
Citation: Minculete, N.; Savin, D.

About the Entropy of a Natural

Number and a Type of the Entropy of

an Ideal. Entropy 2023, 25, 554.

https://doi.org/10.3390/e25040554

Academic Editors: Qian Yu

and Yanjun Han

Received: 17 January 2023

Revised: 22 March 2023

Accepted: 22 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

About the Entropy of a Natural Number and a Type of the
Entropy of an Ideal
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Abstract: In this article, we find some properties of certain types of entropies of a natural number. We
are studying a way of measuring the “disorder” of the divisors of a natural number. We compare two
of the entropies H and H defined for a natural number. An useful property of the Shannon entropy is
the additivity, HS(pq) = HS(p) + HS(q), where pq denotes tensor product, so we focus on its study
in the case of numbers and ideals. We mention that only one of the two entropy functions discussed
in this paper satisfies additivity, whereas the other does not. In addition, regarding the entropy H of
a natural number, we generalize this notion for ideals, and we find some of its properties.
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1. Introduction and Preliminaries

In information theory, the entropy is defined as a measure of uncertainty. The most
used of the entropies is Shannon entropy (HS), which is given for a probability distribution
p = {p1, . . . , pr}; thus,

HS(p) = −
r

∑
i=1

pi · log pi.

An useful property of the Shannon entropy is the additivity, HS(pq) = HS(p) + HS(q),
where p = {p1, . . . , pr}, q = {q1, . . . , qr} and pq = {p1q1, . . . , p1qr, . . . , prq1, . . . , prqr}.

In [1], Sayyari gave an extension of Jensen’s discrete inequality considering the class
of uniformly convex functions getting lower and upper bounds for Jensen’s inequality.
He applied this results in information theory and obtained new and strong bounds for
Shannon’s entropy of a probability distribution. Recently, in [2], De Gregorio, Sánchez
and Toral defined the block entropy (based on Shannon entropy), which can determine the
memory for systems modeled as Markov chains of arbitrary finite order.

We have found several ways to define the entropy of a natural number. Jeong et al.,
in [3], defined the additive entropy of a natural number in terms of the additive partition
function. If d is the divisor of a natural number n, then we will write d|n. If σ(n) is the sum
of natural divisors of n, then it is easy to see that ∑d|n

d
σ(n) = 1. Thus, the ratio d

σ(n) can be
seen as a probability. As a result we, have a discrete probability distribution associated
with a natural number. In [4], we found the following definition for the entropy of a
natural number:

H(n) := −∑
d|n

d
σ(n)

log
d

σ(n)
= log σ(n)− 1

σ(n) ∑
d|n

d log d,

where log is the natural logarithm. Unfortunately, we did not find this interesting definition
of the entropy of a natural number in a book or paper, but on a website. This entropy has
the following interesting property:

H(mn) = H(m) + H(n),
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when m, n ∈ N∗ and gcd(m, n) = 1. If p is a prime number and α ∈ N∗, then we have

H(pα) = − (α + 1) log p
pα+1 − 1

+ log
1− p−(α+1)

p− 1
+

p log p
p− 1

.

Taking the limit as α→ ∞, we obtain

lim
α→∞

H(pα) =
p log p
p− 1

− log(p− 1). (1)

We remark that, if p is a prime number, q > 1, such that 1
p + 1

q = 1, then

HS

(
1
p

,
1
q

)
=

p− 1
p

(
p log p
p− 1

− log(p− 1)
)
=

(
1− 1

p

)
lim

α→∞
H(pα).

In the paper [5], Minculete and Pozna introduced the notion of entropy of a natural
number in another way—namely, if n ∈ N, n ≥ 2, by applying the fundamental theorem
of arithmetic, n is written uniquely n = pα1

1 pα2
2 . . . pαr

r , where r ∈ N∗, p1, p2, . . . , pr are
distinct prime positive integers and α1, α2, . . . , αr ∈ N∗. Let Ω(n) = α1 + α2 + . . . + αr and
p(αi) =

αi
Ω(n) , (∀) i = 1, r. The entropy of n is defined by

H(n) = −
r

∑
i=1

p(αi) · log p(αi).

