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Abstract: The study of quantum resources in the relativistic limit has attracted attention over the
last couple of decades, mostly due to the observation that the spin-momentum entanglement is not
Lorentz covariant. In this work, we take the investigations of relativistic quantum information a step
further, bringing the foundational question of realism to the discussion. In particular, we examine
whether Lorentz boosts can affect quantum irrealism—an instance related to the violations imposed
by quantum mechanics onto a certain notion of realism. To this end, we adopt as a theoretical
platform a model of a relativistic particle traveling through a Mach–Zehnder interferometer. We then
compare the quantum irrealism assessed from two different inertial frames in relative motion. In
consonance with recent findings in the context of quantum reference frames, our results suggest that
the notion of physical realism is not absolute.
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1. Introduction

Denying action at a distance and superdeterminism falsifies realism—the hypothesis
that physical quantities take on definite values prior to observation. This is an important
conclusion emerging from a long-lasting debate initiated by Einstein, Podolsky, and Rosen
(EPR) through their famous 1935 paper [1]. By rejecting the possibility that two space-like
separated particles may influence each other (the locality hypothesis), EPR conceived
a scenario whereby incompatible observables should be simultaneous elements of the
physical reality. Unable to predict definite values for such observables, quantum mechanics
was then claimed to be an incomplete theory. This position was soon confronted by Bohr [2],
who resorted to the complementarity principle to argue that incompatible observables could
only become elements of reality through mutually exclusive experimental arrangements,
never simultaneously. Adopting a different perspective, Bohm proposes in 1952 to restore
realism by the introduction of deterministic trajectories [3,4], with the caveat of accepting
nonlocality. Years later, Bell showed that any eventual hidden-variable theory intended
to replicate the predictions of quantum mechanics would be necessarily nonlocal [5].
Numerous loophole-free experiments [6–11] have now confirmed that nature is at odd with
Bell’s hypothesis of local causality (sometimes called local realism hypothesis [8,11]).

Long gone the time of Bell and EPR, foundational questions regarding realism still
provoke interest in the quantum research community. In search for a notion of realism
fundamentally disconnected from any locality hypothesis, Bilobran and Angelo introduced
both a criterion of realism and a quantifier of quantum irrealism (the antithesis of real-
ism) [12]. Their framework has recently been experimentally tested in a nuclear magnetic
resonance platform and Bohr’s idea that one cannot find simultaneous elements of reality
within the same setting has been confirmed [13]. In a slightly different vein but still related
to realism, the Wigner friend thought experiment [14], arguably the most stripped-down
statement of the measurement problem, has been revisited. Frauchiger and Renner showed
that quantum mechanics cannot consistently describe the use of itself [15]. Brukner devised
a no-go theorem regarding observer-independent facts [16]. A different no-go theorem
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due to Bong et al. showed that nature cannot simultaneously satisfy the hypothesis of
no-superdeterminism, locality, and “absoluteness of observed events” [17].

An essential ingredient for the majority of the aforementioned works is quantum
entanglement [18], a key element distinguishing quantum mechanics from the classical
worldview. It has been framed as a quantum resource [19], responsible for the success of
tasks such as cryptography [20] and teleportation [21,22]. Given the ubiquitous relevance of
this resource in most quantum mechanical systems, the study of entanglement has gained
traction among areas as diverse as cosmology [23], quantum biology [24], and notably,
special relativity [25]. In this latter realm, one of the most surprising and impactful results
was that a Lorentz boost (i.e., a Lorentz transformation onto a moving frame) may alter the
entanglement between the spin and momentum of a single relativistic particle. This was
first discussed in a seminal paper by Peres et al. [26], which sparked a multitude of related
developments exploring and further confirming that result, not only in the single-particle
case [27–35] but also for two or more particles [36–45]. As a natural sequel to these works,
some discussions emerged concerning the boost effects on Bell inequality violations [46–50].
Within this context, many alternative propositions came for an adequate relativistic spin
observable [47,51–53] and relativistic reduced spin density matrix [32,54]. At the heart of
the strange entangling effects of the boost is the Wigner rotation [55–57]. It is a well-known
(albeit awkward) consequence of special relativity that the composition of two non-collinear
Lorentz boosts is equivalent to a boost plus a rotation (the Wigner rotation). This effect
plays a fundamental role in the transformation law of single-particle states.

