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Abstract: Since the Fuzzy C-Means algorithm is incapable of considering the influence of different
features and exponential constraints on high-dimensional and complex data, a fuzzy clustering
algorithm based on non-Euclidean distance combining feature weights and entropy weights is
proposed. The proposed algorithm is based on the Fuzzy C-Means soft clustering algorithm to deal
with high-dimensional and complex data. The objective function of the new algorithm is modified
with the help of two different entropy terms and a non-Euclidean way of computing the distance. The
distance calculation formula enhances the efficiency of extracting the contribution of different features.
The first entropy term helps to minimize the clusters’ dispersion and maximize the negative entropy to
control the clustering process, which also promotes the association between the samples. The second
entropy term helps to control the weights of features since different features have different weights
in the clustering process. Experiments on real-world datasets indicate that the proposed algorithm
gives better clustering results than other algorithms. The experiments demonstrate the proposed
algorithm’s robustness by analyzing the parameters’ sensitivity and comparing the computational
distance formulas. In summary, the improved algorithm improves classification performance under
noisy interference and high-dimensional datasets, increases computational efficiency, performs well
in real-world high-dimensional datasets, and encourages the development of robust noise-resistant
high-dimensional fuzzy clustering algorithms.

Keywords: fuzzy clustering; high-dimensional data; feature weights; entropy weights; non-Euclidean
distance

1. Introduction

In the field of machine learning and data mining, research on clustering has always at-
tracted extensive attention [1–4]. Clustering methods are primarily categorized as partition-
based, density-based, and hierarchical clustering methods [5–7]. Partition-based clustering
methods classify different samples on the basis of features. In general, density-based clus-
tering methods classify samples on the basis of the number of samples at each location. The
samples are considered related (contained and included) and classified by the hierarchy
of different samples in hierarchical clustering methods. Hierarchical clustering is suitable
for small datasets but not large datasets. Partition-based clustering is one of the most used
clustering methods for large dataset. Density-based clustering divides data points into
high-density and low-density regions and is suitable for large datasets. In recent years,
three-way soft clustering has been a new direction in clustering research, which attributes
samples in the positive region as belonging to the cluster, samples in the boundary region as
partially belonging to the cluster, and samples in the negative region as not belonging to the
cluster [8–10]. Clustering divides the objects in the set into different clusters based on a cer-
tain standard (distance) to increase the intra-cluster similarity and reduce the inter-cluster
similarity. Clustering algorithms are divided into soft and hard clustering on the basis of
clustering research. Hard clustering specifies that a sample can be divided into only one
cluster, while soft clustering allows a sample to be divided into different clusters. For two
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primary clustering methods, K-means and FCM clustering methods are the most widely
used [11,12]. These two algorithms have driven the research on clustering, and much
research has been performed to improve them. However, noise and initial cluster centers
often influence the clustering results. Moreover, the clustering result is often significantly
reduced when the clustering algorithm faces high-dimensional and complex data. A good
clustering algorithm is supposed to be high-performance, robust, and scalable.

To resolve these difficulties, several improved clustering algorithms have been pro-
posed [13–16]. The K-means method divides each sample into a specific cluster. However,
these clusters often have overlapping and fuzzy divisions in practical applications. To solve
the uncertain data objects, soft clustering algorithms are introduced. Bezdek [17] intro-
duced the fuzzy set theory into K-means and proposed the FCM algorithm, which uses the
membership function to verify the membership relationship between objects and clusters.
Furthermore, it has demonstrated efficient performance in different applications [18,19].
However, the degree of the membership function does not always correspond to the cluster
to which it belongs. The FCM algorithm is partition-based. The advantage of the partition-
based clustering method is that the convergence is fast, and the disadvantage is that it
requires that the number of clusters can be reasonably estimated and that the choice of
initial centers and noise can have a significant impact on the clustering results. In these
two traditional methods, all features are given the same weight and are easily influenced
by noise [20,21]. These methods are also susceptible to random initial cluster centers, and
poor initialization will likely result in local optimal solution generation [22,23]. In the face
of high-dimensional and complex data, high-dimensional data are usually very sparse in
space, and the sample size always seems very small compared with the dimensionality of
the space. The features of clusters are not obvious. Traditional clustering algorithms cannot
guarantee robustness; hence, it is extremely important to fully use the features’ properties.