Here, by convention, H(1) = 0.
Minculete and Pozna (in [5]) gave an equivalent form for the entropy of n, namely:

H(n) = log Ω(n)− 1
Ω(n)

·
r

∑
i=1

αi · log αi. (2)

For example, if n = 6 = 2 · 3, we have:

H(6) = log 2− 1
2
· 2 · log 1 = log 2 = 0.6931 . . . .

Another example: if n = 24 = 23 · 3, we have:

H(24) = log 4− 1
4
· 3 · log 3 =

1
4
· log

(
44

33

)
= 2.2493 . . . .

Minculete and Pozna proved (in [5]) the following:

Proposition 1.
0 ≤ H(n) ≤ log ω(n), (∀) n ∈ N, n ≥ 2, (3)

where ω(n) is the number of distinct prime factors of n.

Remark 1. (i) If n = pα, then H(n) = 0;
(ii) If n = p1 · p2 · . . . · pr, then H(n) = log ω(n);
(iii) If n = (p1 · p2 · . . . · pr)

k, then H(n) = log ω(n).

It is easy to see that H(nα) = H(n), with α ≥ 1.
The relevance of this entropy is given by the possibility of extension to ideals. The extension
of some properties of the natural numbers to ideals was recently given in [6]. Some of
the studied results can be transferred to other types of generalized entropies that can be
defined later [7]. Entropy is generally used in mathematical physics applications, but it can
constitute a new element of analysis in theoretical fields [8]. Recently, in [9], Niepostyn and
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Daszczuk used entropy as a measure of consistency in software architecture. Therefore,
the area of studying different types of entropies in various fields is expanding.

Our motivation of this article was to study some properties of certain types of entropies
of a natural number. We compare two of the entropies defined for a natural number.
Additionally, regarding the entropy H of a natural number, introduced in [5], we generalize
this notion for ideals, and we find some of its properties. We mention that the entropy of
the ideal is generalized from the second notion of the entropy of integers.

2. A Comparison between the Entropies H and H

In this section, we propose to compare the entropies H and H, looking to similarities
and differences between them.

Proposition 2.
lim
p→∞

lim
α→∞

H(pα) = 0. (4)

Proof. From relation (1), we have limα→∞ H(pα) =
p log p
p−1 − log(p− 1). Next, we use the

following limit of functions:

lim
x→∞

(
x log x
x− 1

− log(x− 1)
)
= lim

x→∞

x log x− (x− 1) log(x− 1)
x− 1

= lim
x→∞

(log x− log(x− 1)) = lim
x→∞

log
x

x− 1
= 0.

Therefore, we obtain limp→∞ limα→∞ H(pα) = limp→∞

(
p log p
p−1 − log(p− 1)

)
= 0.

Remark 2. Related to the entropy H, we have

lim
α→∞

H(npα) = H(n) +
p log p
p− 1

− log(p− 1),

when gcd(n, p) = 1, with p being a prime number and n, α ∈ N∗.
It is easy to see that limp→∞ limα→∞ H(pα) = 0 = H(pα).

Proposition 3. If gcd(n, p) = 1, with p being a prime number and n, α ∈ N∗, then we have

lim
α→∞

H(npα) = 0. (5)

Proof. From the definition of H, we have

H(npα) = log(Ω(n) + α)− 1
Ω(n) + α

(
r

∑
i=1

αi · log αi + α log α

)

= log(Ω(n) + α)− α log α

Ω(n) + α
− 1

Ω(n) + α
(Ω(n) log Ω(n)−Ω(n)H(n))

=
Ω(n)H(n)
Ω(n) + α

+ log(Ω(n) + α)− Ω(n) log Ω(n) + α log α

Ω(n) + α
.