Now, since entanglement and quantum coherence are (frame-dependent) quantum
resources forbidding one to support (local) realism, it is natural to ask whether existing
realistic models respect Lorentz covariance. Despite the aforementioned advancements
in relativistic quantum mechanics, the understanding of this specific aspect has remained
elusive. Recently, within the framework of quantum reference frames [58], it was shown
that the elements of reality are not covariant under Galilei transformations [59]. The present
work aims to extend this line of inquiry to the domain of special relativity, by addressing
the question of whether elements of reality are absolute notions under Lorentz boosts.
To this end, we will employ as a theoretical platform of investigation the Mach–Zehnder
interferometer (MZI). By use of the realism framework proposed by Bilobran and Angelo,
we analyze how the irreality (quantum indefiniteness) of spin is affected by a Lorentz
boost as a particle travels an MZI. In addition, we investigate the role of spin-momentum
entanglement in the breakdown of realism. We find, in agreement with the results reported
for the context of Galilei relativity [59], that physical realism is not frame-independent.
Crucial for deepening the understanding of foundational aspects in the interface between
quantum mechanics and special relativity, our results show that Lorentz-boosted observers
do not generally agree on the adequacy of realistic interpretations to base their experiences.

2. Methods

In what follows, we briefly review the theoretical tools employed in this work.

2.1. Quantum Irrealism

In 2015, a criterion of physical realism and a quantifier of its violation was put for-
ward [12] which have seen fruitful applications in several (theoretical and experimental)
foundational investigations [60–66]. The basic premise of the framework is that in a realistic
theory, the role of measurement is merely revealing an already installed element of reality—a
well-defined value of which the observer was previously ignorant. It then follows that if
the measurement outcome is kept secret, then the probing has been entirely innocuous
and no change in the state of knowledge can take place whatsoever. To formalize this idea,
consider a preparation ρ on the space HA ⊗HB , where HB is possibly multipartite. If a
discrete spectrum observable A = ∑i ai Ai acting onHA with projectors Ai is measured but
the measurement outcome is not revealed, then the post-measurement state is given by the
following CPTP unital map:



Entropy 2023, 25, 603 3 of 12

ΦA(ρ) = ∑
i
(Ai ⊗ 1B) ρ (Ai ⊗ 1B). (1)

With that, the authors of Ref. [12] propose that the observable A will be an element of
reality when their criterion of realism,

ΦA(ρ) = ρ, (2)

is satisfied by a preparation ρ. The aforementioned premise materializes through the above
equation in the sense that the measurement probability p(bj) = Tr(Bjρ) for any observable
B = ∑i bjBj, given a preparation satisfying Equation (2), is never altered when the element
of reality A is non-selectively measured, that is, Tr[BjΦA(ρ)] = Tr(Bjρ). This is taken as the
defining feature of a realistic theory (of which, classical-statistical mechanics is an example).

The authors of Ref. [12] then introduced the so-called irreality

IA(ρ) := S
(
ρ||ΦA(ρ)

)
= S

(
ΦA(ρ)

)
− S(ρ), (3)

a measure of “how far” A is from being an element of reality. In other words, IA(ρ) mea-
sures the degree to which the hypothesis of A-realism, as given by Equation (2), is violated
by a preparation ρ. Here, S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy, measured in
bits, and S(ρ||σ) = Tr[ρ(log2 ρ− log2 σ)] is the quantum relative entropy. It readily follows
from the properties of the relative entropy that IA(ρ) is nonnegative and vanishes if the
preparation is an A-reality state (i.e., a state satisfying Equation (2)). In addition, irreality
has recently been formally framed as a quantum resource [67]. Furthermore, noteworthy is
the fact that the quantifier (3) has been assigned an axiomatic perspective and has received
different interpretations in the literature (see [66] and references therein).

