
n

log{L(θ|y)π(θ)},

and let I(θ) and J(θ) denote the Bayesian Hessian matrix and Bayesian Fisher information
matrix

I(θ) = Eỹ

(
∂ log{g(ỹ|θ)π0(θ)}

∂θ

∂ log{g(ỹ|θ)π0(θ)}
∂θ′

)
and

J(θ) = −Eỹ

(
∂2 log{g(ỹ|θ)π0(θ)}

∂θ∂θ′

)
.

Appendix A.2. Proof of Lemmas

We start with a few lemmas to support the proofs of Theorem 1.

Lemma A1. Under the same regularity conditions of Theorem 1,
√

n(θ̂ − θ0) is asymptotically
distributed as N(0, J−1

n (θ0)I(θ0)J−1
n (θ0)).

Proof. Consider the Taylor expansion of ∂ log{L(θ|y)π(θ)}
∂θ |θ=θ̂ at θ0,

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ̂ ' ∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ0 +
∂2 log{L(θ|y)π(θ)}

∂θ∂θ′
|θ=θ0(θ̂ − θ0)

=
∂ log{L(θ|y)π(θ)}

∂θ
|θ=θ0 − nJn(θ0)(θ̂ − θ0).

Note that θ̂ is the mode of log{L(y|θ)π(θ)} and satisfies ∂ log{L(y|θ)π(θ)}
∂θ |θ=θ̂ = 0. Plug it

into the above equation, we have

nJn(θ0)(θ̂ − θ0) '
∂ log{L(θ|y)π(θ)}

∂θ
|θ=θ0 . (A1)

From the central limit theorem, the right-hand-side (RHS) of Equation (A1) is approximately
distributed as N(0, nI(θ0)) when Ey

∂ log{L(θ|y)π(θ)}
∂θ |θ=θ0 → 0. Therefore,

√
n(θ̂ − θ0) ∼ N(0, J−1

n (θ0)I(θ0)J−1
n (θ0)).

Lemma A2. Under the same regularity conditions of Theorem 1,
√

n(θ − θ̂) ∼ N(0, J−1
n (θ̂)).

Proof. Taylor-expand the logarithm of L(θ|y)π(θ) around the posterior mode θ̂

log L(θ|y)π(θ) = log L(θ̂|y)π(θ̂)− 1
2
(θ − θ̂)′

1
n

J−1
n (θ̂)(θ − θ̂) + op(n−1) (A2)

where Jn(θ̂) = − 1
n

∂2 log{L(θ|y)π(θ)}
∂θ∂θ′ |θ=θ̂ .
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Consider the RHS of Equation (A2) as a function of θ: the first term is a constant,
whereas the second term is proportional to the logarithm of a normal density. It yields the
approximation of the posterior distribution for θ:

p(θ|y) ≈ N(θ̂,
1
n

J−1
n (θ̂)),

which completes the proof.
Alternatively, though less intuitive, this lemma can also be proved by applying the

Berstein–Von Mises theorem.

Lemma A3. Under the same regularity conditions of Theorem 1, Eθ|y(θ0− θ̂)(θ̂− θ)′ = op(n−1).

Proof. First we have

∂ log{L(θ|y)π(θ)}
∂θ

=
∂ log{L(θ|y)π(θ)}

∂θ
|θ=θ̂ − nJn(θ̂)(θ − θ̂) + Op(1).

Since θ̂ is the mode of log{L(θ|y)π(θ)}, it satisfies ∂ log{L(θ|y)π(θ)}
∂θ |θ=θ̂ = 0. Therefore,

(θ̂ − θ) = n−1 J−1
n (θ̂)

∂ log{L(θ|y)π(θ)}
∂θ + Op(n−1). Note that

Eθ|y
∂ log{L(θ|y)π(θ)}

∂θ
=

∫
∂ log{L(θ|y)π(θ)}

∂θ

L(θ|y)π(θ)

p(y)
dθ

=
∫ 1

L(θ|y)π(θ)

∂{L(θ|y)π(θ)}
∂θ

L(θ|y)π(θ)

p(y)
dθ

=
1

p(y)

∫
∂{L(θ|y)π(θ)}

∂θ
dθ

=
1

p(y)
∂

∂θ

∫
L(θ|y)π(θ)dθ =

∂

∂θ
1 = 0.

Because of assumption (C1), the equation holds when we change the order of the integral
and derivative. Therefore,

Eθ|y(θ̂ − θ) = n−1 J−1
n (θ̂)Eθ|y

∂ log{L(θ|y)π(θ)}
∂θ

+ Op(n−1) = Op(n−1).

