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Abstract: This study concerns dispersed data stored in independent local tables with different sets
of attributes. The paper proposes a new method for training a single neural network—a multilayer
perceptron based on dispersed data. The idea is to train local models that have identical structures
based on local tables; however, due to different sets of conditional attributes present in local tables,
it is necessary to generate some artificial objects to train local models. The paper presents a study
on the use of varying parameter values in the proposed method of creating artificial objects to train
local models. The paper presents an exhaustive comparison in terms of the number of artificial
objects generated based on a single original object, the degree of data dispersion, data balancing, and
different network structures—the number of neurons in the hidden layer. It was found that for data
sets with a large number of objects, a smaller number of artificial objects is optimal. For smaller data
sets, a greater number of artificial objects (three or four) produces better results. For large data sets,
data balancing and the degree of dispersion have no significant impact on quality of classification.
Rather, a greater number of neurons in the hidden layer produces better results (ranging from three
to five times the number of neurons in the input layer).

Keywords: neural network; multilayer perceptron; artificial training objects; independent data
sources; dispersed data

1. Introduction

A major problem in the domain of solving problems using machine learning is the
decentralization of data sets and the inconsistency of information stored in local indepen-
dent bases. When data is collected independently by institutions such as banks, hospitals,
and various types of mobile applications, one cannot expect the format of the data to be
uniform and consistent. Rather, one should expect that different sets of attributes and
different sets of objects are present in local tables. Additionally, inconsistencies in data
very often occur. The research presented in this paper deals precisely with the issue of
classification based on dispersed data. By dispersed data, we mean data that are collected
in several decision tables that contain inconsistencies, have different sets of attributes,
and objects with the possibility that some attributes and objects may be common among
decision tables. In addition, it is almost impossible to identify which objects are common
among decision tables since to do that would require the existence of some central identifier
of objects, which more often than not does not exist or may not be accessible due to data
protection reasons.

The two main approaches that can be used for dispersed data are ensemble of classifiers
and federated learning. Ensemble learning is a general approach of creating local models
independently based on local tables [1,2], after which a final prediction is generated based
on the local models by applying some fusion method [3–5]. In this approach, there is no
global model as such.
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In federated learning, a global model is built which constitutes the main objective
presented in [6,7]. In this approach, the main focus is on data protection and data privacy [8].
Here, models are created in local spaces and their parameters only are sent to a central
server—local data are not exchanged or combined among local spaces. The local models
are then aggregated and sent to the local spaces. Such a procedure is iterated until a
convergence criterion is satisfied.

The approach proposed in this paper is quite different. The aim of the method is to
build a global model but in a completely different way than in federated learning. Indeed,
local models are built based on local tables which are later used to construct a global model;
however, this procedure is not iterative. Creation of a global model is carried out by a
one-time aggregation. In the final stage, the global model is trained with a stratified subset
of the original test set for which the values on the full set of conditional attributes present
in all local tables are defined.

In this study, neural networks—multilayer perceptrons (MLP)—are used as local
models. For the aggregation of such local networks to be possible, all of them must have the
same structure. Since there are different conditional attributes in each local table, obtaining
the same input layer in all models is not trivial. It is necessary to artificially generate objects
based on the original objects that are to be used to train the network. Such artificial objects
must have defined values on the conditional attributes that are missing in the considered
local table. The paper proposes a method for generating artificial objects and contains
a study on the use of different parameter values in the proposed method of generating
artificial objects. An exhaustive comparison in terms of the number of artificial objects
generated based on a single original object, the degree of data dispersion, data balancing,
and different network structures—the number of neurons in the hidden layer are presented.
The main conclusions reached are as follows: it was found that for data sets with a large
number of objects, a smaller number of artificial objects is optimal. For smaller data sets,
a greater number of artificial objects (three or four) produces better results. For large data
sets, data balancing and the degree of dispersion have no significant impact on the quality
of classification. Rather, a greater number of neurons in the hidden layer produces better
results (ranging from three to five times the number of neurons in the input layer).

The contribution of the paper are as follows:

• Proposing a method for generating artificial objects for training local MLP networks
with identical structure;

• Comparison of the proposed method in relation to different number of artificially
objects generated;

• Comparison of the proposed method in relation to different versions of data dispersion;
• Comparison of the proposed method in relation to different number of neurons in the

hidden layer;
• Comparison of the proposed method for balanced and imbalanced versions of data sets.

Neural networks have been considered for dispersed data in various applications.
The papers [9,10] considered neural networks as a model for aggregating prediction vectors
generated by local classifiers. In the paper [11], neural networks were used in a federated
learning approach. Neural networks were also used as base models in an ensemble
of classifiers whose predictions were then aggregated by various fusion methods [12].
However, none of the approaches described above is similar to the one proposed in this
study. The main difference lie in the non-iterative approach when building the global
model in the proposed approach and the use of local tables with different sets of conditional
attributes to train local networks with identical structures.