It follows that

H(npα) =
Ω(n)H(n)
Ω(n) + α

+ log(Ω(n) + α)− Ω(n) log Ω(n) + α log α

Ω(n) + α
. (6)

By taking the limit when α→ ∞, we deduce the relation of the statement.
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We also see that if gcd(m, n) = 1, then

H(mn) 6= H(m) + H(n).

As a result, we ask ourselves the question of what is the relationship between H(mn)
and H(m) + H(n), where m, n ∈ N∗, m, n ≥ 2.

If m = 22 and n = 105, then H(m) = log 2, H(n) = log 3 and H(mn) = log 5, so
we have

H(mn) < H(m) + H(n).

If m = 20 and n = 63, then H(m) = H(n) = log 3− 2
3 log 2 and H(mn) = log 6−

2
3 log 2, which means that

H(mn)− H(m)− H(n) =
1
3
(5 log 2− 3 log 3) =

1
3

log
32
27

> 0,

so we have
H(mn) > H(m) + H(n).

Next, we study a general result of this type for the entropy H.

Proposition 4. We assume that m = pkq and n = pkt, where p, q, t are distinct prime numbers
and k ∈ N∗. Then, the inequality

H(mn) < H(m) + H(n)

holds.

Proof. From the definition of H, we have H(m) = H(n) = log(k + 1) − k
k+1 log k and

H(mn) = log 2(k + 1)− k
k+1 log 2k. Therefore, we obtain

H(m) + H(n)− H(mn) =
1

k + 1
((k + 1) log(k + 1)− k log k− log 2).

We consider the function f : [1, ∞)→ R defined by

f (x) = (x + 1) log(x + 1)− x log x− log 2. Since f ′(x) = log x+1
x > 0 for every x ≥ 1, we

deduce that the function f is increasing, so we have f (x) ≥ f (1) = log 2 > 0. Consequently,
the inequality of the statement is true.

Proposition 5. We assume that m = pk
1 p2 and n = qk

1q2, where p1, p2, q1, q2 are distinct prime
numbers and k ∈ N∗. Then, we have the following inequality

H(mn) ≥ H(m) + H(n).

Equality holds for k = 1.

Proof. For k = 1, we deduce that m = p1 p2 and n = q1q2, which implies H(m) = H(n) = log 2
and H(mn) = log 4, so we have

H(mn) = H(m) + H(n).

For k ≥ 2, we find H(m) = H(n) = log(k + 1)− k
k+1 log k and H(mn) = log 2(k +

1)− k
k+1 log k. Now, we obtain

H(mn)− H(m)− H(n) =
1

k + 1
((k + 1) log 2 + k log k− (k + 1) log(k + 1))
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for all k ≥ 2, because the function f : [2, ∞) → R defined by f (x) = (x + 1) log 2 +
x log x − (x + 1) log(x + 1) is strictly positive. It is easy to see that f ′(x) > 0 for every
x ≥ 2. Therefore, for x = k, we prove the relation of the statement.

We study another result for which we have

H(mn) ≥ H(m) + H(n),

where m, n ∈ N∗, m, n ≥ 2.

Proposition 6. Let m, n be two natural numbers such that gcd(m, n) = 1 and decomposition in

prime factors of m, n given by m = ∏r
i=1 pai

i and n = ∏s
j=1 q

bj
j with ai, bj ≥ k for all i ∈ {1, . . . , r}

and j ∈ {1, . . . , s}, k ∈ N∗. Then, the inequality

H(mn) > H(m) + H(n) + log
(

k
Ω(m)

+
k

Ω(n)

)
holds.

Proof. Using the definition of H, we deduce the equality

H(mn)− H(m)− H(n) =
Ω(n)

Ω(m)(Ω(m) + Ω(n))

r

∑
i=1

ai log ai (7)

+
Ω(m)

Ω(n)(Ω(m) + Ω(n))

s

∑
j=1

bj log bj − log
Ω(m)Ω(n)

Ω(m) + Ω(n)
.