Together with θ0 − θ̂ = Op(n−1/2) derived from Lemma A1, we complete the proof.

Lemma A4. Under the same regularity conditions of Theorem 1, Eθ|y(θ0 − θ)(θ0 − θ)′ =
1
n J−1

n (θ̂) + 1
n J−1

n (θ0)I(θ0)J−1
n (θ0) + op(n−1).

Proof. Eθ|y(θ0 − θ)(θ0 − θ)′ can be rewritten as (θ0 − θ̂)(θ0 − θ̂)′ + Eθ|y(θ̂ − θ)(θ̂ − θ)′ +

2Eθ|y(θ0 − θ̂)(θ̂ − θ). Applying Lemmas A1–A3, we complete the proof.

Lemma A5. Under the same regularity conditions of Theorem 1,

Eθ|y
1
n

log{L(y|θ)π(θ)} ' 1
n

log{L(θ0|y)π(θ0)}

+
1

2n
(tr{J−1

n (θ0)I(θ0)} − tr{J−1
n (θ̂)Jn(θ0)}) + Op(n−1).

Proof. The posterior mean of the log joint density distribution of (y, θ) can be Taylor-
expanded around θ0 as
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Eθ|y
1
n

log{L(θ|y)π(θ)} =
1
n

log{L(θ0|y)π(θ0)}+ Eθ|y(θ − θ0)
′ 1
n

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ0

+
1
2

Eθ|y(θ − θ0)
′ 1
n

∂2 log{L(θ|y)π(θ)}
∂θ∂θ′

|θ=θ0(θ − θ0) + op(n−1)

=
1
n

log{L(θ0|y)π(θ0)}+ Eθ|y(θ − θ0)
′ 1
n

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ0

−1
2

Eθ|y(θ − θ0)
′ Jn(θ0)(θ − θ0) + op(n−1). (A3)

Expand ∂ log{L(θ|y)π(θ)}
∂θ |θ=θ̂ around θ0 to the first order, we obtain

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ̂ =
∂ log{L(θ|y)π(θ)}

∂θ
|θ=θ0 − nJn(θ0)(θ̂ − θ0) + Op(n−1). (A4)

Because the posterior mode θ̂ is the solution of ∂ log{L(θ|y)π(θ)}
∂θ = 0, Equation (A4) can be

re-written as
1
n

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ0 = Jn(θ0)(θ̂ − θ0) + Op(n−1).

Substituting it into the second term of (A3), the expansion of Eθ|y
1
n log{L(θ|y)π(θ)} be-

comes:

Eθ|y
1
n

log{L(θ|y)π(θ)} =
1
n

log{L(θ0|y)π(θ0)}+ Eθ|y(θ − θ0)
′ Jn(θ0)(θ̂ − θ0)

−1
2

EyEθ|y(θ − θ0)
′ Jn(θ0)(θ − θ0) + op(n−1)

=
1
n

log{L(θ0|y)π(θ0)}+ tr{Eθ|y[(θ̂ − θ0)(θ − θ0)
′]Jn(θ0)}

−1
2

tr{Eθ|y[(θ − θ0)(θ − θ0)
′]Jn(θ0)}+ op(n−1)

=
1
n

log{L(θ0|y)π(θ0)}+ tr{Eθ|y[(θ − θ0)(θ̂ − θ0)
′]Jn(θ0)}

−1
2

tr{ 1
n
[J−1

n (θ̂) + J−1
n (θ0)I(θ0)J−1

n (θ0)]Jn(θ0)}+ op(n−1)

where in the last line we replace Eθ|y[(θ − θ0)(θ − θ0)
′] with the result of Lemma A4.

Eθ|y[(θ − θ0)(θ̂ − θ0)
′] in the second term of the expansion can be rewritten as Eθ|y[(θ̂ −

θ0)(θ̂ − θ0)
′] + Eθ|y[(θ − θ̂)(θ̂ − θ0)

′], where the former term is asymptotically equal to
1
n J−1

n (θ0)I(θ0)J−1
n (θ0) by Lemma A1, and the latter is negligible with higher order op(n−1),

as shown in Lemma A3. Therefore, the expansion can be finally simplified as

Eθ|y
1
n

log{L(y|θ)π(θ)} ' 1
n

log{L(θ0|y)π(θ0)}

+
1

2n
(tr{J−1

n (θ0)I(θ0)} − tr{J−1
n (θ̂)Jn(θ0)}) + Op(n−1).