Seen as a bipartite generalization of the well-known dephasing map from the resource
theory of coherence [68], ΦA(ρ) has the effect of removing not only A-coherence from ρ, but
also quantum correlations between the two degrees of freedom represented by the spaces
HA andHB . In effect, it can be shown that the irreality admits the following decomposition:

IA(ρ) = CA(ρA) + DA(ρ), (4)

where DA(ρ) = IA:B(ρ)− IA:B(ΦA(ρ)) is the one way quantum discord of the measurement
A and CA(ρA) = S

(
ΦA(ρA)

)
− S(ρA) is the relative entropy of A-coherence [68]. The

decomposition above is the fundamental inspiration for the present investigation, for it
tells us that quantum correlations violate realism. Since entanglement is known to vary
upon Lorentz boots, it is natural to ask how realism is violated in different reference frames.

2.2. Lorentz Boosts and Wigner Rotations

We now recap the essential elements of the relativistic quantum mechanics of single-
particle systems, in a review mostly based upon [69]. The usual description of single-particle
states in relativistic quantum mechanics relies on eigenstates |p, σ〉 of the four-momentum
operator and some spin component, which we take to be Sz. An arbitrary four-momentum
p can be related to the rest four-momentum k = (mc, 0, 0, 0) through a Lorentz boost L(p),
such that p = L(p)k, or in terms of quantum states, |p, σ〉 = U

(
L(p)

)
|k, σ〉, where U

(
L(p)

)
is the unitary representation of L(p). The transformation of these states under an arbitrary
Lorentz boost Λ is given by

U(Λ) |p, σ〉 = U(Λ)U
(

L(p)
)
|k, σ〉 . (5)

It is a well-known consequence of special relativity that the composition of two non-
collinear boosts is equal to a single boost plus a rotation R—the so-called Wigner rotation.
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Thus, if the direction of the boost Λ is not the same as the particle’s three-momentum p,
then it follows that ΛL(p) = L(Λp) R(Ω), whose unitary representation reads

U(Λ) |p, σ〉 = U
(

L(Λp)
)

U
(

R(Ω)
)
|k, σ〉

= U(R(Ω)) |Λp, σ〉
= ∑

σ′
Dσσ′ |Λp, σ′〉 , (6)

where D ≡ U(R(Ω)) is the unitary representation of the Wigner rotation. For a spin − 1
2

particle, this reduces to the usual rotation matrix of a qubit:

D = e−i n̂·σ Ω/2 = cos
(

Ω
2

)
− i sin

(
Ω
2

)
n̂ · σ. (7)

The rotation axis n̂ and the angle Ω are well documented in the literature surrounding the
Wigner rotation; the former is always mutually orthogonal to the boosts being composed,
which in this case means

n̂ =
v× p
||v× p|| , (8)

with v being the velocity associated with the boost Λ. As for the angle, in the particular
case of a boost perpendicular to the particle’s movement, the following formula holds:

cos Ω =
(γΛ + 1)(γp + 1)

γΛγp + 1
− 1, (9)

where γΛ and γp are the Lorentz factors for the boosts Λ and L(p), respectively. For the
boost L(p) from the particle’s rest frame, one has γp = Ep/mc2, with Ep =

√
p2c2 + m2c4,

such that equation above can be further simplified to

cos Ω =
Ep + γΛmc2

γΛEp + mc2 . (10)

This means that Ω is a monotonically increasing function of the boost speed β ≡ ||v||c
and of the momentum magnitude ||p||. With Equation (6) and the subsequent formulas,
any single-particle state can be transformed under U(Λ) to a state as seen by the boosted
frame. (The state transformation employed here implies that we are using the active
picture, as opposed to the passive picture in which the observables are transformed via
A→ U†(Λ) A U(Λ) [59,70]).

