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Abstract: Greece exhibits the highest seismic activity in Europe, manifested in intense seismicity
with large magnitude events and frequent earthquake swarms. In the present work, we analyzed the
spatiotemporal properties of recent earthquake swarms that occurred in the broader area of Greece
using the Non-Extensive Statistical Physics (NESP) framework, which appears suitable for studying
complex systems. The behavior of complex systems, where multifractality and strong correlations
among the elements of the system exist, as in tectonic and volcanic environments, can adequately be
described by Tsallis entropy (Sq), introducing the Q-exponential function and the entropic parameter
q that expresses the degree of non-additivity of the system. Herein, we focus the analysis on the 2007
Trichonis Lake, the 2016 Western Crete, the 2021–2022 Nisyros, the 2021–2022 Thiva and the 2022
Pagasetic Gulf earthquake swarms. Using the seismicity catalogs for each swarm, we investigate the
inter-event time (T) and distance (D) distributions with the Q-exponential function, providing the qT

and qD entropic parameters. The results show that qT varies from 1.44 to 1.58, whereas qD ranges
from 0.46 to 0.75 for the inter-event time and distance distributions, respectively. Furthermore, we
describe the frequency–magnitude distributions with the Gutenberg–Richter scaling relation and
the fragment–asperity model of earthquake interactions derived within the NESP framework. The
results of the analysis indicate that the statistical properties of earthquake swarms can be successfully
reproduced by means of NESP and confirm the complexity and non-additivity of the spatiotemporal
evolution of seismicity. Finally, the superstatistics approach, which is closely connected to NESP
and is based on a superposition of ordinary local equilibrium statistical mechanics, is further used to
discuss the temporal patterns of the earthquake evolution during the swarms.

Keywords: Tsallis entropy; complexity; Non-Extensive Statistical Physics; earthquake swarms; Greece

1. Introduction

The clustering of earthquakes in both time and space without a prominent large-
magnitude earthquake is commonly referred to as an earthquake swarm. Swarms can last
for several days, weeks or months, registering many earthquakes within a small volume.
According to [1], when the stress gradually increases for a variety of reasons, earthquake
swarms occur at pre-existing cracked regions. The local fractures tend to break and cause
small-magnitude earthquakes, instead of generating a strong fracture or rupture, inducing
a larger-magnitude event. Numerous studies [2–9] suggest that earthquake swarms are
either triggered by dynamic stress transfer effects caused by previous strong events, or
by aseismic factors, such as aseismic creep and the intrusion of fluids into fracture zones
linked with volcanic activity or pore fluid pressure diffusion. Swarm earthquakes have
small magnitudes in the range of M 1.0 to M 5.0 and rarely produce earthquakes with large
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magnitudes, i.e., M ≥ 6 [10]. In these cases, the region releases strain energy instantly with
these small magnitude earthquakes, rather than being under stress for a long time and
preparing for a large magnitude earthquake.

Greece is located on a tectonically active plate boundary at the convergence of the
Eurasian and African lithospheric plates south of Crete, forming the Hellenic arc (Figure 1).
The Hellenic arc is formed by the outer sedimentary arc and the inner volcanic arc (Sousaki,
Methana, Milos, Santorini and Nisyros). The active stress field in Greece is complex, as
it generally switches from extension to compression from north to south. Greece and the
adjacent areas (the Aegean Sea and western Turkey) are tectonically very active, presenting
high seismic activity [11], the highest in Europe, while it ranks highly (sixth) on a global
scale [12]. For this reason, it often hosts earthquakes of large magnitude, whilst a moderate
or small magnitude earthquake is felt every 2–3 days on average. Most of these earthquakes
are shallow, with some events being devastating for the human environment or for life
losses (e.g., the 1881 Chios, 1894 Atalanti, 1953 Cephalonia, 1999 Athens, 2017 Kos, 2020
Samos earthquakes, etc.) [13].
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Figure 1. Geographical distribution of the five studied earthquake swarms in Greece. In each square,
the stars represent the strong events that have taken place in the area, after [14]. The line with
triangles (in black) represents the Hellenic Arc, which is a subduction zone of about 1000 km, where
the African lithosphere is subducting under the Aegean lithospheric plate in a roughly SW–NE
direction [15] and the black line indicates the Cephalonia Transform Fault Zone (CTFZ) [16].

Apart from the background seismic activity and the occurrence of strong events
accompanied by pronounced aftershock sequences, frequent earthquake swarms also occur
in the area of Greece. Some characteristic cases come from the active continental Corinth Rift,
such as those of the 2001 Agios Ioannis swarm [17,18], the 2003–2004 swarm in the offshore
region of the West Gulf of Corinth [19], the 2013 Helike [20,21], the 2015 Malamata [22] and
the 2020 Perachora [7] swarms. Other cases are associated with active volcanoes, such as
the 2011–2012 unrest at the Santorini caldera with swarms of micro-earthquakes [23,24], or
CO2 emissions as the 2012–2014 microseismic activity in Florina [25,26]. Furthermore, a
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seismic excitation occurred in 2019 in the offshore area north of Lefkada Island, with more
than 250 located events forming a small swarm [27].