Since log ai, log bj ≥ log k for all i ∈ {1, . . . , r} and j ∈ {1, . . . , s}, we obtain that
∑r

i=1 ai log ai ≥ log k ∑r
i=1 ai = (log k)Ω(m) and ∑s

j=1 bj log bj ≥ log k ∑s
j=1 bj = (log k)

Ω(n). Using equality (7) and above inequalities, we show that

H(mn)− H(m)− H(n) ≥ log k− log
Ω(m)Ω(n)

Ω(m) + Ω(n)
.

Consequently, the inequality of the statement is true.

Theorem 1. Let m, n be two natural numbers such that gcd(m, n) = 1 and H(m), H(n) ≥ log 2.
Then, the following inequality

H(m) + H(n) ≥ H(mn)

holds.

Proof. Using relation (7) and the definition of H, we have

H(mn)− H(m)− H(n) =
Ω(n)

Ω(m) + Ω(n)
(log(Ω(m))− H(m))) (8)

+
Ω(m)

Ω(m) + Ω(n)
(log(Ω(n))− H(n))− log

Ω(m)Ω(n)
Ω(m) + Ω(n)

=
Ω(n) log(Ω(m)) + Ω(m) log(Ω(n))

Ω(n) + Ω(m)
− Ω(n)H(m) + Ω(m)H(n)

Ω(n) + Ω(m)
− log

Ω(m)Ω(n)
Ω(m) + Ω(n)

.

Since, using the concavity of the function log, we deduce the inequality

Ω(n) log(Ω(m)) + Ω(m) log(Ω(n))
Ω(n) + Ω(m)

≤ log
2Ω(m)Ω(n)

Ω(m) + Ω(n)
.
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Therefore, relation (8) becomes

H(mn)− H(m)− H(n) ≤ log 2− Ω(n)H(m) + Ω(m)H(n)
Ω(n) + Ω(m)

,

so we obtain

H(m) + H(n)− H(mn) ≥ Ω(n)H(m) + Ω(m)H(n)
Ω(n) + Ω(m)

− log 2. (9)

Therefore, taking into account that H(m), H(n) ≥ log 2 and using inequality (9), we
deduce the statement.

Next, our goal was to show that the entropy H is more suitable to extend it to ideals.

3. The Entropy of an Ideal

In this section, we introduce the notion of entropy of an ideal of a ring of algebraic
integers, and we find interesting properties of it.

Let K be an algebraic number field of degree [K : Q] = n, where n ∈ N, n ≥ 2, and let
OK be its ring of integers. Let Spec(OK) be the set of the prime ideals of the ring OK. Let p
be a prime positive integer. SinceOK is a Dedekind ring, applying the fundamental theorem
of Dedekind rings, the ideal pOK is written uniquely (except for the order of the factors)
like this:

pOK = Pe1
1 · P

e2
2 · . . . · Peg

g ,

where g ∈ N∗, e1, e2, . . . , eg ∈ N∗ and P1, P2, . . . , Pg ∈ Spec(OK). The number ei (i = 1, g) is
called the ramification index of p at the ideal Pi.

Generally, according to the fundamental theorem of Dedekind rings, any ideal I of the
ring OK decomposes uniquely:

I = Pe1
1 · P

e2
2 · . . . · Peg

g , where r ∈ N∗, e1, e2, . . . , eg ∈ N∗ and P1, P2, . . . , Pg ∈ Spec(OK). (10)

We shall mostly work in this article with ideals of the form pOK, since for such ideals there
are known ramification results in the ring OK, for many algebraic number fields K (when
K is any quadratic field, or K is any cubic field, or K is any cyclotomic field, or K is any
Kummer field, etc.)