For a simple example of how the transformation (6) may affect entanglement between
spin and momentum, consider the state |ψ〉 = (|p1, σ〉+ |p2, σ〉)/

√
2 of a single relativistic

fermion. This state is obviously separable. Equation (6) tells us that under a generic Lorentz
boost the state transforms to |ψ′〉 = (|Λp1, σ1〉+ |Λp2, σ2〉)/

√
2, where |σ1〉 ≡ D1 |σ〉 and

|σ2〉 ≡ D2 |σ〉 are spin states that underwent different Wigner rotations (Dj is associated
with momentum pj, with j ∈ {1, 2}). Thus, a state which is initially separable in a given
reference frame may be seen as having spin-momentum entanglement in a different inertial
frame. Although it is still debatable whether and how such entanglement can be experi-
mentally validated [30], the theoretical position commonly adopted in the literature is that
this type of entanglement is meaningful.

3. Results

We now consider a relativistic particle passing a Mach–Zehnder interferometer (MZI)
while observed from two distinct reference frames in relative motion. Specifically, we want
to investigate whether physical reality is absolute, that is, if it manifests itself in the same
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way in all Lorentz frames. To this end, we compute the irreality, as defined in the Methods
section, for both spin and momentum, in the two frames of reference.

The whole setup is depicted in Figure 1. The first beam-splitter (BS1) creates a super-
position of paths for the incoming particle beam. Then, two mirrors (M) redirect the paths
aiming at closing a circuit, while the second beam-splitter (BS2) recombines the two super-
posed beams, making them interfere. Two detectors (D0,1) are placed at the two output
ports of the second beam-splitter, and the probability of detection in each of them depends
on the relative phase ξ (a controllable parameter) between the two superposed beams.

Figure 1. The Mach–Zehnder interferometer (MZI): an incoming electron reaches a beam-splitter (BS1)
which puts it into a superposition of paths. Upon reflection in the mirrors (M) and recombination in
the second beam-splitter (BS2), the probability of detection in either detectors D0 or D1 is dictated by
the relative phase ξ. Furthermore, depicted is the direction of the boost Λ.

To make the boost’s entangling effects explicit, we shall cast the description of the
MZI in terms of four-momentum eigenstates. We assume that the MZI is aligned with
the x and y axes of the lab frame, so that while propagating in the horizontal arms the
particle’s four-momentum is pH =

(
Ep/c, p, 0, 0

)
, while in the vertical arms, it is given by

pV =
(
Ep/c, 0, p, 0

)
. The trajectory over the MZI of an incoming horizontal beam, up until

before the second beam-splitter, is formally described by the sequence of maps

|pH〉
BS1−→ |pH〉+ i |pV〉√

2
M−→ |pH〉 − i |pV〉√

2
ξ−→ |pH〉 − ieiξ |pV〉√

2
, (11)

with the mirror action being given by |pV(H)〉
M−→ i |pH(V)〉. The second beam-splitter then

creates interference between the two paths, resulting in the final state

|ψ f 〉 =
[
cos
(

ξ
2

)
|pH〉+ sin

(
ξ
2

)
|pV〉

]
|Φ〉 , (12)

where the phase ξ controls the probability of observing the particle at each detector. We
denote the particle’s spin state by |Φ〉, and take it to be an eigenstate of σn̂ = σ · n̂ for an
arbitrary direction defined by the unit vector n̂ = (sin θ cos φ, sin θ sin φ, cos θ). The MZI is
seen to be completely insensitive to spin, i.e., the state remains |Φ〉 for the entire trajectory,
which also means that σn̂ is always an element of reality in the lab frame.