In the present work, we study the physical characteristics of recent earthquake swarms
that have occurred in the broader area of Greece and in different seismotectonic settings,
such as the earthquake swarms of Trichonis Lake (8 April 2007–2 July 2007), Western Crete
(1 February 2016–25 March 2016), Nisyros (7 April 2021–30 June 2022), Thiva (10 July
2021–1 July 2022) and Pagasetic Gulf (9 May 2022–23 June 2022) (Figure 1). Particularly,
we investigate the scaling properties of the frequency–magnitude distribution (FMD) and
of the spatiotemporal evolution of seismicity. The FMD is usually expressed in terms of
the Gutenberg–Richter scaling relation [28]. Herein, we further describe the FMD with
the fragment–asperity model [29] derived in the framework of Non-Extensive Statistical
Physics (NESP) [30,31]. NESP, as developed by Tsallis [32], provides a generalization of
the Boltzmann–Gibbs (BG) statistical physics and constitutes a suitable framework for
studying complex systems exhibiting scale invariance, multi-fractality and long-range
interactions [33]. Using NESP and based on the universal principle of entropy, we further
describe the spatiotemporal scaling properties of the swarms using suitable scaling func-
tions. Within this framework, we analyze the inter-event time and distance distributions
of each earthquake swarm, fitting the observed data with the Q-exponential function in
agreement with NESP, as proposed in a number of cases [34–36] for the spatiotemporal
properties of seismicity in California and Japan, for aftershock sequences [37–40] and for
global seismicity [41]. This study describes the energy and the spatiotemporal patterns
of each earthquake swarm, providing the non-additive entropic parameters (qT, qD, qM).
We demonstrate that NESP is an adequate and methodological tool for analyzing complex
systems, such as the spatiotemporal evolution and the FMD of earthquake swarms. In
addition, based on the observed scaling properties of seismicity, we describe the temporal
evolution of the swarms using superstatistics [42–44] that complement the NESP approach.

2. A Non-Extensive Statistical Physics Approach (NESP)
2.1. Spatiotemporal Scaling Properties of Earthquake Swarms

Non-extensive statistical physics (NESP) is a generalization of Boltzmann–Gibbs (BG)
statistical physics and has been used to describe complex dynamic systems that exhibit
scale-invariance, (multi)fractality, long-range interactions and long-term memory effects,
leading to broad distributions with power-law asymptotic behavior [32,45–47].

In 1988 [45,46], Tsallis proposed the non-additive Tsallis entropy (Sq) which is ex-
pressed as:

Sq = kB
1−∑ pq(X)

q− 1
(1)

where kB is Boltzmann’s constant and q the entropic index that signifies the non-extensivity
of the system. In the following, we address the NESP theory for a continuous variable X that
may express the inter-event times (T), i.e., the time intervals between the successive seismic
events, or the inter-event distances (D), i.e., the three-dimensional Euclidean distance
between the foci of successive seismic events.

In the case of q = 1, then Sq = SBG and the approach reduces to well-known Boltzmann–
Gibbs (BG) entropy. Despite the fact that Sq and SBG have many similar properties in
common, such as non-negativity, expansibility and concavity, there is a distinctive difference
between the two entropies. The Boltzmann–Gibbs entropy is additive, meaning that the
entropy of a combined system is the sum of the entropy of the separated parts, whereas
the Tsallis entropy Sq is non-additive. According to this property and for two probabilistic
independent events A and B, the total entropy Sq of the system A + B satisfies:

Sq (A + B)
kB

=
Sq(A)

kB
+

Sq(B)
kB

+ (1− q)
Sq(A)

kB

Sq(B)
kB

(2)
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This property is known as pseudo-additivity and is further distinguished into super-
additivity if q < 1, sub-additivity if q > 1 and additivity when q = 1 (Boltzmann–Gibbs
statistics) where the last term on the right-hand side of Equation (2) vanishes, and the
additivity property is recovered. This has been recently discussed in terms of the entropy
defect [48].

For seismic events, the probability distribution p(X) of the continuous variable X
(i.e., the inter-event times T or the inter-event distances D) is acquired by maximizing the
non-extensive entropy Sq under appropriate constraints [46] using the Lagrange multipliers
method that leads to the physical probability:

p(X) =

[
1− (1− q)

(
X
Xq

)] 1
1−q

Zq
=

expq

(
− X

Xq

)
Zq

(3)

where Zq refers to the q-partition function defined as:

Zq =
∫ ∞

0
expq

(
− X

Xq

)
dX (4)

and Xq is a generalized scaled inter-event time or inter-event distance, while the q-exponential
function is defined as:

expq(X) = [1 + (1− q)X]
1

1−q (5)

for 1 + (1− q)X ≥ 0 and in all other cases expq(X) = 0 [46].
The corresponding to Equation (3) cumulative distribution function (CDF) P (>X)

should be obtained upon integration of the escort probability distribution Pq (X) [35,46,47,49]

P(> X) =
∫ ∞

0
Pq(X)dX = expq

(
− X

Xq

)
(6)

If P (>X) is estimated by the integration of physical probability p(X) (Equation (3)) instead
of the escort probability distribution Pq (X), then:

P(> X) =

[
1− (1−Q)

(
X
X0

)] 1
1−Q

= expQ

(
− X

X0

)
(7)

that mathematically is the Q-exponential function, defined for q < 2, with X0 = XqQ (X0
is a positive scaling parameter) and Q = 1/(2− q) or q = 2 − (1/Q) [46,50–53]. The
different forms are all correct and can be transformed one into the other by means of simple
algebraic operations involving the values of q and X0. Moreover, the variable X refers to
the inter-event times (T) or distances (D), while the q-value describes the spatiotemporal
evolution and the degree of correlations, with qT > 1, for the inter-event times, and qD < 1
for the inter-event distances, respectively, according to [34,35].

The inverse of the Q-exponential function (Equation (7) for X > 0) leads to the Q-
logarithmic function [46,49,54]:

lnQ P(> X) =
P(> X)1−Q − 1

1−Q
= − 1

X0
X (8)

For q > 1, the Q-exponential function presents asymptotic power–law behavior, while
for q < 1 a cut-off appears in the tail of the distribution. In the limit when q = 1, the
Q-exponential and the Q-logarithmic recover the ordinary exponential and logarithmic
expressions, respectively.