To address these issues, it is critical to remember that different weights should be
assigned to different features. In previous studies, the weights corresponding to the features
were assigned in one of two ways. The first method is to assign weights to the features on a
global scale. Throughout the process, a specific feature is given only one weight. The second
method is to assign features local weights, which means that features in a dataset have
different weights in different clusters. Numerous studies have demonstrated that the second
method outperforms global weighting [24]. Therefore, the SCAD algorithm considers
different feature weights in the different clusters and simultaneously clusters the data
with feature discrimination [25]. However, the conventional FCM algorithms, including
improved algorithms, constrain related variables through exponential regularization, which
may lead to consistent results and low precision when dealing with sparse and noisy data
(the denominator is 0). Entropy is proposed to go for better-constrained features in the
clustering process. Entropy-Weighting K-Means is particularly prominent method among
local weight-based and entropy-weight algorithms [26]. EWKM pioneered the form of
entropy weight and applied it to membership to better constrain the objective function. The
algorithm introduced the form of entropy weight in response to this defect to incentivize
more features that contribute to identifying clusters. The newly introduced approach is
more efficient in dealing with various data types, particularly high-dimensional sparse
data. Entropy weights can be used to assign relevant feature weights to a cluster, whereas
fuzzy partitions can help identify the best partitions. This method, however, ignores
the limitations of Euclidean distance and may result in inconsistent classification [24,27].
Moreover, the weights of this algorithm are very dependent on the initial clustering centers
and are sensitive to changes related to the centers. If the initial cluster center varies, the
algorithm will not be robust and will not converge. Therefore, improving the clustering
algorithm should focus on these aspects. To address the effect of noise and features with
different weights in different clusters, certainly improved algorithms for classification
criteria based on non-Euclidean distances have been proposed [28–30]. Some algorithms
using entropy weights have also been proposed in unsupervised clustering studies. Both
Entropy K-Means [31] and U-K-Means [32] algorithms use feature weights and entropy
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weights in unsupervised learning. However, the distance formula used in their objective
functions is Euclidean distance, which does not perform well in the face of high-dimensional
and noisy data. This can eventually lead to noise and irrelevant features influencing the
overall clustering results. In recent years, there has been extensive interest in research
on feature weights and entropy weights for fuzzy clustering. However, these algorithms
frequently only consider the Euclidean distance and do not constrain features or use fuzzy
partitioning [33–35].

This paper proposes an advanced FCM algorithm to handle high-dimensional sparse
and noisy data to solve the flaws mentioned above. The proposed algorithm’s new findings
use entropy control features and partitions, and adding non-Euclidean distance division
eliminates noise interference. Moreover, the entropy weight is introduced to the mem-
bership and weight variables to enhance its efficiency in processing different datasets. In
improving clustering in the face of high-dimensional and complex data, the intra-cluster
dispersion is minimized, and the negative weight entropy is maximized to motivate fea-
tures to help identify clusters. Furthermore, the proposed method updates the membership
degrees of samples in different clusters and the feature weights in different clusters during
each iteration so that the objective function converges rapidly. This algorithm avoids this
issue by efficiently handling high-dimensional data and noise with feature weights and
non-Euclidean distance formulas. Furthermore, entropy weights are used to constrain
variables, which can be more advantageous than exponential constraints in some cases. Ex-
tensive experimental results on real datasets suggest that the proposed algorithm performs
better in clustering. The proposed algorithms on high-dimensional and complex datasets
also exhibit high performance. Furthermore, the algorithm exhibits robustness and stability
in the experiment.

The remainder of the paper comprises the following sections: Section 2 introduces
several of the most classic clustering methods. In Section 3, the proposed algorithm, its
convergence proof, and its complexity analysis are provided. The performance of the
proposed algorithm and other clustering algorithms is compared and evaluated using
different clustering metrics in Section 4. Lastly, Section 5 presents a summary of the paper.

2. Related Work
2.1. The K-Means Algorithms

For a given dataset XN×M, N denotes the number of samples, M denotes the number
of features, K represents the number of clusters, xij denotes the jth feature in the ith sample,
cij denotes the cluster center of the jth feature in the ith cluster, and uij denotes whether
the ith sample belongs to the kth cluster. (xij − cl j)

2 is the Euclidean distance between the
ith sample and the jth cluster at the lth feature. The objective function can be defined as

P(U, C) =
N

∑
i=1

M

∑
j=1

K

∑
l=1

uil(xil − cl j)
2, (1)

subject to
K

∑
l=1

uil = 1. (2)

The K-means can be minimized by continuously iterating the following equations:

uil =

 1,
M
∑

j=1
(xij − zl j)

2 ≤
M
∑

j=1
(xij − ztj)

2, 1 ≤ t ≤ K,

0, else.
(3)
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cl j =

N
∑

i=1
uil xij

N
∑

i=1
uil

, (4)

where zl j denotes the value of the jth feature in the lth clustering center, and t denotes all
the clustering centers in the clustering process.

The proposed K-means algorithm has significantly contributed to the study of cluster-
ing. However, when noise is encountered, the noise dimension is also considered in the
results while computing the distance between the samples, leading to decreased clustering
accuracy. Furthermore, as the dimensionality of the dataset increases, so does the num-
ber of outlier points and the dispersion between samples, affecting the clustering center
and changes the clustering results. K-means clustering is often inefficient when dealing
with high-dimensional sparse and noisy data. Moreover, it is susceptible to the initial
clustering center.

