Cosmic and Thermodynamic Consequences of Kaniadakis Holographic Dark Energy in Brans–Dicke Gravity
Abstract
:1. Introduction
2. Basic Formalism
2.1. Standard Brans–Dicke Theory of Gravity
2.2. The BD Theory with a Chameleon Scalar Field
3. Interaction between Dark Sector
4. Interaction Term
4.1. For Standard BD Theory
- Hubble Parameter: This parameter sets the scale of our universe at present time. The Hubble constant is called the current value of Hubble parameter which lies in the range 65–75 km/s/Mpc. Now, taking the derivative of Equation (7) w.r.t cosmic time and by substituting the values of , , and , we obtain
- Deceleration Parameter: This important parameter is denoted by q. It differentiates the decelerated as well as the accelerated phase of the universe. The mathematical form of this parameter as the function of the Hubble parameter is given as follows
- Jerk Parameter: This parameter provides a convenient and alternative way to describe cosmological methods close to concordance CDM model. If (constant) it corresponds to CDM model. Mathematically, this parameter is defined as the third derivative of a scale factor w.r.t time t as [78,79,80]
- Equation of State Parameter: This parameter is denoted by is defined as the ratio of pressure to DE . The EoS parameter is a powerful tool to define the accelerated and decelerated phases of the universe. Its different features related to phase transition are given in the following table:
Using Equation (17), we obtained the expression of EoS parameter asAccelerated Phase Quintessence Cosmological Constant Phantom-Dominated Era Decelerated Phase Stiff Fluid Radiation-Dominated Dust Matter-Dominated
4.2. The BD Theory with a Chameleon Scalar Field
- Hubble Parameter: To find the expression of H, we use (16) and obtain the following differential equation
- Deceleration Parameter: For this theory, the expression of deceleration parameter become
- Jerk Parameter: The expression of the jerk parameter for underlying BD theory with a chameleon scalar field and interaction term yields
5. Interaction Term
5.1. For Standard BD Theory
- Hubble Parameter: The expression of H for yields
- Equation of State Parameter: The expression of of is
5.2. For the BD Theory with a Chameleon Scalar Field
- Hubble Parameter: For this case, the expression of H becomes
- Deceleration Parameter: In this scenario, the expression of q is
- Jerk Parameter: In BD theory with a chameleon scalar field, the expression of j is
- Equation of State Parameter: The expression of for this case will be
6. Thermodynamics
6.1. For Standard Brans–Dicke Theory of Gravity
6.2. For the BD Theory with a Chameleon Scalar Field
7. Conclusions and Comparison
Observational Schemes | |
Planck+TT+lowE | |
Planck+TT, TE, EE+lowE | |
Planck+TT, TE, EE+lowE+lensing | |
Planck+TT, TE, EE+lowE+lensing+BAO |
deceleration parameter | Observational Schemes |
BAO+Masers+TDSL+Pantheon | |
BAO+Masers+TDSL+Pantheon+ | |
BAO+Masers+TDSL+Pantheon+ | |
BAO+Masers+TDSL+Pantheon+ + |
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Contaldi, C.R.; Hoekstra, H.; Lewis, A. Joint CMB and Weak Lensing Analysis; Physically Motivated Constraints on Cosmological Parameters. Phys. Rev. Lett. 2003, 90, 221303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. 2003, 148, 175. [Google Scholar] [CrossRef] [Green Version]
- Spergel, D.N.; Bean, R.; Doré, O.; Nolta, M.R.; Bennett, C.L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E.; Page, L.; et al. Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. Astrophys. J. Suppl. 2007, 170, 377. [Google Scholar] [CrossRef] [Green Version]
- Sahni, V.; Starobinsky, A.A. The Case for a Positive Cosmological Lambda-term. Int. J. Mod. Phys. A 2000, 9, 373. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Cosmological Constant—the Weight of the Vacuum. Phys. Rept. 2003, 380, 235. [Google Scholar] [CrossRef] [Green Version]
- Urban, F.R.; Zhitnitsky, A.R. The cosmological constant from the QCD Veneziano ghost. Phys. Lett. B 2010, 688, 9. [Google Scholar] [CrossRef] [Green Version]