The latter Equation implies that after the estimation of the appropriate q-value that
describes the distribution of X, the Q-logarithmic function (Equation (8)) is a straight line,
with slope −1/X0 [54].
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2.2. Frequency-Magnitude Distribution and Seismic b-Values

The Gutenberg–Richter scaling relation [28] is one of the most well-known empirical
scaling relations in geophysics, which expresses the frequency of earthquake magnitudes
in a specific area and has the following form:

log N(> M) = a− bM (9)

where M represents the earthquake magnitude, N(>M) is the cumulative number of earth-
quakes with a magnitude equal to or greater than M and a, b are positive scaling parameters.
Parameter a describes the regional level of seismicity and shows significant variations from
one area to another. Parameter b, also known as the b-value, is the slope of the frequency–
magnitude distribution (FMD) and describes the size distribution of the earthquake events.
The estimated b-value usually has typical values close to 1 [55–57], especially for tectonic
earthquakes, but there have been reported high b-values (up to 3) associated with volcano
areas [58].

2.3. The Fragment–Asperity Model for Seismic Energies

Sotolongo-Costa and Posadas [29] developed the fragment–asperity model of earth-
quake interactions, which describes the earthquake generation mechanism within the NESP
context. This model takes into account the interaction of two rough profiles (fault blocks)
and the fragments filling the area in between them, originating from the local breakage
of the tectonic plates. This interaction explains how earthquakes are triggered. These au-
thors [29] applied the NESP formalism to estimate the seismic energy distribution function
based on the size distribution of fragments and presented an energy distribution function,
which contained the Gutenberg–Richter (G-R) scaling relation as a particular case. The
fragment–asperity model has been used in a variety of applications, including regional and
local seismicity, as well as volcanic seismicity [59–61].

Telesca [62] revised this model by considering that the magnitude (M) is related to
the relative seismic energy and by taking into account the threshold magnitude Mc [63],
proposed a modified expression that relates the cumulative number of earthquakes with
magnitude, given as [49]:

log
(

N(> M)

N

)
=

2− qM
1− qM

log

 1−
(

1−qM
2−qM

)(
10M

A2/3

)
1−

(
1−qM
2−qM

)(
10Mc

A2/3

)
 (10)

where M is the earthquake magnitude, Mc is the threshold magnitude, A is proportional
to the volumetric energy density and qM is the entropic index [61]. Temporal variations
and the increase in qM indicate that the physical state of a seismic area moves away from
equilibrium [64].

In contrast to the G-R scaling relation, the fragment–asperity model accurately de-
scribes the observed earthquake magnitudes across a wider range of scales, whereas for
values above a certain threshold magnitude, the G-R relation can be derived as a special
case, for the value of [49]:

b =
2− qM
qM − 1

(11)

Moreover, the b-value calculation using the maximum-likelihood approach (e.g., [65]) is
rather sensitive to the initial selection of the minimum earthquake magnitude M0 in the
catalogue of events, while the qM-value estimation is relatively stable irrespective of the
selection of M0 [66].

3. Recent Earthquake Swarms in Greece

In the present work, we analyze the spatiotemporal scaling properties and the frequency–
magnitude distribution of earthquake swarms in terms of Tsallis Entropy. The location of the
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five earthquake swarms that we study in this work are illustrated in Figure 1. The areas of
each swarm, depicted with colored squares, are also shown the strong events that have been
reported with magnitude M ≥ 5.5 [14]. The study areas, as symbolized in Figure 1, are Thiva
(red square), Nisyros island (purple square), Trichonis Lake (green square), Western Crete
(pink square) and Pagasetic Gulf (orange square). The earthquake swarms are described
chronologically from the oldest to the most recent.

3.1. Seismotectonic Setting and Earthquake Datasets
3.1.1. The 2007 Trichonis Lake Earthquake Swarm

Trichonis is the largest natural lake in western Greece which strikes WNW–ESE for a
distance of about 32 km and has a width of about 10 km [67]. More specifically, it is situated
in the eastern part of Aitoloakarnania and southeast of the city of Agrinio. Trichonis Lake
is a late Plio-Quaternary extensional basin, created by back-arc extensional faulting in
western Greece [68]. The basin containing Trichonis Lake is marked by a major north-
dipping normal fault system which bounds the south shore of the lake [67]. The majority of
the seismic events in the area are well-constrained along the southeastern side of the lake.
Historical records exist since 1841 for that region, but since 1966, the seismic activity has
been decreasing [69]. The most recent instrumentally recorded seismic sequence occurred
during June–December 1975 near the southern flank of Lake Trichonis. The first of the
strongest earthquakes took place on 30 June 1975 (Mw 5.6), whereas on 21 December 1975
an Mw 5.5 event was followed by another one on 31 December 1975 with a magnitude of
Mw 6.0 [69]. Other strong events in the area occurred in 1882 and 1885, with magnitudes of
5.5 and 6, respectively [14].

In the southeastern part of the lake, an intense seismic sequence, with a series of
relatively strong earthquakes, started in April 2007. The sequence initiated with small
events on 8 April and two days later the three strongest events of the entire sequence
occurred. More analytically, on 10 April three strong earthquakes occurred at 03:17:56,
07:13:03 and 10:41:00 UTC with magnitudes Mw 4.9, 4.9 and 5.2, respectively. The seismic
activity continued for a month with smaller magnitude events forming a swarm [69,70].
Another event with similar magnitude occurred on 5 June 2007 with Mw 4.8. It was shown
that this seismic activity did not correlate with any of the two fault zones at the northern
and southern edges of the lake, but with two unmapped NNE-SSW and NW-SE faults
along its eastern shore [69–71]. According to [72], the existence of the water in the Trichonis
Lake may have an important role, as the saturation of underlying bedrock reduces the
friction coefficient, increasing the pore pressure and, consequently, decreasing the effective
stress. For our analysis we used the earthquake catalogue obtained from the Seismological
Laboratory of the National and Kapodistrian University of Athens (SL-NKUA) for the
period between 8 April 2007 to 2 July 2007, counting a total of 1309 events. The minimum
and maximum magnitude and depth of the catalogue is ML 1–5.2 and 0–19 km, respectively.