Appendix B. Supplementary Materials for Derivation of Equation (3)

We start from Equation (2), which rewrites Equation (5) in Ando [7].
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η̂BPIC =
1
n

Eθ|y log L(θ|y)− 1
n
[ Eθ|y log{π(θ)L(θ|y)} − log{π(θ̂)L(θ̂|y)}

+tr{J−1
n (θ̂)In(θ̂)}+

K
2
]

=
1
n

Eθ|y log L(θ|y)− 1
n
[ Eθ|y log π(θ) + Eθ|y log L(θ|y)− log π(θ̂)− log L(θ̂|y)

+tr{J−1
n (θ̂)In(θ̂)}+

K
2
]

=
1
n

Eθ|y log L(θ|y)− 1
n

Eθ|y log π(θ)− 1
n

Eθ|y log L(θ|y) + 1
n

log π(θ̂) +
1
n

log L(θ̂|y)

− 1
n

tr{J−1
n (θ̂)In(θ̂)} −

K
2n

=
1
n

log L(θ̂|y)− 1
n

Eθ|y log π(θ) +
1
n

log π(θ̂)− 1
n

tr{J−1
n (θ̂)In(θ̂)} −

K
2n

=
1
n

log L(θ̂|y)− 1
n
[ Eθ|y log π(θ)− log π(θ̂) + tr{J−1

n (θ̂)In(θ̂)}+
K
2
]

,
1
n

log L(θ̂|y)− BC2.

References
1. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike;

Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer Series in Statistics; Springer: New York, NY, USA, 1998; pp. 267–281.
2. Rissanen, J. Modeling by shortest data description. Automatica 1978, 14, 465–471. [CrossRef]
3. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
4. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Statist. 1951, 22, 79–86. [CrossRef]
5. Geisser, S.; Eddy, W.F. A predictive approach to model selection. J. Am. Stat. Assoc. 1979, 74, 153–160. [CrossRef]
6. Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van der Linde, A. Bayesian measures of model complexity and fit (with discussion). J.

R. Stat. Soc. B 2002, 64, 583–639. [CrossRef]
7. Ando, T. Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models.

Biometrika 2007, 94, 443–458. [CrossRef]
8. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 2nd ed.; CRC Press: London, UK, 2003.
9. Hurvich, C.; Tsai, C. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [CrossRef]
10. Konishi, S.; Kitagawa, G. Generalised information criteria in model selection. Biometrika 1996, 83, 875–890. [CrossRef]
11. Takeuchi, K. Distributions of information statistics and criteria for adequacy of models. Math. Sci. 1976, 153, 15–18. (In Japanese)
12. Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference, 2nd ed.; Springer: New York, NY, USA, 2002.
13. Laud, P.W.; Ibrahim, J.G. Predictive model selection. J. R. Stat. Soc. B 1995, 57, 247–262. [CrossRef]
14. San Martini, A.; Spezzaferri, F. A predictive model selection criterion. J. R. Stat. Soc. B 1984, 46, 296–303. [CrossRef]
15. Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van der Linde, A. The deviance information criterion: 12 years on. J. R. Stat. Soc. B

2002, 76, 485–493. [CrossRef]
16. Spiegelhalter, D.J.; Thomas, A.; Best, N.G. WinBUGS Version 1.2 User Manual; MRC Biostatistics Unit: Cambridge, UK, 1999.
17. Meng, X.L.; Vaida, F. Comments on ‘Deviance Information Criteria for Missing Data Models’. Bayesian Anal. 2006, 70, 687–698.
18. Celeux, G.; Forbes, F.; Robert, C.P.; Titterington, D.M. Deviance information criteria for missing data models. Bayesian Anal. 2006,

70, 651–676. [CrossRef]
19. Liang, H.; Wu, H.; Zou, G. A note on conditional AIC for linear mixed-effects models. Biometrika 2009, 95, 773–778. [CrossRef]
20. Vaida, F.; Blanchard, S. Conditional Akaike information for mixed effects models. Biometrika 2005, 92, 351–370. [CrossRef]
21. Donohue, M.C.; Overholser, R.; Xu, R.; Vaida, F. Conditional Akaike information under generalized linear and proportional

hazards mixed models. Biometrika 2011, 98, 685–700. [CrossRef]
22. Plummer, M. Penalized loss functions for Bayesian model comparison. Biostatistics 2008, 9, 523–539. [CrossRef]
23. Efron, B. Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation. J. Am. Stat. Assoc. 1983, 78, 316–331.

[CrossRef]
24. Lenk, P.J. The logistic normal distribution for Bayesian non parametric predictive densities. J. Am. Stat. Assoc. 1988, 83, 509–516.