2.2. The Weighting K-Means Algorithms

WK-Means generalizes the K-means and introduces a new algorithm to solve the noise
data [30] skillfully. It considers that different features must have different weights so that
the effect of the noise dimension can be ignored as much as possible when evaluating the
distance between samples. Therefore, noise far from the cluster centroid is given a smaller
weight and has less influence on the cluster centroid. Therefore, the clustering accuracy is
improved. The objective function of WK-Means is as follows:

P(U, C, W) =
N

∑
i=1

M

∑
j=1

K

∑
l=1

uilwj
β(xil − cl j)

2, (5)

subject to 
K
∑

l=1
uil = 1,

M
∑

j=1
wj = 1.

(6)

The WK-means can be minimized by continuously iterating the following equations:

uil =

 1, wj
β

M
∑

j=1
(xij − cl j) ≤ wj

β
M
∑

j=1
(xij − ctj)

2, 1 ≤ t ≤ K,

0, else.
(7)

cl j =

N
∑

i=1
uil xij

N
∑

i=1
uil

. (8)

wj =
1

M
∑

t=1
[

Dj
Dt
]

1
β−1

, β > 1orβ ≤ 0, (9)

where

Dj =
K

∑
l=1

N

∑
i=1

uil(xij − cl j)
2. (10)

In Equation (5), wij indicates whether the ith sample belongs to the kth cluster, wj denotes
the weight of the jth feature, and β represents a fuzzy constant, usually taken as 2.
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Although the WK-means algorithm was the first to use weights, targeting global
weights performs poorly in some data, and hard clustering may result in results being fixed.
It can be deduced that the weight difference between features is not always visible when the
dataset is high-dimensional. The FCM algorithm based on fuzzy ideas significantly reduces
the singularity of clustering and has several advantages in terms of high-latitude data.

2.3. Fuzzy C-Means Algorithm

As the most representative soft clustering method, FCM defines a new method for
dividing the clusters. Each sample has a different degree of membership for each cluster,
and its cluster assignment is determined by the degree of membership. The objective
function can be defined as

P(U, C) =
N

∑
i=1

M

∑
j=1

K

∑
l=1

uil
m(xil − cl j)

2, (11)

subject to
K

∑
l=1

uil = 1. (12)

The FCM is minimized by continuously iterating the following equations:

ci =

N
∑

i=1
uij

mxij

N
∑

i=1
uij

m
. (13)

uij = [
K

∑
t=1

(
(xij − cl j)

2

(xij − ctj)
2 )

2
m−1

]

−1

, (14)

where uij represents the degree of the ith data’s membership to the jth cluster, and m is the
number of fuzzy factors.

Although the FCM algorithm is the most representative soft clustering algorithm, it
still has numerous flaws and shortcomings. For example, the algorithm only counts the
“nearest” neighbor samples, and the number of samples in a category is very large. The
algorithm prioritizes that sample, which affects the clustering results. Moreover, fuzzy
factors as exponential forms often do not constrain the features well, leading to the fact that
it tends to perform much worse when combined with the Euclidean distance formula.

3. The Proposed Algorithm

In this section, a novel Fuzzy-C-Means-based entropy weighting algorithm is proposed.
Motivated by the shortcomings of traditional Fuzzy-C-Means clustering algorithm, a new
algorithm is presented that includes local feature weighting, the use of entropy weights
acting on features, and the degree of membership to improve clustering’s sensitivity
and accuracy to random class centers. Furthermore, because the Euclidean distance is
susceptible to noise and outliers [29], a non-Euclidean distance is introduced. The new
distance formula makes the algorithm more robust and fully uses the dataset’s features to
get the clustering result. The objective function can be defined as

F(U, C, W) =
N

∑
i=1

K

∑
j=1

M

∑
l=1

uijwjl(1− exp(−δl(xil − cjl)
2) + λ

N

∑
i=1

K

∑
j=1

uij log uij + γ
K

∑
j=1

M

∑
l=1

wjl log wjl . (15)

In Equation (15), U = [uij] is an N by K matrix, in which uij denotes the degree of the
ith sample’s membership to the center of the jth cluster; C = [cjl ] is a K by M matrix, where
cjl represents the center of the jth cluster and is defined by uij. Moreover, W = [wjl ] is a
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K by M matrix, where wjl denotes the weight of the lth feature in the jth cluster. U is the
membership matrix of each sample to cluster, containing N samples and K clusters. C is the
feature center matrix of each cluster, containing K clusters and M features. W is the feature
weight matrix of each sample to cluster, containing K clusters and M features. The term
(1− exp(−δl (xil − cjl)

2) denotes a non-Euclidean distance metric between the ith sample
and the jth cluster in the lth feature and is defined as follows:

δl =
1

varl
, varl =

N

∑
i=1

(xij − xl)
2

N
, xl =

N

∑
i=1

xil
N

, (16)

where δl denotes the inverse of the variance of the lth feature of the data,
subject to 

K
∑

j=1
uij = 1, uij ∈ (0, 1], 1 ≤ i ≤ N,

M
∑

l=1
wjl = 1, wjl ∈ (0, 1], 1 ≤ j ≤ K.