3.1.2. The 2016 Western Crete Earthquake Swarm

The island of Crete is located in a fore-arc position above the active northward-directed
subduction zone of the African plate beneath the Aegean plate [73], where the African and
Eurasian tectonic plates converge at a rate of approximately 3 cm/year [74]. The study area
is located in the Southern Aegean subduction zone, which includes the outer Subduction
Arc and the inner Volcanic Arc. The main fault of Western Crete is a rupture zone of
significant length (>40 km) and a north–south strike, dipping to the West. Moreover, in the
study area, the significant faults systems are trending N-S, also dipping westwards and
composing three main segments. The oldest recorded seismic event was in 1246 with a
magnitude of 6.4 [14]. The next destructive earthquakes, according to [14], took place in
1908, 1910 and 1947, with magnitudes of 6.2, 6 and 6, respectively.

The data for Western Crete were retrieved from the Institute of Physics of the Earth’s
Interion and Geohazards. In this work, we studied the seismicity in Western Crete, near
the village Platanos between 1 February 2016 and 25 March 2016. For the study period, the
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catalogue contains a total of 653 events. The strongest earthquake took place on 12 March
2016 with a magnitude of 4.8. The magnitude (ML) varies from 1 to 4.8, whereas the depth
of the events is 0–26 km.

3.1.3. The 2021–2022 Nisyros Earthquake Swarm

Nisyros volcano belongs to the eastern part of the South Aegean Active Volcanic Arc,
between Kos and Tilos islands. It is an active volcano like the rest of the volcanoes of the
Volcanic Arc, which are Methana, Sousaki, Milos and Santorini. The majority of the rocks
on the island of Nisyros are Quaternary volcanic rocks represented by alternating lava
flows, pyroclastic layers and viscous lava domes [75]. Several normal faults with a NE–SW
strike cut through the caldera floor, with the main one being a fault striking NNW-SSE,
known as Mandraki Fault [75]. In addition, the NE–SW and E–W submarine faults that
have been identified in the basins surrounding Nisyros border form tectonic grabens [75].
The three strong earthquakes that took place in the area are 1493, 1490 and 412BC events,
with magnitudes of 6.8, 7 and 6, respectively [14].

The earthquake catalogue was extracted from the Geodynamics Institute of the Na-
tional Observatory of Athens (GI-NOA) to study the seismicity in the northwest area of
Nisyros between 7 April 2021–30 June 2022. For this period the catalogue involves a total
of 1567 events. The first of the strongest earthquakes took place on 13 April 2021 (ML 5.2),
whereas on 21 June 2021 an ML 5.7 event was followed by another on 1 August 2021 with a
magnitude of ML 5.4. The minimum and maximum depth of the events is 2–23 km.

3.1.4. The 2021–2022 Thiva Earthquake Swarm

Thiva is a city in Boetoia (Central Greece), located at the transition zone between
the Corinth Gulf in the south and Evia in the east. Two major rift structures, oriented
WNW—ESE and NW-SE, respectively, dominate the tectonics of the area [76]. The land
between the two gulfs is an area of lower strain controlled by normal faulting. One of
these normal fault segments is that of Kallithea. In addition, north of Thiva, a denser fault
network with smaller south-dipping faults dominates the area around Yliki Lake, whereas
south-dipping faults dominate in the western part of the Thiva basin and north-dipping
faults in the eastern part. Historical records show that a destructive earthquake with a
magnitude of 7 occurred in the Thiva region in 1853 [14] and the next large seismic event
was in 1893 with a magnitude of 6 [77]. The next strongest event that is recorded in this
region is an earthquake with a magnitude of Ms~6.2 in 1914 [78].

In this part, we studied the seismicity in the area of Thiva between 10 July 2021 and
1 July 2022. On 2 December 2020 at 10:54:56 UTC, an earthquake with magnitude 4.5 took
place east of Thiva, which was followed by a prolific seismic swarm until recently. The
next strongest events were on 11 July 2021, 20 July 2021, 2 September 2021 and 10 April
2022, with magnitudes Mw 4.3, 4.1, 4 and 4.4, respectively. The earthquake catalogue was
obtained from the Seismological Laboratory of the National and Kapodistrian University
of Athens (SL-NKUA). For the above period, the catalogue contains a total of 4695 events
with depths from 0 to 15 km. The 2020 seismic events mainly took place at the eastern part
of the study area, on a system of normal faults. On 10 July 2021, seismic activity started
at the western part of the swarm and the next seismic events present a general tendency
for spatiotemporal migration towards ESE. The evolution of the swarm is related to stress
triggered by its major events and facilitated by pore-fluid pressure diffusion [76].

3.1.5. The 2022 Pagasetic Gulf Earthquake Swarm

The Pagasetic Gulf is a semi-enclosed gulf located in the northwestern part of the
Aegean Sea and is connected with North Evoikos Gulf and the Aegean Sea through the
channel of Trikeri. The study area is north of the island of Evoia and southeast of the city
of Volos and Ayia Kiriaki, as it is shown in Figure 1. The area is dominated by normal
faulting trending NNE-WWS [79]. The main strike of faults is NE-SW, although secondary
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directions of NW-SE trending faults are also observed [79]. The most recent reported strong
seismic event in this area is in 1753 with a magnitude of 6.3 [14].

The earthquake catalogue was extracted from the Geodynamics Institute of the Na-
tional Observatory of Athens (GI-NOA) and consists of 283 events. This swarm lasted less
than two months between 9 May 2022 and 23 June 2022, with the strongest seismic event
on 11 May 2022 with a magnitude ML 3.8. The depth of the events ranges from 2 to 20 km.

3.2. Frequency-Magnitude Distribution and Magnitude of Completeness

In this paragraph, using the catalogues of each earthquake swarm, we estimated
the magnitude of completeness (Mc) using the FMD in terms of the Gutenberg–Richter
scaling relation. The measurements were made by applying the Zmap software package,
version 7.0, [80] which is designed for the MATLAB environment and is a useful tool in
a statistical seismological analysis of earthquake datasets. According to the maximum
likelihood estimation and the best combination of the maximum curvature method and the
goodness-of-fit test, with 95% and 90% residuals [81], we estimated the a and b values of the
Gutenberg–Richter relation and the completeness magnitude (Mc) in each catalogue. The
estimated values are given in Table 1. In the statistical analysis, we used only the events
with M ≥Mc. Figure 2 depicts the FMD for each earthquake swarm, along with the fitting
according to the G-R scaling relation for the calculated model parameters.