- Percival, W.J.; Reid, B.A.; Eisenstein, D.J.; Bahcall, N.A.; Budavari, T.; Frieman, J.A.; Fukugita, M.; Gunn, J.E.; Ivezić, Ž.; Knapp, G.R.; et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Mon. Not. Roy. Astron. Soc. 2010, 401, 2148. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.S. Making sense of the new cosmology. Int. J. Mod. Phys. A 2002, 17, 180. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar] [CrossRef] [Green Version]
- Setare, M.R. Interacting generalized Chaplygin gas model in non-flat universe. Eur. Phys. J. C 2007, 52, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Bernardini, A.E. Dynamical neutrino masses in the generalized Chaplygin gas scenario with mass varying CDM. Astropart. Phys. 2011, 34, 431. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.D.H. Entropy Bounds and Dark Energy. Phys. Lett. B 2004, 594, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Li, M. A model of holographic dark energy. Phys. Lett. B 2004, 603, 1. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Laurentis, M.D. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Capozziello, S.; Laurentis, M.D.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D. Conformal cosmology with no cosmological constant. Gen. Rel. Grav. 1990, 22, 289. [Google Scholar] [CrossRef]
- Kazanas, D.; Mannheim, P.D. General structure of the Gravitational equations of motion in conformal Weyl gravity. Astrophys. J. Suppl. 1991, 76, 431. [Google Scholar] [CrossRef]
- Mannheim, P.D.; Kazanas, D. Newtonian limit of conformal gravity and the lack of necessity of the second order Poisson equation. Gen. Rel. Grav. 1994, 26, 337. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-Linear Lagrangians and Cosmological Theory. Mon. Not. R. Astron. Soc. 1970, 150, 1. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 2005, 631, 1. [Google Scholar] [CrossRef] [Green Version]
- Jackiw, R.; Pi, S.Y. Chern-Simons modification of general relativity. Phys. Rev. D 2003, 68, 104012. [Google Scholar] [CrossRef] [Green Version]
- Nariai, H. On the Green’s Function in an Expanding Universe and Its Role in the Problem of Mach’s Principle. Prog. Theor. Phys. 1968, 40, 49. [Google Scholar] [CrossRef] [Green Version]
- Nariai, H. Gravitational Instability in the Brans-Dicke Cosmology. Prog. Theor. Phys. 1968, 42, 544. [Google Scholar] [CrossRef] [Green Version]
- Arik, M.; Calik, M.C. Can Brans-Dicke scalar field account for dark energy and dark matter? Mod. Phys. Lett. A 2006, 21, 1241. [Google Scholar] [CrossRef] [Green Version]
- Arik, M.; Calik, M.C.; Sheftel, M.B. Friedmann Equation for Brans Dicke Cosmology. Int. J. Mod. Phys. D 2008, 17, 225. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M.; Farhoudi, M.; Sepangi, H.R. An anisotropic cosmological model in a modified Brans–Dicke theory. Class. Quant. Grav. 2011, 28, 155004. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M. Kasner Solution in Brans-Dicke Theory and its Corresponding Reduced Cosmology. Springer Proc. Math. Statist. 2014, 60, 371. [Google Scholar]
- Rasouli, S.M.M.; Moniz, P.V. Exact cosmological solutions in modified Brans–Dicke theory. Class. Quant. Grav. 2016, 33, 035006. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M.; Shojai, F. Geodesic deviation equation in Brans–Dicke theory in arbitrary dimensions. Phys. Dark Univ. 2021, 32, 100781. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Jalalzadeh, S.; Moniz, P.V. Noncompactified Kaluza–Klein Gravity. Universe 2022, 8, 431. [Google Scholar] [CrossRef]
- Wesson, P.S.; de Ponce, J.L. A Classical Field Theory of Gravity and Electromagnetism. Math. Phys. 1992, 333, 883. [Google Scholar]
- Rasouli, S.M.M.; Farhoudi, M.; Vargas, P.M. Classical and Quantum Gravity PAPER Modified Brans–Dicke theory in arbitrary dimensions. Class. Quant. Grav. 2014, 31, 115002. [Google Scholar] [CrossRef] [Green Version]
- Ghaffari, S.; Luciano, G.G.; Capozziello, S. Barrow holographic dark energy in the Brans-Dicke cosmology. Eur. Phys. J. Plus 2023, 138, 82. [Google Scholar] [CrossRef]