The paper is organized as follows. In Section 2, the proposed method for generating
a global model is described. The section explains how to determine the structure of local
models and how to prepare artificial objects for training local models. Then, the method of
aggregating local models to the global model and the stage of training the global model
are described. Section 3 addresses the data sets that were used and presents the conducted
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experiments, comparisons, and discussion on obtained results. Section 4 is on conclusions
and future research plans.

2. Materials and Methods

The main idea of the proposed model is to build a global model based on dispersed
data—local tables with different sets of conditional attributes—in three stages:

• First stage: training local models, MLP neural networks based on local tables;
• Second stage: aggregation of local models to the global model. This stage is performed

in a non-iterative way by a single calculation;
• Third stage: post-training the global model using a stratified subset of the original

test set.

All three stages are described below in separate subsections.

2.1. First Stage—Training Local Models, MLP Neural Networks, Based on Local Tables

Formally, dispersed data is a set of decision tables that are collected independently
by separate units. We assume that a set of decision tables—local tables Di = (Ui, Ai, d) i ∈
{1, . . . , n} from one discipline—is available, where Ui is the universe comprising a set of
objects; Ai is a set of conditional attributes; and d is a decision attribute. We assume that
the sets of conditional attributes of local tables are quite different although it may rarely
happen that a larger set of attributes is common between tables. More likely, the differences
in attributes found in local tables are significant.

The local models that are used in this study are multilayer perceptron networks (MLP).
Based on each local table, an MLP model is trained separately. The desired objective that all
local models must have the same structure is not trivial since each local table has different
conditional attributes, thus making the training process difficult. We propose that the input
layer of local networks contains all the attributes that are present in all local tables—let us
denote this set as A =

⋃
i∈{1,...,n} Ai. In addition, the hidden layer should contain the same

number of neurons in all networks. The output layer will be same for all tables due to the
identical decision attribute present in all local tables. In this study, we use only one hidden
layer in the network.

Now, a problem arises when we seek to train such a network based on a single local
table given that the table in question lacks conditional attributes (perhaps many) that are
present in the input layer of the network. A method for generating artificial objects with
supplemented values on missing conditional attributes is proposed. These values are
imputed based on certain characteristics provided by other local tables in the dispersed
data in which the missing attributes are present. In doing so, data protection is ensured
because we do not exchange raw data but only certain values of statistical measures derived
from the dispersed data.

Based on each original object from a local table, k artificial objects are generated
as follows:

1. Let us consider an object x that belongs to a decision class v from a local table Di.
2. We define a set of tuples as

METHODS = (min, min), (min, mean) · · · (max, median), (max, max)

∈ (min, mean, median, max)× (min, mean, median, max)

For each missing attribute (attribute from the set A \Ai) and each method ∈ METHODS,
method(0) is computed on the objects having the decision class v for all local tables
in which the attribute is present. After, method(1) is computed on the the resulting
values from method(0).

3. After step 2, there will be |METHODS| = 16 values for decision class v. k distinct
values denoted by ak are randomly selected from the 16 values, where k is the number
of artificial objects that are to be generate.

4. From step 3, there will be k derived values for all the missing attributes of object x.
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5. The final step is to duplicate object x, k times, and assign the ak values to the miss-
ing attribute.

This process is carried out for all objects in a local table and executed separately for
each local table.

A training set of artificially prepared objects as described above is then used to train
the MLP network. The neural networks is implemented using the Keras library in Python.
Different number of neurons in the hidden layer is experimented on—values ranging from
0.25 to 5 times the number of neurons from the input layer are tested. For the hidden
layer, the ReLU (Rectified Linear Unit) activation function is used as it is the most popular
activation function and gives very good results [13]. For the output layer, the Softmax
activation function is used, which is recommended when we deal with a multi-class
problem [14]. The neural network is trained by using a gradient descent method with
an adaptive step size in the backpropagation method. The Adam optimizer [15] and the
categorical cross-entropy loss function [16] are used in the study.

2.2. Second Stage—Aggregation of Local Models to the Global Model

The second stage consists of aggregation of local networks into a single global network.
In the first stage, the local neural networks are prepared in such a way that aggregation
is possible—all local networks have the same structure; thus, the global network will also
have the same network structure. The weights in global model are determined based on
the weighted average of the corresponding weights from the local models. However, due
to the dispersed data stored in the local tables, not all local models are equally accurate, so
the weighted average is employed to make the local model’s influence on the construction
of the global model depend on the accuracy of a given local model. The method used is
inspired by the second weighting system used in the AdaBoost algorithm [17].