Table 1. N the number of earthquake events, Mc the completeness magnitude, Nc the number
of the events with M ≥ Mc, a and b the values in the Gutenberg–Richter distribution, for each
earthquake swarm.

Swarms N Mc Nc b a

Trichonis Lake 1309 2.2 745 1.13 ± 0.04 5.36
Western Crete 653 2.0 420 0.99 ± 0.05 4.61
Nisyros 1567 2.7 887 0.99 ± 0.05 5.69
Thiva 4695 1.6 2275 1.10 ± 0.03 5.15
Pagasetic Gulf 283 1.5 177 1.19 ± 0.1 4.07
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Figure 2. (a) The Gutenberg–Richter (G-R) distribution (solid line) for the 2007 Trichonis Lake
Earthquake Swarm. Mc is the magnitude of completeness. The frequency–magnitude distribution is
represented by the cumulative (black squares) and the discrete (blue triangles) number of seismic
events. The solid line represents the G-R relation. The same plots for (b) the 2016 Western Crete
Earthquake Swarm, (c) the 2021–2022 Nisyros Earthquake Swarm, (d) the 2021–2022 Thiva Earthquake
Swarm and (e) the 2022 Pagasetic Gulf Earthquake Swarm. The estimated values for the a and b-
values, as well as for Mc, are given in Table 1.

4. Analysis and Results

The theory of NESP, as previously described, is herein applied to the inter-event time
and distance distributions, as well as to the seismic energy distributions of the earthquake
swarms. The catalogues were updated to include all earthquake events with M ≥ Mc.
The inter-event time T is defined as T = t(i + 1) − t(i), where t(i) is the time of occurrence
of the ith event, i = 1, 2, . . . , N − 1 and N is the total number of events, whereas the
inter-event spatial distance is defined as the 3D Euclidean distance between the successive
hypocenters. After the estimation of the cumulative inter-event time distribution P(>T),
the corresponding fitting with the Q-exponential function, up to the value Tc indicates the
value qT. The parameter Tc (critical inter-event time) denotes the transition points between
the non-additive and additive behavior. In most of the cases that we study, we observe the
deviation from the Q-exponential function for high values of T, with T > Tc. The crossover
points between the non-additive and additive behavior are indicated by the deviation from
linearity at T > Tc in the Q-logarithmic functions lnQP(>T). Following the same procedure,
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we estimate the cumulative interevent distances distribution P(>D) that provides the qD
parameter value. After the calculation of the appropriate q that describes the observed
distributions P(>T) and P(>D), the Q-logarithmic functions lnQP(>T) and lnQP(>D) are
linear with T (T < Tc) and D, respectively.

The results of the analysis are presented in Figure 3, in terms of the cumulative
distribution P(>T) of the inter-event times T for each earthquake swarm. The Q-exponential
fitting uses the generalized expression of entropy, Equation (1) describes the observed
distributions quite well, leading to the parameters qT and Tq (Table 2). The transition from
NESP (black circles) to Boltzmann–Gibbs (green circles) scaling regimes is indicated by
the color change in Figure 3. The corresponding Q-logarithmic distribution lnQ(P(>T)) for
each earthquake swarm is shown in the middle panels of Figure 3, while the evolution
of inter-event times (T) as a function of time (t) is shown in the right panels of Figure 3.
The red dashed line (Tc value) shows that most inter-event times have T values less than
Tc, indicating that the Tsallis entropic mechanism is predominant in the main part of the
swarm. However, as time passes the characteristics of the earthquake swarm such as those
of finite degree of freedom and long-range memory, related to a non-extensive statistical
physics description are not any more predominant and the Boltzmann-Gibbs statistical
physics is recovered (i.e., q = 1).
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Figure 3. Left panels (a,d,g,j,m) The log-log plot of the inter-event times cumulative distribution 
for M ≥ Mc, represented by circles. The change of colors indicates the transition from NESP (black 
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corresponding semi-q-log plot of the cumulative distribution of the inter-event times (T), repre-
sented by circles. The Q-logarithmic distribution exhibits a correlation coefficient (ρ) and the 
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times (T) with time (t). The deviation from linearity suggests a Tc value, presented in Table 2, 
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statistical physics. 

Figure 3. Cont.



Entropy 2023, 25, 667 11 of 22

Entropy 2023, 25, x FOR PEER REVIEW 12 of 23 
 

 

   
(g) (h) (i) 

   
(j) (k) (l) 

   
(m) (n) (o) 

Figure 3. Left panels (a,d,g,j,m) The log-log plot of the inter-event times cumulative distribution 
for M ≥ Mc, represented by circles. The change of colors indicates the transition from NESP (black 
circles) to Boltzmann–Gibbs regimes (green circles). The blue solid line represents the Q-
exponential distribution fitting, for the values of (a) qT = 1.44, Tq = 1805 s, (d) qT = 1.53, Tq = 633 s, (g) 
qT = 1.58, Tq = 1625 s, (j) qT = 1.47, Tq = 1736 s, (m) qT = 1.57, Tq = 829 s. Middle panels (b,e,h,k,n) The 
corresponding semi-q-log plot of the cumulative distribution of the inter-event times (T), repre-
sented by circles. The Q-logarithmic distribution exhibits a correlation coefficient (ρ) and the 
dashed line is the Q-exponential fitting with qT. Right panels (c,f,i,l,o) The evolution of inter-event 
times (T) with time (t). The deviation from linearity suggests a Tc value, presented in Table 2, 
which is indicated by the red dashed line and shows the crossover point between NESP and BG 
statistical physics. 