3.1. MZI from a Boosted Frame

We now move on to consider the same experiment viewed from a reference frame
S ′ moving with velocity v = βcx̂ relative to the lab frame. The horizontal and vertical
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momenta seen from this frame are πH ≡ ΛpH and πV ≡ ΛpV , which, for a boost in the x
direction, are given by

πH = (π0
H , πx

H , π
y
H , πz

H) =
γ
c
(
Ep − βcp, pc− βEp, 0, 0

)
,

πV = (π0
V , πx

V , π
y
V , πz

V) =
γ
c
(
Ep,−βEp, cp/γ, 0

)
,

(13)

where γ = (1− β2)−1/2. The correspondence between the states on each frame is then
simply obtained through Equation (6):

|pH〉 |Φ〉
Λ−→ |πH〉 |Φ〉 ,

|pV〉 |Φ〉
Λ−→ |πV〉 |ΦR〉 ,

(14)

where |ΦR〉 ≡ Rẑ(Ω) |Φ〉 is the Wigner-rotated spin state, Rẑ(Ω) denotes a rotation around
the axis v̂× p̂ = ẑ, and

|Φ〉 = cos
(

θ
2

)
|0〉+ eiφ sin

(
θ
2

)
|1〉 ,

|ΦR〉 = cos
(

θ
2

)
|0〉+ ei(φ+Ω) sin

(
θ
2

)
|1〉 .

(15)

Notice that no Wigner rotation occurs in the horizontal arms of the MZI because the boost
is parallel to the momentum in that case, so the spin state remains unaltered. The rotation
around the z axis adds a relative phase Ω (the Wigner rotation angle) to the spin state.
Applying the transformations (14) to the state (12) yields the transformed output state

|ψ′f 〉 = U(Λ) |ψ f 〉 = cos
(

ξ
2

)
|πH〉 |Φ〉+ sin

(
ξ
2

)
|πV〉 |ΦR〉 . (16)

The immediate consequence of the transformation law (14), which can be promptly no-
ticed in the state above, is that whenever there is a superposition of different momenta,
which occurs when ξ 6= nπ for n ∈ N, there will be entanglement between spin and mo-
mentum. The amount E(ψ′f ) of spin-momentum entanglement encoded in the pure state
ψ′f ≡ |ψ

′
f 〉〈ψ

′
f | can be computed through the von Neumann entropy of the spin reduced

state ρ′S = cos2(ξ/2) |Φ〉〈Φ|+ sin2(ξ/2) |ΦR〉〈ΦR|. The result reads

E(ψ′f ) = S(ρ′S) = h
(

1
2 + 1

8

√
2λ
)

, (17)

where h(u) ≡ −u log2 u− (1− u) log2(1− u) is the binary entropy, for any real parameter

u ∈ [0, 1], and λ ≡ 7 + cos Ω + 2
[
cos(2ξ) + 2 cos(2θ) sin2 ξ

]
sin2

(
Ω
2

)
. Figure 2 shows

E(ψ′f ) as a function of the boost velocity β (which controls the angle Ω), the spin polar
angle θ, and the phase ξ. The values ξ = 0 and ξ = π, respectively, imply 100% of detection
rate on detectors D0 and D1, and no momentum superposition in the output state. Hence,
no entanglement is generated in these cases. Another less obvious instance in which there
is no entanglement is when θ ∈ {0, π} (i.e., when the spin state is either |0〉 or |1〉). That is
because the Wigner rotation is around the z-axis, so it leaves σz eigenstates invariant. The
values ξ = π

2 and θ = π
2 maximize the entanglement effect. For these values, the entropy

of entanglement reduces to E(ψ′f ) = h
[
cos2(Ω/4)

]
, which increases monotonically with

Ω. These results just check the widely-spread mantra that, provided one can measure spin
separately from momentum, then the spin-momentum entanglement will be found to be a
boost-dependent resource.
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Figure 2. Entropy of entanglement E(ψ′f ) between spin and momentum for the output state of
the MZI in the boosted reference frame S ′. (a) E(ψ′f ) is plotted as a function of the phase ξ and
boost velocity β, while the spin state is fixed in the equator of the Bloch sphere (θ = π/2). (b) The
phase ξ is held constant (ξ = π/2) and E(ψ′f ) is plotted as function of θ and β. Entanglement is
shown to typically increase with the boost velocity, except for very specific geometric configurations.
Throughout this paper, all numerical simulations were made with γp = 5.