- Amani, H.; Halpern, P. Energy conditions in a modified Brans-Dicke theory. Gen. Relativ. Grav. 2022, 54, 64. [Google Scholar] [CrossRef]
- Ghaffari, S. Kaniadakis holographic dark energy in Brans–Dicke cosmology. Mod. Phys. Lett. A 2022, 37, 23. [Google Scholar] [CrossRef]
- Tsallis, C. Black Hole Entropy: A Closer Look. Entropy 2020, 22, 17. [Google Scholar] [CrossRef] [Green Version]
- Moradpour, H.; Moosavi, S.A.; Lobo, I.P.; Graça, J.P.M.; Jawad, A.; Salako, I.G. Thermodynamic approach to holographic dark energy and the Rényi entropy. Eur. Phys. J. C 2018, 78, 829. [Google Scholar] [CrossRef]
- Saridakis, E.N. Barrow holographic dark energy. Phys. Rev. D 2020, 102, 123525. [Google Scholar] [CrossRef]
- Susskind, L. The world as a hologram. J. Math. Phys. D 1995, 36, 6377. [Google Scholar] [CrossRef] [Green Version]
- Horava, P.; Minic, D. Probable Values of the Cosmological Constant in a Holographic Theory. Phys. Rev. Lett. 2000, 85, 1610. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S. Holography Stabilizes the Vacuum Energy. Phys. Rev. Lett. 2002, 89, 081301. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Li, M. Holographic Dark Energy. Phys. Rept. 2017, 696, 1. [Google Scholar] [CrossRef] [Green Version]
- Horvat, R. Holography and a variable cosmological constant. Phys. Rev. D 2004, 70, 087301. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.G.; Li, M. The Holographic Dark Energy in a Non-flat Universe. JCAP 2004, 0408, 013. [Google Scholar] [CrossRef]
- Pavon, D.; Zimdahl, W. Holographic dark energy and cosmic coincidence. Phys. Lett. B 2005, 628, 206. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, J.; Gashti, S.N.; Azizi, T. Tsallis and Kaniadakis holographic dark energy with Complex Quintessence theory in Brans-Dicke cosmology. arXiv 2022, arXiv:2203.04375. [Google Scholar]
- Moradpour, H.; Ziaie, A.H.; Zangeneh, M.K. Generalized entropies and corresponding holographic dark energy models. Eur. Phys. J. C 2020, 80, 732. [Google Scholar] [CrossRef]
- Drepanou, N.; Lymperis, A.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis holographic dark energy and cosmology. Eur. Phys. J. C 2022, 82, 449. [Google Scholar] [CrossRef]
- Banerjee, N.; Pavon, D. Holographic dark energy in Brans-Dicke theory. Phys. Lett. B 2007, 647, 477. [Google Scholar] [CrossRef] [Green Version]
- Jawad, A.; Sultan, A.M. Cosmic Consequences of Kaniadakis and Generalized Tsallis Holographic Dark Energy Models in the Fractal Universe. Adv. High Energy Phys. 2021, 2021, 5519028. [Google Scholar] [CrossRef]
- Sharma, U.K.; Dubey, V.C.; Ziaie, A.H.; Moradpour, H. Kaniadakis Holographic Dark Energy in non-flat Universe. Int. J. Mod. Phys. D 2022, 31, 2250013. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Marto, J.; Moniz, P.V. Kinetic inflation in deformed phase space Brans-Dicke cosmology. Phys. Dark Universe 2019, 24, 100269. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M.; Moniz, P.V. Gravity-Driven Acceleration and Kinetic Inflation in Noncommutative Brans-Dicke Setting. Odessa Astron. Pub. 2016, 29, 19. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N.; Pavon, D. A Quintessence Scalar Field in Brans-Dicke Theory. Class. Quant. Grav. 2001, 18, 593. [Google Scholar] [CrossRef]
- Das, S.; Banerjee, N. Brans-Dicke Scalar Field as a Chameleon. Phys. Rev. D 2008, 78, 043512. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Pasqua, A.; Khurshudyan, M. New holographic reconstruction of scalar-field dark-energy models in the framework of chameleon Brans–Dicke cosmology. Eur. Phys. J. C 2014, 74, 3080. [Google Scholar] [CrossRef] [Green Version]
- Bahcall, N.A. Dark matter universe. Proc. Natl. Acad. Sci. USA 2015, 112, 12243. [Google Scholar] [CrossRef] [Green Version]
- Bolotin, Y.L.; Kostenko, A.; Lemets, O.A.; Yerokhin, D.A. Cosmological Evolution With Interaction Between Dark Energy And Dark Matter. Int. J. Geom. Methos. Mod. Phys. 2015, 24, 1530007. [Google Scholar] [CrossRef] [Green Version]