The following result is known (see [10–12]):

Proposition 7. In the above notation, we have:
(i)

g

∑
i=1

ei fi = [K : Q] = n,

where fi is the residual degree of p, meaning fi = [OK/Pi : Z/pZ], i = 1, g.
(ii) If, moreover,Q ⊂ K is a Galois extension, then e1 = e2 = . . . = eg (denoted by e), f1 = f2 = . . . = fg
(denoted by f ). Therefore, e f g = n.

Let J be the set of ideals of the ringOK. Let I∈J, I be written uniquely as in equality (10).
It is easy to see that ∑

g
i=1

ei
Ω(I) = 1. Thus, the ratio ei

Ω(I) can be seen as a probability;
as a result, we have a discrete probability distribution associated with a ideal.

We generalize the notion of entropy of an ideal like this:

Definition 1. Let I 6= (0) be an ideal of the ring OK, decomposed as above. We define the entropy
of the ideal I as follows:

H(I) = −
g

∑
i=1

ei
Ω(I)

log
ei

Ω(I)
, (11)



Entropy 2023, 25, 554 7 of 9

where Ω(I) = e1 + e2 + . . . + eg.

Immediately, we obtain the following equivalent form, for the entropy of the ideal I:

H(I) = log Ω(I)− 1
Ω(I)

·
g

∑
i=1

ei · log ei. (12)

We now give some examples of calculating the entropy of an ideal.

Example 1. Let ξ be a primitive root of order 5 of the unity and let K = Q(ξ) be the 5th cyclotomic
field. The ring of algebraic integers of the field K isOK = Z[ξ]. We consider the ideal (1− ξ) ·Z[ξ].
It is known that (1− ξ) ·Z[ξ] ∈ Spec(OK) (see [10,13]). Let the ideal 5 ·Z[ξ] = (1− ξ)4 ·Z[ξ].
The entropy of the ideal 5 ·Z[ξ] is

H(5 ·Z[ξ]) = log 4− 1
4
· 4 · log 4 = 0.

Example 2. Let the pure cubic field K = Q
(

3
√

2
)

. Since 22 6≡ 1 (mod 9), the results show that the

ring of algebraic integers of the field K is OK = Z
[

3
√

2
]

(see [14]).

Since 29 ≡ 2 (mod 3), 29Z
[

3
√

2
]
= P1 · P2, where P1, P2 ∈ Spec

(
Z
[

3
√

2
])

. Thus, the ideal

29Z
[

3
√

2
]

splits in the ring Z
[

3
√

2
]
. The entropy of the ideal 29Z

[
3
√

2
]

is

H
(

29Z
[

3
√

2
])

= log 2− 1
2
· 2 · log 1 = log 2.

Example 3. In the same field (as in the previous example) K = Q
(

3
√

2
)

with the ring of integer

OK = Z
[

3
√

2
]
, we consider the ideal 31Z

[
3
√

2
]
.

Since 31 ≡ 1 (mod 3), 31Z
[

3
√

2
]
= P1 · P2 · P3, where P1, P2, P3 ∈ Spec

(
Z
[

3
√

2
])

. Thus, the ideal

31Z
[

3
√

2
]

splits completely in the ring Z
[

3
√

2
]

(see [14]). The entropy of the ideal 31Z
[

3
√

2
]

is

H
(

31Z
[

3
√

2
])

= log 3− 1
3
· 3 · log 1 = log 3.

Remark 3. Let K be an algebraic number field, and let OK be its ring of integers. Let p be a prime
positive integer. If p is inert or totally ramified in the ring OK, then H(pOK) = 0.

Proof. To calculate the entropy of ideal pOK, we consider two cases.
Case 1: if p is inert in the ring OK, the results show that pOK is a prime ideal. Then
Ω(pOK) = 1 and H(pOK) = 0.
Case 2: if p is totally ramified in the ring OK, the results show that pOK = Pn, where
P ∈ Spec(OK) and n = [K : Q]. This results immediately in Ω(pOK) = n and H(pOK) =
log n− log n = 0.