3.2. Boost Effects on Spin Irreality

We now address the fundamental question of whether physical reality, as defined
by Bilobran and Angelo’s work [12], is absolute or relative. For this, we will employ the
criterion of realism (2) and the irreality quantifier (3) to investigate the ontological status of
spin and momentum for a particle traveling through the MZI. The first thing to notice is
that the spin component σn̂ = n̂ · σ is always an element of reality in the lab frame. That is,
when β = 0, we have Φσn̂(ρ) = ρ and then

Iσn̂(ψ f ) = 0, (18)

for ψ f ≡ |ψ f 〉〈ψ f |. (This is true for the output state as well as for all the intermediate states
along the MZI). For the output state in the moving frame, ψ′f , the irreality of σn̂ increases
with the Wigner rotation angle. In terms of binary entropy, we have

Iσn̂(ψ
′
f ) = h

[
sin2θ sin2

(
ξ
2

)
sin2
(

Ω
2

)]
. (19)

Figure 3 shows the plot of this expression for the same regimes of parameters we used
for entanglement in Figure 2. The dependence on θ shows the same behavior observed
for that case: σz eigenstates are unaffected by the Wigner rotation due to the specific
geometric configuration considered here. The dependence on ξ is more interesting: while
entanglement is maximized for ξ = π/2 and is zero for ξ = π, the irreality of σn̂ is
maximal for ξ = π, when only the vertical detector D1 is reached with probability 1.
Since no correlations are present, all of the irreality, in this case, is due to σn̂-coherence
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being generated by the rotation. In fact, for the relative entropy of coherence Cσn̂(ρ
′
S) =

S
(
Φn̂(ρ

′
S)
)
− S(ρ′S), the term S

(
Φn̂(ρ

′
S)
)

evaluates to the same expression (19), such that
when there is no entanglement, that is, E(ψ′f ) = S(ρ′S) = 0, the spin irreality is fully
attributed to coherence. This is further confirmed by computing Dσn̂(ψ

′
f ) = Iσn̂(ψ

′
f )−

Cσn̂(ρ
′
S), the one-way quantum discord associated with σn̂, and verifying that it is exactly

equal to entanglement [Equation (17)]. Thus, in this particular case of a pure state, the
irreality of σn̂ is the sum of entanglement and σn̂-coherence, each of these portions being
affected differently by the Wigner rotation. This result shows that quantum irreality may
increase with a Lorentz boost even in scenarios where entanglement remains unaffected.

Figure 3. Irreality Iσn̂ (ψ
′
f ) of σn̂ for the output state ψ′f of the MZI, as seen by the boosted frame S ′.

(a) The MZI phase is held constant, ξ = π/2, and Iσn̂ is plotted as function of the boost velocity β

and the spin polar angle θ. (b) The spin polar angle is held constant, θ = π/2, and Iσn̂ (ρ
′) is plotted

as function of the MZI phase ξ. Irreality is shown to be maximal when ξ = π, a value for which there
is no entanglement. This is due to σn̂-coherence being generated by the Wigner rotation.