Figure 3. Left panels (a,d,g,j,m) The log-log plot of the inter-event times cumulative distribution
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circles) to Boltzmann–Gibbs regimes (green circles). The blue solid line represents the Q-exponential
distribution fitting, for the values of (a) qT = 1.44, Tq = 1805 s, (d) qT = 1.53, Tq = 633 s, (g) qT = 1.58,
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corresponding semi-q-log plot of the cumulative distribution of the inter-event times (T), represented
by circles. The Q-logarithmic distribution exhibits a correlation coefficient (ρ) and the dashed line is
the Q-exponential fitting with qT. Right panels (c,f,i,l,o) The evolution of inter-event times (T) with
time (t). The deviation from linearity suggests a Tc value, presented in Table 2, which is indicated by
the red dashed line and shows the crossover point between NESP and BG statistical physics.

Table 2. The non-extensive parameters qT, T0, qD and D0 introduced in NESP to describe the
spatiotemporal evolution of earthquake swarms, along with their 95% confidence intervals. qT, qD

represent the entropic index, Tq, Dq are the generalized scaled interevent time–distance and Tc is the
critical interevent time.

Swarms qT Tq (s) Tq1–Tq2 qD Dq (km) Dq1–Dq2 Tc (s)

Trichonis Lake 1.44 1805 1781–1829 0.75 7.5 7.43–7.57 6.8 × 104

Western Crete 1.53 633 629–638 0.46 8.62 8.40–8.83 4.3 × 104

Nisyros 1.58 1625 1610–1640 0.48 16.67 16.45–16.88 1.7 × 105

Thiva 1.47 1736 1731–1742 0.67 5.47 5.40–5.52 2.9 × 105

Pagasetic Gulf 1.57 829 821–837 0.46 8.46 8.15–8.70 1.1 × 105

In particular, for the 2007 Trichonis Lake swarm, the Q-exponential distribution de-
scribes well the observed scaling behavior for the values of qT = 1.44 and Tq = 1805 s and
up to a characteristic time Tc = 6.8 × 104 s, where a fall-off in the distribution appears,
probably due to the finite size of the swarm, limiting the occurrence of sporadic events
and hence the emergence of long inter-event times (finite-size effect). Similarly, for the
2016 Western Crete and the 2021–2022 Nisyros swarms, the Q-exponential distribution de-
scribes quite well the observed P(>T) for the values of qT = 1.53, Tq = 633 s, Tc = 4.3 × 104 s
and qT = 1.58, Tq= 1625 s, Tc = 1.7 × 105 s, respectively. In addition, for the 2021–2022
Thiva and the 2022 Pagasetic Gulf swarms, the Q-exponential fitting using Equation (7)
describes the observed data well, leading to qT = 1.47, Tq = 1736 s, Tc = 2.9 × 105 sec and
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qT = 1.57, Tq = 829 s, Tc = 1.1 × 105 s, respectively. The higher than unity qT-values indicate
asymptotic power-law behavior and long-range correlations in the temporal evolution
of the earthquake activity [26]. The corresponding Q-logarithmic distributions for each
earthquake swarm, describe the observed distributions with high correlation coefficients, as
shown in the middle panels (Figure 3), supporting the goodness-of-fit between the model
and the data.

In Figure 4, the cumulative distributions P(>D) of inter-event distances D are pre-
sented, showing a good fit with the Q-exponential function for qD < 1. The q and Dq
values estimated from the analysis are presented in Table 2 for each earthquake swarm.
The corresponding Q-logarithmic distributions lnQ(P(>D)) are also plotted in the middle
panel of Figure 4, with the straight dashed line indicating the Q-exponential function that
approaches linearity with a ρ correlation coefficient. The estimated qT or qD parameters
give the best linear fitting.
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Figure 4. Left panels (a,c,e,g,i) The log-log plot of the inter-event distances cumulative distribution
for M ≥ Mc, represented by black circles. The magenta solid line represents the Q-exponential
distribution fitting for the values of (a) qD = 0.75, Dq = 7.5 km, (c) qD = 0.46, Dq = 8.62 km, (e) qD = 0.48,
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The Q-exponential distributions for the 2007 Trichonis Lake, the 2016 Western Crete
and the 2021–2022 Nisyros swarms, describe well the observed scaling behavior for the
values of qD = 0.75, Dq = 7.5 km and qD = 0.46, Dq = 8.62 km and qD = 0.48, Dq = 16.67 km,
respectively. Furthermore, for the 2021–2022 Thiva and the 2022 Pagasetic Gulf swarms, the
Q-exponential distributions describe well the observed P(>D) for the values of qD = 0.67,
Dq = 5.47 km and qD = 0.46, Dq = 8.46 km. The interevent distances of the seismic activity
deviate from the exponential function, indicating organization rather than random spatial
occurrence [26]. The corresponding Q-logarithmic distributions approximate linearity with
high correlation coefficients, indicating the goodness-of-fit between the model and the
data. According to our results, the cumulative distribution functions of inter-event times
and distances are quite well described with the Q-exponential function, with an entropic
parameter q greater than one (q > 1) for inter-event times and less than one (q < 1) for the
inter-event distances, further confirming the results of [35,47,49,82,83].