Proposition 8. Let n be a positive integer, n ≥ 2, and let p be a positive prime integer. Let K be an
algebraic number field of degree [K : Q] = n and let OK be its ring of integers. Then:

0 ≤ H(pOK) ≤ log ω(pOK) ≤ log n, (13)

where ω(pOK) is the number of distinct prime factors of the ideal pOK.
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Proof. The proof of the inequality 0 ≤ H(pOK) ≤ log ω(pOK) is similar to the proof of
Proposition 1 (that is, Theorem 2. from the article [5]).
Since OK is a Dedekind ring, the ideal pOK is written in a unique way:

pOK = Pe1
1 · P

e2
2 · . . . · Peg

g ,

where g ∈ N∗, e1, e2, . . . , eg ∈ N∗ and P1, P2,. . . , Pg ∈ Spec(OK). By applying Proposition 7
(i), we obtain that ω(pOK) = g ≤ n. The equality ω(pOK) = n is achieved when the ideal
p splits totally in the ring OK. It follows that

0 ≤ H(pOK) ≤ log ω(pOK) ≤ log n.

Proposition 9. Let K be an algebraic number field, and let OK be its the ring of integers. Let p be
a prime positive integer. If the extension of fields Q ⊂ K is a Galois extension, then

H(pOK) = log ω(pOK).

Proof. By taking into account the fact that OK is a Dedekind ring and applying Proposition 7
(ii), it follows that the ideal pOK is uniquely written as follows:

pOK = Pe1
1 · P

e1
2 · . . . · Pe1

g ,

where g ∈ N∗, e1 ∈ N∗ and P1, P2,. . . , Pg ∈ Spec(OK). According to formula (2) , the entropy
of the ideal pOK is

H(pOK) = log(ge1)−
1

ge1
· ge1 · log e1 = log g = log ω(pOK).

4. Conclusions

Study of the entropy in information theory is a very important tool for for measuring
uncertainty. The most used of entropies is the Shannon entropy. There are many studies
regarding the characterization and application of entropy Shannon (see, e.g., [1,2], etc.). We
are studying a way of measuring the “disorder” of the divisors of a natural number. Since we
have ∑d|n

d
σ(n) = 1, the ratio d

σ(n) can be seen as a probability. As a result, we have a discrete
probability distribution associated with a natural number. Similarly, there are some studies
related to the entropy of a natural number—namely, Jeong et al., in [3], defined the additive
entropy of a natural number in terms of the additive partition function, and in [4], we found
the following definition for the entropy of a natural number:

H(n) := −∑
d|n

d
σ(n)

log
d

σ(n)
= log σ(n)− 1

σ(n) ∑
d|n

d log d,

where σ(n) is the sum of natural divisors of n. Additionally, regarding the entropy H of a
natural number, introduced in [5], another type of entropy is a natural number. Mainly, the
discussion is about the properties of entropy H. In Propositions 6 and Theorem 1, we were
talking about the magnitude of H(mn) and H(m) + H(n).

In equality ∑
g
i=1

ei
Ω(I) = 1, the ratio ei

Ω(I) can be seen as a probability. As a result, we
have a discrete probability distribution associated with a ideal. Thus, we generalize this
notion for ideals and find some of its properties. The relation between the proposed entropy
of a natural number or an ideal is of a purely theoretical nature.

In the future, we will look for other connections of entropy within ideals, studying a
possible generalization of existing entropy types for natural numbers or for ideals. We will
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study some inequalities involving the entropy H of an exponential divisor of a positive
integer and the entropy H of an exponential divisor of an ideal. Additionally, we shall try to
study the entropy in the cases of more general ideals of the ring of algebraic integers OK of
an algebraic number field K, than the ideals of the form pOK, with p being a prime integer.
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