(17)

Minimizing F in Equation (15) with the constraints forms a class of constrained non-
linear optimization problems. The usual approach toward optimization of F is to introduce
partial optimization for U, C, and W. First, U and C are fixed, and the reduced F is mini-
mized with respect to W. Next, U and W are fixed, and the reduced F is minimized with
respect to C. Followed by this, W and C are fixed, and the reduced F is minimized to solve
U. After the results are calculated iteratively, the solution can be drawn.

The Lagrange multiplier technique is used to solve the following unconstrained
minimization problem:

F(U, C, W) =
N
∑

i=1

K
∑

j=1

M
∑

l=1
uijwjl(1− exp(−δl(xil − cjl)

2) + λ
N
∑

i=1

K
∑

j=1
uij log uij + γ

K
∑

j=1

M
∑

l=1
wjl log wjl

−α(
K
∑

j=1
uij − 1)− β(

M
∑

l=1
wjl − 1),

(18)

where α and β are Lagrange multipliers. By setting the gradient of F with respect to α, β,
uij, cjl , and wjl to zero,

∂F
∂α

= −(
K

∑
j=1

uij − 1) = 0. (19)

∂F
∂β

= −(
M

∑
l=1

wjl − 1) = 0. (20)

∂F
∂uij

=
M

∑
l=1

wjl(1− exp(−δl(xil − cjl)
2) + λ(1 + log uij)− α = 0. (21)

∂F
∂wjl

=
N

∑
i=1

uij(1− exp(−δl(xil − cjl)
2) + γ(1 + log wjl)− β = 0. (22)

From Equations (21) and (22),

uij = exp(
α

λ
) exp(

−Djl

λ
) exp(−1), (23)

wjl = exp(
β

γ
) exp(

−D′ ij
γ

) exp(−1), (24)
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where

Dij =
M

∑
l=1

wjl(1− exp(−δl(xil − cjl)
2). (25)

D′ ij =
M

∑
l=1

uij(1− exp(−δl(xil − cjl)
2). (26)

From Equations (19) and (23),

K

∑
t=1

uit = 1 =
K

∑
t=1

exp(
α

λ
) exp(

−Dtl
λ

) exp(−1), (27)

where it follows that
exp(

α

λ
) =

1
K
∑

t=1
exp(−Dtl

λ ) exp(−1)
, (28)

which can be substituted into Equation (23),

uij =
exp(

−Djl
λ )

K
∑

t=1
exp(−Dtl

λ )

. (29)

From Equations (20) and (24),

M

∑
t=1

wjt = 1 =
M

∑
t=1

exp(
β

γ
) exp(

−D′tl
γ

) exp(−1), (30)

where it follows that
exp(

β

γ
) =

1
M
∑

t=1
exp(−D′ tl

γ ) exp(−1)
, (31)

which can be substituted into Equation (24),

wjl =
exp(

−D′ ij
γ )

M
∑

t=1
exp(−D′ it

γ )

. (32)

For the clustering centers,

∂F
∂cjl

=

∂
N
∑

i=1
uijwjl(1− exp(−δl(xil − cjl)

2)

∂cjl
= 0, (33)

where it follows that

−
N

∑
i=1

uijwjl2δl(xil − cjl) exp(−δl(xil − cjl)
2) = 0, (34)

which gives

cjl =

N
∑

i=1
uijwjlδl exp(−δl(xil − cjl)

2)xil

N
∑

i=1
uijwjlδl exp(−δl(xil − cjl)

2)

. (35)
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It is evident that Equation (35) is independent of the parameters λ and γ. The interdepen-
dence of both terms promotes the detection of a better partition during the clustering process.
The proposed algorithm minimizes Equation (15), using Equations (29), (32), and (35).