- Bhmer, C.G.; Caldera-Cabral, G.; Lazkoz, R.; Maartens, R. Dynamics of dark energy with a coupling to dark matter. Phys. Rev. D 2008, 78, 023505. [Google Scholar] [CrossRef] [Green Version]
- Quartin, M.; Calvao, M.O.; Joras, S.E.; Reis, R.R.R.; Waga, I. Dark Interactions and Cosmological Fine-Tuning. J. Cosmol. Astropart. Phys. 2008, 805, 007. [Google Scholar] [CrossRef]
- Caldera-Cabral, G.; Maartens, R.; Urena-Lopez, L.A. Dynamics of interacting dark energy. Phys. Rev. D 2009, 79, 063518. [Google Scholar] [CrossRef] [Green Version]
- Chimento, L.P.; Forte, M.; Kremer, G.M. Cosmological model with interactions in the dark sector. Gen. Rel. Grav. 2009, 41, 1125. [Google Scholar] [CrossRef] [Green Version]
- Chimento, L.P. Linear and nonlinear interactions in the dark sector. Phys. Rev. D 2010, 81, 043525. [Google Scholar] [CrossRef] [Green Version]
- Legazpi, M.B.G.; Hernandez, D.; Honorez, L.L.; Requejo, O.M.; Stefano, R. Dark coupling. J. Cosmol. Astropart. Phys. 2009, 0907, 034. [Google Scholar]
- Legazpi, M.B.G.; Honorez, L.L.; Requejo, O.M.; Stefano, R. Dark coupling and gauge invariance. J. Cosmol. Astropart. Phys. 2010, 1011, 044. [Google Scholar]
- Wang, B.; Abdalla, E.; Barandela, F.A.; Pavon, D. Dark matter and dark energy interactions: Theoretical challenges, cosmological implications and observational signatures. Rept. Prog. Phys. 2016, 79, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ade, P.A.R.; Aghanim, N.; Akrami, Y.; Aluri, P.K.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Bay, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar]
- Blandford, R.D. Cosmokinetics. ASP Conf. Ser. 2004, 339, 27. [Google Scholar]
- Rapetti, D.; Allen, S.W.; Amin, M.A.; Blandford, R.D. A kinematical approach to dark energy studies. Mon. Not. R. Astron. Soc. 2007, 375, 1510. [Google Scholar] [CrossRef]
- Mamon, A.A.; Bamba, K. Observational constraints on the jerk parameter with the data of the Hubble parameter. Eur. Phys. J. C 2018, 78, 862. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Cao, M.L. Unified first law and the thermodynamics of the apparent horizon in the FRW universe. Phys. Rev. D 2007, 75, 064008. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Abdalla, E.; Su, R.K. Relating Friedmann equation to Cardy formula in universes with cosmological constant. Phys. Lett. B 2001, 503, 394. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R. Cosmology and the S matrix. Phys. Rev. D 2005, 71, 064024. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, G.; Pavon, D. Dark energy and the generalized second law. Phys. Lett. B 2006, 633, 420. [Google Scholar] [CrossRef]
- Yang, W.Q.; Wu, Y.B.; Song, L.M.; Su, Y.Y.; Li, J.; Zhang, D.D.; Wang, X.G. Reconstruction of new holographic scalar field models of dark energy in brans–dicke universe. Mod. Phys. Lett. A 2011, 26, 191. [Google Scholar] [CrossRef] [Green Version]
- Goswami, G.K. Cosmological parameters for spatially flat dust filled Universe in Brans-Dicke theory. Astron. Astrophys. 2017, 17, 27. [Google Scholar] [CrossRef]
- Capozziello, S.; Ruchika; Sen, A.A. Model independent constraints on dark energy evolution from low-redshift observations. Mon. Not. R. Astron. Soc. 2019, 484, 4484. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sania; Azhar, N.; Rani, S.; Jawad, A. Cosmic and Thermodynamic Consequences of Kaniadakis Holographic Dark Energy in Brans–Dicke Gravity. Entropy 2023, 25, 576. https://doi.org/10.3390/e25040576
Sania, Azhar N, Rani S, Jawad A. Cosmic and Thermodynamic Consequences of Kaniadakis Holographic Dark Energy in Brans–Dicke Gravity. Entropy. 2023; 25(4):576. https://doi.org/10.3390/e25040576
Chicago/Turabian StyleSania, Nadeem Azhar, Shamaila Rani, and Abdul Jawad. 2023. "Cosmic and Thermodynamic Consequences of Kaniadakis Holographic Dark Energy in Brans–Dicke Gravity" Entropy 25, no. 4: 576. https://doi.org/10.3390/e25040576
APA StyleSania, Azhar, N., Rani, S., & Jawad, A. (2023). Cosmic and Thermodynamic Consequences of Kaniadakis Holographic Dark Energy in Brans–Dicke Gravity. Entropy, 25(4), 576. https://doi.org/10.3390/e25040576