3.3. Boost Effects on Momentum Irreality

We may also assess the reality status of the momentum by assigning a Hilbert space
to each of its components. Rewriting state (12) in a more complete notation, which makes
explicit each component of the four-momentum, we have

|ψ f 〉 =
[
cos
(

ξ
2

)∣∣∣ Ep
c , p, 0, 0

〉
+ sin

(
ξ
2

)∣∣∣ Ep
c , 0, p, 0

〉]
|Φ〉 . (20)

We see that the energy and the z component are the same in both branches of the superpo-
sition, meaning they can be factorized and essentially ignored. The x and y components,
on the other hand, are entangled with each other. Within the discretized framework we
have been using, the only accessible states for the x and y components are |0〉x(y) and
|p〉x(y), meaning that each component behaves as a qubit. The entanglement between
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these components reads E(ψ f ) = h
[
cos2(ξ/2)

]
, which is zero when ξ ∈ {0, π} and

reaches the maximum value E(ψ f ) = 1 when ξ = π/2. Direct calculations show that
the total irreality of each momentum component behaves in the same manner, that is,
IPx (ψ f ) = IPy(ψ f ) = h

[
cos2(ξ/2)

]
. Hence, both components turn out to be elements of

reality only when ξ ∈ {0, π}. As for the moving frame S ′, the transformed state (12) can
also be written in terms of the momentum components with the aid of Equation (13):

|ψ′f 〉 = cos
(

ξ
2

)
|π0

H , πx
H , 0, 0〉 |Φ〉+ sin

(
ξ
2

)
|π0

V , πx
V , π

y
V , 0〉 |ΦR〉 .

Here we notice something unexpected: while the z component remains unaffected by the
boost, the zero-component (energy) is not the same for πH and πV , showing that a Lorentz
boost may also entangle a particle’s energy with its three-momentum, an effect which is
rarely discussed in the literature of relativistic quantum information.

The irreality of Px and Py are both found to boost independent and equal to the same
value as in the lab frame: IPx (ψ

′
f ) = IPy(ψ

′
f ) = h

[
cos2(ξ/2)

]
. Likewise, the entanglement

between one of these momentum components and the rest of the degrees of freedom is
also boosted independent and equal to E(ψ′f ) = S(ρ′Px

) = S(ρ′Py
) = h

[
cos2(ξ/2)

]
. Energy—

an element of reality in the lab frame—turns out to be an entangled degree of freedom
violating reality in the moving frame, with an equal dependence of its irreality on ξ as the
components Px and Py. We notice that the irreality of all components of the four-momentum
depends solely on the MZI phase ξ, that is, both reference frames agree that the momentum
ontology is dictated solely by intrinsic characteristics of the interferometer. Now, there is,
of course, no reason for one to believe that such absoluteness of the momentum irreality
will manifest in more general contexts.

4. Discussion

In this work, we have taken the investigations of relativistic quantum information
a step further by looking into how quantum irreality, as defined by Ref. [12], is affected
by a Lorentz boost. In particular, we have verified that the spin irreality may increase
with the boost velocity, even in situations where the entanglement is not affected by the
transformation. This is because a Wigner rotation may affect spin coherence, even if
there is no momentum superposition (and therefore no entanglement). Our approach
also outlined a peculiar effect, often overlooked in the relativistic quantum information
literature, namely, that the boost may also create entanglement between a particle’s energy
and its other degrees of freedom. On the other hand, as far as momentum is concerned,
we have shown, via an explicit case study, that irreality can be invariant under certain
specific boosts.

All in all, our results show that quantum irrealism is not an absolute notion under
Lorentz transformations. More specifically, this means that, as far as Bilobran and Angelo’s
model of realism is concerned, observers in relative motion will generally disagree on
their conclusions about the physical reality of the observables to which they have access.
This viewpoint agrees with the findings of a recent study conducted within the context of
Galilei transformations between quantum reference frames [59]. Nevertheless, it should be
remarked that, under critical assessment, the relativity of physical reality cannot be decreed
before the advance of the research toward the measurement of the relativistic particle’s spin.
Most of the analyses realized so far admit that the messages derived from the formalism
are correct, but it seems fair to say that we still have not reached a consensus about what
the relativistic spin actually is [47,51–53]. This defines an interesting research program.

Besides contributing to deepening foundational perspectives in the interface between
quantum mechanics and special relativity, we hope that our results will aid in the under-
standing of the relativity of quantum resources, which may become increasingly important
the further we advance with quantum technologies.
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