3.1. Parameter Selection

The values of λ and γ are essential for the proposed algorithm since they affect the
significance of the second and third terms in Equation (15) relative to the first term. Initially,
λ plays two roles in the clustering process; when λ is large, this results in a smaller value of
uij in Equation (29) and, thus, the second term has a more significant influence to minimize
Equation (15). Therefore, it tries to assign more than one sample cluster to make the second
term more negative while clustering. The membership entropy value becomes larger when
the membership value uij of a sample to all clusters is equal. After the position of the
samples is fixed, all the clustering centers move to the same position for an enormous
entropy value. Second, when λ is large, this results in an immense value of uij in Equation
(29). Therefore, the first term plays a key role in minimizing Equation (15). The local feature
weights are controlled by γ. Since γ is positive, the value of wjl is inversely proportional to
∑M

i=1 D′ij. A smaller value of this term results in a larger wjl . If γ is large, the third parameter
controls the partitions, and all feature weights are assigned 1/M in different clusters.

Assuming that Ft denotes the value of Equation (15) after the run, Ft+1 denotes the value
after the next completion. The proposed algorithm is summarized below (Algorithm 1).

Algorithm 1. Proposed Clustering Algorithm.

Input: Dataset XN×M, the number of clusters K, the values of parameters λ and γ. Randomly set
K cluster centers, generate a set of initial weights, set t = 0, the maximum iteration is MAX, and
local minimum value = Ft+1 − Ft.
Output: U = [uij]N×K .
Repeat
1: Compute the non-Euclidean distance matrix DN×M.
2: Update the partition matrix UN×K using Equation (29).
3: Update the weight matrix WK×M using Equation (32).
4: Update the cluster center matrix CK×M using Equation (35).
5: Until the objective function is less than or equal to the local minimum or reaches the
maximum iterations.

3.2. Convergence Analysis

It is important to note that the proposed algorithm will converge in the iterations. It
can be observed that different partition U occurs only once during the algorithm process.
Therefore, it is assumed that Ui = U j where i 6= j. It must be noted that given Ut.
The minimizer Wt should be calculated. For Ui and U j, the minimizers are Wi and W j,
respectively. It is evident that Wi = W j since Ui = U j. Using Ui, Wi, U j, and W j, the
minimizers Ci and Cj can be calculated, respectively. It is obvious that Ci = Cj. Therefore,
the following equation can be obtained:

F(Ui, Ci, Wi) = F(U j, Cj, W j). (36)

However, the function F(·, ·, ·) monotonically decreases. Therefore, different partition
U occurs only once during the algorithm process. uij in Equation (29) can be calculated
after taking the derivative of Equation (18) and setting it equal to zero. Therefore, uij can
be minimal or maximal. If the second partial derivative of Equation (18) is positive, it can
prove that uij defined by Equation (29) is a local minimum of Equation (18). The second
partial derivative of Equation (18) with respect to uij is

M

∑
l=1

λ

uij
. (37)
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Since uij > 0, λ > 0, it can prove that Equation (37) is positive. Therefore, K in
Equation (29) is a local minimum of Equation (18). The proposed algorithm converges in a
finite number of iterations.

3.3. Computational Complexity

As shown in Table 1, the computational complexity of the proposed algorithm is
high when compared to other clustering algorithms. However, by adding new terms, the
clustering performance is improved. The computational complexity of the algorithm is
based on four update processes: updating the distance matrix D, cluster center matrix C,
membership matrix U, and weight matrix W. The computational complexity of each process
is equal to NKM. Each process executes independently; hence, the total computational
complexity is 4NKM. Furthermore, N denotes the number of samples, K denotes the
number of clusters, and M denotes the number of features. Each iteration updates D, C,
U, and W using Equations (29), (32), and (35) and finally classifies the different samples
according to the matrix U.

Table 1. The computational complexity of the algorithms.

Method Computational Complexity

K-Means O(NKM)
WK-Means O(NKM2)

FCM O(NK2 M)
RLWHCM O(NKM)

SCAD O(NK2 M + NKM2)
EKM O(NKM)
UKM O(NKM)

Proposed algorithm O(4NKM)

4. Experiments

In the experimental section, to test the performance of the proposed algorithm, the
performance of other clustering algorithms is evaluated and compared on real-world
datasets. These algorithms are the standard K-Means [11], the standard FCM [12], WK-
Means [30], RLWHCM [28], SCAD [25], EWK-Means [31], and UK-Means [32]. These
algorithms have specific standard parameters. If the parameter values are uniform, the
influence of the parameters can be removed to observe the clustering results. Therefore,
various parameters were equalized to avoid inconsistency in algorithm performance. In
the experiments, the maximum number of restarts was set to 100. For λ = 0.3 and γ = 1.4,
the clustering centroids were randomly selected from the original datasets. In practical
applications, choosing the appropriate threshold value is a crucial issue. If the threshold is
too small, the algorithm may converge very slowly or not even converge; if the threshold is
too large, the algorithm may stop prematurely, resulting in less accurate clustering results.
Therefore, experiments and adjustments are needed to determine an appropriate threshold
size. Considering that the threshold value is not the same for different datasets, to get the
best performance, we reduced from 0.1 to 0.00001 by 10 times in each case to get the best
clustering result. After testing, value = 10−5 was set to get accurate clustering results for
different datasets. Each algorithm was iterated 100 times, and the best result was recorded.