The Frequency–Magnitude Distribution and the Fragment–Asperity Model

In this paragraph, we have applied the NESP model of Equation (10) to the normalized
cumulative magnitude distribution of each earthquake swarm (Figure 5), for the entire
magnitude range above a threshold that equals the magnitude of completeness for each
earthquake swarm (Table 1). The model describes rather well the observed magnitude
distribution for the 2007 Trichonis Lake, the 2016 Western Crete, the 2021–2022 Nisyros, the
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2021–2022 Thiva and the 2022 Pagasetic Gulf earthquake swarms, while the fitting of Equa-
tion (10) to the observed data leads to qM = 1.49, qM = 1.48, qM = 1.48, qM = 1.45, qM = 1.48,
respectively (Table 3). In Figure 5, the bold red line shows the model of Equation (10) for
the estimated non-extensive parameter qM, while the other two dashed lines represent the
95% confidence intervals (Table 3). The above analysis indicates that the fragment–asperity
model describes quite well the seismic behavior. The high correlation between the model of
Equation (10) and the observed seismicity is an indication of the NESP model’s applicability
and success in identifying the major characteristics of earthquake dynamics.
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Figure 5. (a) Normalized cumulative magnitude distribution of the 2007 Trichonis Lake Earthquake
Swarm (squares) and the fitting (solid line) according to the fragment–asperity interaction model
(Equation (10)) for the value of qM = 1.48. The 95% confidence intervals are plotted with dashed lines.
(b) The same plot for the 2016 Western Crete Earthquake Swarm, (c) the 2021–2022 Nisyros Earthquake
Swarm, (d) the 2021–2022 Thiva Earthquake Swarm, (e) the 2022 Pagasetic Gulf Earthquake Swarm.
The estimated values for each qM along with the 95% confidence intervals are given in Table 3.

Table 3. qM is the entropic index for each earthquake swarm with 95% confidence intervals.

Swarms qM qM1–qM2

Trichonis Lake 1.49 1.47–1.51
Western Crete 1.48 1.46–1.50
Nisyros 1.48 1.47–1.49
Thiva 1.45 1.44–1.46
Pagasetic Gulf 1.48 1.44–1.52

The distributions reflect sub-extensive systems, where long-range interactions are
significant [61,84]. The analysis of the cumulative earthquake distribution gives qM values
between 1.45–1.49 for the studied earthquake swarms. These results suggest that the areas
are away from equilibrium in a statistical physics sense, which means that the fault planes
and fragments filling the gap between them are not in equilibrium, leading to an increased
seismic activity to be expected [85]. The decrease in the non-extensivity parameter qM are
observed when small-magnitude earthquakes occur, as in the case of Thiva (qM = 1.45).
This could reveal that the order within the system of faults is decreasing, and the amount
of accumulated stress is not yet enough to initiate a correlated behavior of the whole
system [86]. High values of qM are found in the regions where large earthquakes have
occurred, which is in agreement with previous results [30,31,51,62,82,84,86,87]. When a
strong earthquake occurs and much more correlated behavior of the system constituents is
assumed to take place, short- and long-range magnitude correlations emerge, inducing an
increase in the non-extensivity parameter qM [87]. Trichonis Lake is an active seismic area
in which many strong earthquakes have taken place in the past and that explains the high
value of qM = 1.49.

5. Discussion

The concept of Non-Extensive Statistical Physics (NESP) is herein applied to the inter-
event time and distance distributions of recent earthquake swarms that have recently
occurred in Greece. We observed that the cumulative distribution functions of the inter-
event times and distances between the successive earthquakes for all the studied swarm
sequences are well described by the Q-exponential function (Equation (1)). In the case of
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inter-event times, a deviation from the Q-exponential function appears for high values
of T (T > Tc), where Tc indicates the transition between the non-additive and additive
behavior. For each earthquake swarm, we estimated the entropic parameter Q by fitting the
Q-exponential function to the observed data up to a value close to Tc and then we calculated
the parameter q from the equation q = 2− (1/Q). According to Abe and Suzuki [34,35],
the three-dimensional distances of successive earthquakes expressed by the Q-exponential
distribution and the corresponding qD values are less than unity qD < 1, whereas the
cumulative distribution of the inter-event times is described by the Q-exponential function
with qT > 1. They also proposed the relation: qT + qD ≈ 2 which is observed in seismicity
data from California and Japan [34,35] and Iran [88], and verified numerically using the
two-dimensional Burridge–Knopoff model [89,90]. Furthermore, this value is in agreement
with previous studies [41,83,91]. Our results further confirm these patterns for recent
earthquake swarms in Greece, indicating that the cumulative probability distribution of
the inter-event times P(>T) and inter-event distances P(>D) are adequately described with
the Q-exponential function, with qT > 1 and qD < 1, respectively. The latter indicates a
correlated process in time and space that deviates from the random case and the exponential
distribution. In addition, the inter-event times exhibit an asymptotic power-law behavior,
whereas for inter-event distances a cut-off appears. In this last case, a cut-off in the inter-
event distances distribution seems to be the appropriate scaling behavior for real data [92]
due to the finite size effects of the seismogenic crust [18]. This scaling behavior with
q < 1 has been verified in previous earthquake studies [26,35,83,91]. More specifically,
the estimated non-extensive q-values that characterized the observed inter-event time
distributions are within the range of 1.44–1.58, whereas for inter-event distances are from
0.46 to 0.75. The entropic parameters qT, qD, Tq and Dq along with their 95% confidence
intervals and the critical parameter Tc, are summarized in Table 2. Furthermore, in Table 4,
we point out that the sum of qT and qD parameters of the inter-event time and distance
distributions for each earthquake swarm is approximately qT + qD ≈ 2.

Table 4. The parameter qT + qD, along with the number n of the degrees of freedom, as estimated
from the superstatistical model. As degrees of freedom, we select the nearest integer to Equation (17).

Swarms qT + qD n

Trichonis Lake 2.19 3
Western Crete 1.99 2
Nisyros 2.06 1
Thiva 2.14 2
Pagasetic Gulf 2.03 2

The cumulative inter-event time and distance distribution functions for each earth-
quake swarm are well described with the Q-exponential function, indicating asymptotic
power–law behavior and long-term correlations in the spatiotemporal evolution of seis-
micity. In addition, the q-values of qT > 1 and qD < 1 are in agreement with the q-values
found for aftershock sequences [38,40,83,93,94], for the Hellenic Subduction Zone [91], for
the temporal properties of seismicity [60,61] and for global seismicity [41,84]. In addition,
the concept of NESP describes well both the spatial and temporal behavior of the earth-
quake swarms in diverse tectonic environments [7,18,26,95] and in volcanic regions [23,59].
Moreover, the value of qT > 1 suggests a sub-additive process, leading to the conclusion
of long-range memory in the evolution of earthquake swarms for T < Tc. The framework
of NESP that was used in the present study describes well the spatiotemporal scaling
properties of the earthquake swarms, as well as the seismic energy distributions. Hence, the
application of non-extensive statistical physics represents a quite useful tool in investigating
such phenomena, exhibiting scale-free nature and long-range memory effects.