[CrossRef]
25. Walker, S.; Hjort, N.L. On bayesian consistency. J. R. Stat. Soc. B 2001, 63, 811–821. [CrossRef]
26. Hodges, J.S.; Sargent, D.J. Counting degrees of freedom in hierarchical and other richly-parameterised models. Biometrika 2001,

88, 367–379. [CrossRef]
27. Gelfand, A.E.; Ghosh, S.K. Model Choice: A Minimum Posterior Predictive Loss Approach. Biometrika 1998, 85, 1–11. [CrossRef]

http://doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1080/01621459.1979.10481632
http://dx.doi.org/10.1111/1467-9868.00353
http://dx.doi.org/10.1093/biomet/asm017
http://dx.doi.org/10.1093/biomet/76.2.297
http://dx.doi.org/10.1093/biomet/83.4.875
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02028.x
http://dx.doi.org/10.1111/j.2517-6161.1984.tb01302.x
http://dx.doi.org/10.1111/rssb.12062
http://dx.doi.org/10.1214/06-BA122
http://dx.doi.org/10.1093/biomet/asn023
http://dx.doi.org/10.1093/biomet/92.2.351
http://dx.doi.org/10.1093/biomet/asr023
http://dx.doi.org/10.1093/biostatistics/kxm049
http://dx.doi.org/10.1080/01621459.1983.10477973
http://dx.doi.org/10.1080/01621459.1988.10478625
http://dx.doi.org/10.1111/1467-9868.00314
http://dx.doi.org/10.1093/biomet/88.2.367
http://dx.doi.org/10.1093/biomet/85.1.1


Entropy 2023, 25, 468 18 of 18

28. Vehtari, A.; Lampinen, J. Bayesian model assessment and comparison using cross-validation predictive densities. Neural Comput.
2002, 14, 1339–2468. [CrossRef] [PubMed]

29. Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2014, 24,
997–1016. [CrossRef]

30. Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat.
Comput. 2017, 27, 1413–1432. [CrossRef]

31. Vehtari, A.; Gabry, J.; Yao Y.; Gelman, A. loo: Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models. R
Package Version 2.5.1. 2018. Available online: https://CRAN.R-project.org/package=loo (accessed on 28 August 2022).

32. Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning
theory. J. Mach. Learn. Res. 2010, 11, 3571–3594.

33. Watanabe, S. Algebraic Geometry and Statistical Learning Theory; Cambridge University Press: Cambridge, UK, 2009.
34. Watanabe, S. A formula of equations of states in singular learning machines. In Proceedings of the 2008 IEEE International

Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008;
pp. 2098–2105.

35. Stone, M. Cross-validatory choice and assessment of statistical predictions (with discussion). J. R. Stat. Soc. B 1974, 36, 111–147.
[CrossRef]

36. Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
Bayesian Anal. 2006, 1, 515–534. [CrossRef]

37. George, E.I.; McCulloch, R. Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 1993, 88, 881–889. [CrossRef]
38. Piironen, J.; Vehtari, A. Comparison of Bayesian predictive methods for model selection. Stat. Comput. 2017, 27, 711–735.

[CrossRef]
39. Beran, R. Minimum Hellinger distance estimates for parametric models. Ann. Stat. 1977, 5, 445–463. [CrossRef]
40. Nielsen, F. On the Jensen–Shannon symmetrization of distances relying on abstract means. Entropy 2019, 21, 485. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1162/08997660260293292
http://www.ncbi.nlm.nih.gov/pubmed/12396570
http://dx.doi.org/10.1007/s11222-013-9416-2
http://dx.doi.org/10.1007/s11222-016-9696-4
https://CRAN.R-project.org/package=loo
http://dx.doi.org/10.1111/j.2517-6161.1976.tb01573.x
http://dx.doi.org/10.1214/06-BA117A
http://dx.doi.org/10.1080/01621459.1993.10476353
http://dx.doi.org/10.1007/s11222-016-9649-y
http://dx.doi.org/10.1214/aos/1176343842
http://dx.doi.org/10.3390/e21050485

	Introduction
	Kullback–Leibler Divergence and Model Selection
	Posterior Averaging Information Criterion
	Rationale and the Proposed Method
	Relevant Methods for the Posterior Averaged K-L Discrepancy

	Simulation Study
	A Case with Closed-Form Expression for Bias Estimators
	Bayesian Logistic Regression

	Application
	Discussion
	Supplementary Materials for Proof of Theorem 1
	Some Important Notations
	Proof of Lemmas

	Supplementary Materials for Derivation of Equation (3)
	References