Seven real-world datasets from UCI [36] were used to assess the performance of the
proposed approach and compare its results to other approaches. Furthermore, the text,
face image, and biological datasets [37] highlight the proposed algorithm’s performance in
high-dimensional and noisy datasets. These datasets are mentioned in Table 2. The best
clustered values for each dataset in Tables 3 and 4 are bolded.
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Table 2. Characteristics of the real-world dataset.

Dataset Number of Samples Number of Features Number of Classes

Dermatology 366 34 6
Iris 150 4 3

Wine 178 13 3
Ionosphere 351 34 2
Lung career 32 56 3

Statlog (heart) 270 13 2
Zoo 101 16 7

BASEHOCK 1993 4862 2
PCMAC 1943 3289 2

ALLAML 72 7129 2
GLOMA 50 4434 4
COIL20 1440 1024 20

Yale 165 1024 15
Gisette 7000 5000 2

Madelon 2600 500 2

Table 3. Comparison results of the performance of algorithms on low-dimensional datasets.

Datasets KM WKM FCM RLWHCM SCAD EKM UKM Ours

Dermatology ACC 0.36 0.41 0.36 0.68 0.47 0.53 0.36 0.71
RI 0.68 0.63 0.70 0.82 0.68 0.73 0.68 0.84

NMI 0.10 0.25 0.11 0.60 0.46 0.52 0.10 0.64

Iris ACC 0.89 0.90 0.89 0.93 0.92 0.96 0.89 0.98
RI 0.88 0.89 0.88 0.88 0.90 0.95 0.88 0.97

NMI 0.76 0.76 0.75 0.78 0.76 0.87 0.77 0.91

Wine ACC 0.70 0.70 0.69 0.79 0.59 0.57 0.70 0.74
RI 0.72 0.72 0.71 0.75 0.62 0.54 0.72 0.73

NMI 0.43 0.43 0.42 0.33 0.48 0.33 0.45 0.41

Ionosphere ACC 0.71 0.73 0.71 0.74 0.64 0.73 0.70 0.81
RI 0.59 0.63 0.59 0.66 0.54 0.54 0.58 0.69

NMI 0.03 0.25 0.04 0.14 0.13 0.21 0.11 0.27

Lung career ACC 0.55 0.53 0.56 0.59 0.59 0.55 0.43 0.62
RI 0.58 0.63 0.63 0.55 0.56 0.59 0.46 0.66

NMI 0.24 0.25 0.27 0.27 0.20 0.18 0.12 0.29

Statlog (heart) ACC 0.59 0.64 0.61 0.71 0.81 0.57 0.65 0.83
RI 0.51 0.54 0.52 0.61 0.70 0.51 0.52 0.72

NMI 0.01 0.07 0.15 0.12 0.17 0.03 0.06 0.23

Zoo ACC 0.66 0.4 0.57 0.71 0.73 0.67 0.78 0.81
RI 0.81 0.23 0.83 0.83 0.75 0.80 0.85 0.86

NMI 0.71 0.34 0.67 0.62 0.77 0.66 0.71 0.74

BASEHOCK ACC 0.50 0.53 0.51 0.62 0.53 0.58 0.55 0.69
RI 0.50 0.51 0.50 0.50 0.50 0.51 0.51 0.55

NMI 0.01 0.04 0.01 0.01 0.04 0.05 0.03 0.07
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Table 4. Comparison results of the performance of algorithms on high-dimensional datasets.

Datasets KM WKM FCM RLWHCM SCAD EKM UKM Ours

BASEHOCK ACC 0.50 0.53 0.51 0.62 0.53 0.50 0.55 0.69
RI 0.50 0.51 0.50 0.50 0.50 0.51 0.51 0.55

NMI 0.01 0.04 0.01 0.01 0.04 0.02 0.03 0.07

PCMAC ACC 0.51 0.51 0.55 0.58 0.52 0.51 0.53 0.68
RI 0.49 0.50 0.50 0.53 0.59 0.57 0.58 0.62

NMI 0 0.02 0.01 0.04 0.02 0.04 0.05 0.12

ALLAML ACC 0.68 0.75 0.67 0.65 0.72 0.75 0.82 0.91
RI 0.56 0.62 0.55 0.49 0.59 0.64 0.70 0.84

NMI 0.06 0.16 0.09 0.11 0.14 0.33 0.47 0.58

GLIOMA ACC 0.66 0.66 0.56 0.71 0.54 0.67 0.72 0.76
RI 0.75 0.76 0.72 0.79 0.70 0.72 0.68 0.78

NMI 0.48 0.55 0.56 0.59 0.53 0.57 0.52 0.66

COIL20 ACC 0.11 0.15 0.13 0.43 0.19 0.33 0.35 0.41
RI 0.56 0.69 0.56 0.90 0.57 0.89 0.82 0.90

NMI 0.28 0.40 0.29 0.58 0.21 0.42 0.49 0.53

Yale ACC 0.38 0.19 0.15 0.36 0.24 0.39 0.40 0.45
RI 0.88 0.47 0.58 0.88 0.76 0.84 0.87 0.92