The observed deviation from the Q-exponential function for high T values could be
explained by introducing two mechanisms that drive the earthquake swarms. The first
one is governed by Tsallis entropy and is dominant for inter-event times with T < Tc,
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whereas the second is observed for T > Tc and is defined by an exponential function (i.e.,
q = 1 in NESP terms). Thus, in order to include a crossover from non-additive (q 6= 0) to
additive (q = 1) behavior, we apply a generalization of anomalous equilibrium distributions
described in [96,97], where:

dp
dT

= −β1 p−
(

βq − β1
)

pq (12)

whose solution is:

p(T) = C
[

1−
βq

β1
+

βq

β1
e(q−1)β1T

] 1
1−q

(13)

where C is a normalization factor and for positive βq and β1, p(T) decreases monotonically
with increasing T. In the case where (q− 1)β1 � 1, Equation (13) can be approximated
as q-exponential, p(T) ≈ C expq(−T/Tq), where Tq = 1/βq while for (q− 1)β1 � 1,

the asymptotic behavior of the probability distribution is p(T) ∝
(

β1
βq

)1/(q−1)
e−β1T , an

exponential function, where Tc = 1/(q− 1)β1 is the crossover point between non-additive
and additive behavior [46].

Many complex systems exhibit inhomogeneous spatiotemporal dynamics that can
be characterized by a superposition of numerous generalized statistics on different scales,
called ’superstatistics’, which is complementary to NESP [42–44]. Superstatistics is a
non-extensive statistical physics approach to understanding its dynamic reason [44]. The
Q-exponential behavior of the inter-event times can be observed in terms of superstatistics,
which are based on a superposition of ordinary local equilibrium states, controlled by
an intensive parameter (β) that fluctuates on a relatively large spatiotemporal scale and
is supplementary to NESP [39,42–44]. For a superstatistical approach to all the above
earthquake swarms, a very simple model, where the local distributions are expressed
by that of a Poisson process p(T|β)= βe−βT , is assumed, with p(T|β) expressing the
conditional probability density of the inter-event times given that it has an average value
T|β and the intensive parameter β that fluctuates on a relatively large scale, leading
the exponential model to become superstatistical. If the parameter β is distributed with
probability density f (β), then the probability distribution is given as:

p(T) =
∫ ∞

0
f (β)p(T|β)dβ =

∫ ∞

0
f (β)βe−βTdβ (14)

There can be n Gaussian random variables X1, ..., Xn of the same variance due to various
relevant degrees of freedom in the system [43]. The simplest way to get a positive β is to

square the Gaussian random variables and sum them up. Hence, as a result β =
n
∑

i=0
X2

i

where X2
i 6= 0, Xi 6= 0.

The probability density of β is X2-distributed with n degrees of freedom:

f (β) =
1

Γ(n/2)

(
n

2β0

)n/2
βn/2−1 exp

(
− nβ

2β0

)
(15)

where β0 is the average of β.
The integration in Equation (14) using Equation (15) has as a result the generalized

canonical distribution of NESP:

p(T) ≈ C(1 + B(q− 1)T)1/(1−q) (16)

where C is a normalization factor and q = 1 + 2/(n + 2), B = 2β0/(2− q).
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The calculation of the n degrees of freedom that are influencing the value of β, can be
performed according to [38]:

n =
2

q− 1
− 2 (17)

Using the qT value of each earthquake swarm (Table 2), acquired from our q-statistics fits,
we can estimate the n degrees of freedom for each earthquake swarm (Table 4). The degrees
of freedom obtained from Equation (17) are non-integer values and hence, we report the
nearest integer as a result. The low number of n, ranging between 1 and 3, indicates the
spatiotemporal organization in the evolution of the swarm activity. The high degrees of
freedom imply the loss of temporal correlations and close proximity to Poissonian (random)
behavior, such as in the case of Trichonis Lake with n = 3, whereas the low degrees of
freedom deviate from the random case and indicate a correlated process in time and space.

6. Conclusions

In the present work, the spatiotemporal scaling properties and the frequency-magnitude
distribution of earthquake swarms that have recently occurred within the area of Greece
were investigated using the framework of Non-Extensive Statistical Physics (NESP). The
analysis and results indicate power-law asymptotic behavior in the inter-event time distri-
butions that scale according to the Q-exponential function up to a characteristic inter-event
time Tc. The range of the qT parameter is found between 1.44 and 1.58, supporting the idea
of the presence of long-range memory effects in the evolution of seismicity. In addition,
the inter-event distances distributions are described with the Q-exponential function with
qD-values below unity and in the range of 0.46–0.75, leading to a cut-off in the tail of the
distribution. The sum of these parameters that describe the inter-event times, qT > 1, and
distances, qD < 1, distributions, is qT + qD ≈ 2. In addition, we use the Gutenberg–Richter
scaling relation and the fragment–asperity model to describe the frequency–magnitude
distributions of the earthquake swarms. The frequency of swarm magnitudes follows
the Gutenberg–Richter relation for b-values varying between 0.99 and 1.19. Moreover,
the fragment–asperity model, with values of the entropic index qM in the range of 1.45
to 1.49, reproduces the complexity in the earthquake energy distribution quite effectively.
Lastly, we applied a superstatistic approach, which is based on a superposition of ordi-
nary local equilibrium statistical mechanics with an appropriate intensive parameter β
that fluctuates as χ2 distribution on a rather large temporal scale. The superstatistical
approach leads to the conclusion that in each earthquake swarm, the temporal evolution is
described by low degrees of freedom, indicating a high level of organization, hierarchy and
non-additive characteristics.
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