NMI 0.44 0.19 0.13 0.40 0.27 0.39 0.42 0.55

Gisette ACC 0.69 0.50 0.69 0.53 0.56 0.73 0.77 0.81
RI 0.57 0.50 0.58 0.51 0.52 0.62 0.66 0.66

NMI 0.12 0 0.11 0 0.06 0.19 0.21 0.26

Madelon ACC 0.51 0.55 0.50 0.54 0.52 0.69 0.72 0.81
RI 0.50 0.50 0.50 0.52 0.5 0.62 0.65 0.69

NMI 0 0.01 0 0 0.01 0.13 0.16 0.21

4.1. Evaluation Indicators

The clustering accuracy is defined as

ACC =

K
∑

l=1
Dl

N
. (38)

In Equation (38), Dl denotes the number of samples correctly classified into the lth cluster,
and N represents the number of points in the dataset. A considerable value of ACC [38]
suggests a better clustering performance.

Since the sample labels of the real-world dataset are known, RI [38] was used to
evaluate the similarity between the clustering partitions and real partitions.

RI =
f1 + f3

f1 + f2 + f3 + f4
. (39)

In Equation (39), f1 indicates the number of similar sample points belonging to a common
partition, f2 indicates the number of non-similar samples belonging to a common partition,
f3 indicates the number of non-similar samples in two separate partitions, and f4 indicates
the number of common samples belonging to two different partitions. Larger values
suggest better classification results.

NMI is often used in clustering to compute the similarity between the clustering
results and the real label of the dataset. The measurement method is

NMI(A, B) =

I
∑

i=1

J
∑

j=1
P(i, j) log P(i,j)

P(i)P(j)√
H(A)H(B)

. (40)
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In Equation (40), A and B are the two partitions in the dataset comprising clusters I and J,
respectively. P(i) indicates the probability that a randomly selected sample is allocated to a
cluster Ai, P(i, j) represents the probability that a sample belongs to both clusters Ai and
Bi, and H(A) is the entropy associated with all the probabilities P(i) in partition A [39]. A
larger value of NMI leads to more consistent clustering results.

4.2. Clustering Results on Real-World Datasets

As demonstrated in Tables 3 and 4, the clustering performance of the proposed al-
gorithm in terms of ACC, RI, and NMI was much better on different real-world datasets
than other clustering methods. The clustering results suggest that the proposed algorithm
significantly improved the clustering performance and provided the best results in most
real-world and txt datasets. It should also be noted that the proposed algorithm’s perfor-
mance was not exceptional in the Wine dataset. After careful examination of this dataset,
it was discovered that there were only three clusters in this dataset, and there was little
variation in the values of the features. The value of a feature in different clusters may
differ by as little as 0.1, which negatively impacts any clustering algorithm and leads to
poor performance of entropy-weight terms and non-Euclidean distances. Most classical
clustering algorithms had ACC and NMI values of nearly 0.5 in the high-dimensional
datasets because the number of clusters was two, indicating that these algorithms failed
due to high dimensionality and noise. The reason is that there are often many outliers in
high-dimensional data, and the data distribution could be sparser. Traditional clustering
algorithms have difficulty clustering these sparse data. As the dimensionality increases,
the calculation based on distance makes the clustering centers progressively more complex
and is affected by outliers leading to shifts. At the same time, because the different feature
weights of different clusters are not considered, the feature of sparse high-dimensional data
cannot be exploited, making the clustering results much less accurate. However, using
the entropy constraint feature in the proposed algorithm improves the algorithm’s per-
formance in three performance metrics. On the other hand, the clustering algorithm with
exponential constraints equalizes sample membership degrees, resulting in an inaccurate
ACC value of 0.5. The results also show that the proposed algorithm has the advantage of
assisting in the detection of noise and the main classification features in large datasets. The
clustering results of the proposed algorithm performed better in the Face Image Dataset
and Biological Dataset. This shows that, with random initialization of clustering centers,
our algorithm was better and more stable in handling high and noisy datasets. From the
clustering results, we can find that the K-Means algorithm performed better in the face
dataset because it did not introduce the feature weights, which could lead to unsatisfactory
results for high-dimensional data and when the number of clusters is large. Furthermore,
this demonstrates that the algorithm can be used for classification in both supervised and
unsupervised learning.

Numerous points justify the performance of the proposed algorithm. First, this algo-
rithm has good performance even with terrible initial centers, while the other algorithms
are severely sensitive to initialization. Second, the introduction of entropy weighting allows
different features to be well added to the clustering process. Third, the non-Euclidean
distance makes it possible to encounter noisy and sparse data in the calculation and does
not affect the clustering results.

The value range of the parameters was discussed in detail in the previous section. To
further examine the sensitivity of λ and γ, the algorithm’s sensitivity was analyzed on the
Iris and Zoo datasets. λ = 0.3 was fixed, increasing γ from 0 by 0.1 to 2 each time. The
sensitivity of λ can be inferred from Figure 1. After that, γ = 0.8 was fixed, increasing λ
from 0 by 0.1 to 2 each time. The sensitivity of γ can be observed in Figure 2. It can be
observed from the figures that ACC, RI, and NMI did not fluctuate much when the two
parameters were varied, which highlights the excellent performance and robustness of our
algorithm. Higher values for the three metrics also directly reflect the proposed algorithm’s
efficiency and robustness. The ACC changes of the proposed algorithm were analyzed
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on the basis of the non-Euclidean distance and the Euclidean distance tested on the Iris
and Zoo datasets, to better demonstrate this advancement of the proposed non-Euclidean
distance in computing sample point distances. Figure 3 shows that clustering results based
on non-Euclidean distances were more accurate than those based on Euclidean distances. In
the non-Euclidean distance, the average ACC values were 0.95 and 0.93, respectively, while
in the Euclidean distance, the average ACC values were 0.79 and 0.80, respectively. The
new distance formula increased the ACC of the algorithm by 18%, which also indicates the
advantage of the newly proposed non-Euclidean distance in dealing with high-dimensional
sparse and noisy data. Furthermore, the ACC’s variance of non-Euclidean distance was
0.025, while the ACC’s variance of Euclidean distance was 0.074, indicating that the non-
Euclidean distance makes the algorithm more robust. To better distinguish the algorithms
in the experiment, Table 5 reflects the usage conditions associated with the compared
algorithms. The experimental results show that the proposed algorithm had high clustering
accuracy in most real-world datasets from various domains. The sensitivity analysis of the
two parameters could be determined, proving that the algorithm is robust and performs
well. Furthermore, when comparing the Euclidean distance and the non-Euclidean distance
on the objective function, we can find that the non-Euclidean distance was more accurate
and stable in clustering results.
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Table 5. Comparison results of the conditions of use of different algorithms.

Algorithm Weight Division Feature Constraint Distance Division

KM Non Non Euclidean
WKM Global Exponential Euclidean
FCM Non Non Euclidean

RLWHCM Local Exponential Non-Euclidean
SCAD Local Exponential Euclidean
EKM Local Entropy Euclidean
UKM Non Entropy Euclidean
Ours Local Entropy Non-Euclidean

4.3. Discussion of Noise

To demonstrate the performance of the proposed algorithm under the influence of
noise, a new experiment was designed for the Iris dataset. In the Iris dataset, uniformly
distributed data from 0 to 1 were randomly assigned as new noise features. Furthermore,
to compare the effect with and without noise, we compared experiments for the original
dataset and the dataset with noise. As shown in Figure 4, the noise only slightly affected the
clustering results. This shows that the performance of the proposed algorithm remained
good even though the noise affected the dataset. Moreover, as shown in Figure 5, the noise
did not influence the assignment of feature weights. This confirms the high accuracy and
stability of the algorithm.
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5. Conclusions

This paper proposed a new algorithm for classifying high-dimensional and noisy
data on the basis of non-Euclidean distance, combining feature weights and entropy
weights. In this approach, two different entropy terms are added to the objective function,
which helps better identify the clustering features of complex data. The performance was
compared with state-of-the-art methods in terms of different clustering measures, revealing
that the proposed approach is a new clustering algorithm that can partition data with
improved performance. Considering the nature of the proposed algorithm and the results of
extensive experiments on various datasets, it can be applied to medical research and textual
information, facilitating the extraction of critical features, and obtaining clustering results
in high-dimensional and complex data conditions. The proposed algorithm significantly
improves on the following aspects:

(1) The clustering result is consistent and stable, as it is not susceptible to the original
cluster centers and assigns different feature weights to each cluster in the cluster-
ing process.

(2) The entropy weights improve the algorithm’s handling of partitioning during the
clustering process and highlight the importance of distinguishing different features.

(3) The introduction of non-Euclidean distance makes the algorithm more robust and
efficient in handling high-dimensional sparse and noisy data in the real world.

(4) The insensitivity to parameter changes ensures the flexibility of the algorithm.

In the future, EM and Gaussian mixture models will be used to improve the clustering
algorithm, making it more useful in image processing.
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