For each local model, a classification error is estimated based on its training set
(containing artificial objects). Let us denote by ei the classification error determined for the
i-th local model i ∈ {1, . . . , n}. Since local models are built based on a piece of data, their
accuracy can be very different. It may sometimes happen that their classification error is
above 0.5. In order not to eliminate such local models from the aggregation stage as they
may contain important information on specific attributes that may have a positive impact
in the global model, the min-max normalization is applied to the interval [0, 0.5] of all
errors ei, i ∈ {1, . . . , n}. After, the weights ωi for each local neural network i ∈ {1, . . . , n}
are adjusted according to the formula proposed in [17]:

ωi = ln(
1− ei

ei
) (1)

The initial weights of the global model between neural connections are then calculated
based on the adjusted weights of all the local networks. More specifically, the weights of the
global model are determined by the weighted average of adjusted weights ωi, i ∈ {1, . . . , n}.

It should be noted that some attributes that appear more frequently in local tables may
have been better trained in global model than others. Therefore, a MLP network created in
this way does not always generate sufficiently good results. In the next stage, the quality of
the network is improved.

2.3. Third Stage—Post-Training the Global Model Using a Small Training Set

In order to implement this step, it is necessary to have access to an independent set of
training data which can be called a global training set. This means that each object in this
set has values for all conditional attributes A from the dispersed data. This set cannot be
generated from local tables since aggregation is not possible considering the assumptions
about dispersed data mentioned earlier.

Such a global training set is extracted from the test set. The test set is divided into two
equal parts in a stratified manner. One is used for the post-training stage and the other
for testing. This procedure is repeated twice where each time a different half is used for
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the post-training phase. In future studies, it is planned to generate such a global training
set artificially.

3. Results

The experiments are conducted with data taken from the UC Irvine Machine Learning
Repository. Three data sets are selected: Vehicle data [18], Landsat Satellite data [19],
and Dry Bean data [20]. Each data set available in the repository is stored in a single table.
These data sets are chosen for three reasons. To begin, these data sets are chosen because
of the presence of multiple decision classes in the sets as the proposed method is tested
for multi-class problems. Additionally, an important factor is the significant number of
conditional attributes present in the data sets. The data are dispersed into local tables in
the way where the conditional attributes are split. The aim is to test the approach where
we have different conditional attributes in local tables. To achieve this, a large number of
attributes is needed originally so that such dispersion can occur and a meaningful subset
of these attributes can be present in each local table. Lastly, in this study, we focus on using
numerical data—there are numerical, discrete, or continuous attributes in all data sets. Due
to the large variation in the attributes in the Dry Bean data, the set is normalized.

The only possible way to evaluate the model for the considered dispersed data is the
train-and-test method. This is because the data in the local tables contain only subsets of
conditional attributes, while we assume that the test objects will already have specified
values for all possible attributes present in the local tables. So, before the original data set is
dispersed, it is divided into a training set (70% of objects) and a test set (30% of objects) in a
stratified manner. Data characteristics are given in Table 1. The training data sets are then
dispersed into local tables. Different degrees of dispersion are considered in order to check
whether the method can cope with significant data dispersion. The creation of versions
with 3, 5, 7, 9, and 11 local tables based on the original training set are considered where all
local tables contained only a subset of the original set of conditional attributes. In addition,
different local tables had different sets of attributes; however, there is a possibility of
individual attributes being present among some tables. The decision attribute is included
in each of the tables. The full set of objects is also stored in each of the local tables but
without identifiers. This reflects the real situation where one cannot identify the objects
between local tables.

Table 1. Data set characteristics. Sign # denotes the number of objects in the set.

Data Set # The Training
Set # The Test Set # Conditional

Attributes
# Decision

Classes

Vehicle 592 254 18 4
Landsat Satellite 4435 1000 36 6

Dry Bean 9527 4084 16 7

All the data sets are heavily imbalanced Figure 1. To check whether the proposed
method can handle imbalanced data, each data set is considered in two versions—the
imbalanced version and the balanced version. The data are balanced with the use of the
synthetic minority over-sampling technique (SMOTE) method [21]. The implementation
of this algorithm, available in WEKA [22] software, is used. The balancing procedure is
performed for each local table separately using only the locally available subset of attributes.
All objects for each decision class are balanced in a way that after the implementation of
this process, each decision class has an equal number of objects as the decision class with
the most objects in the set. Thus, a total of thirty dispersed sets are analyzed: each of the
three data sets is dispersed into 5 versions, each version is balanced to a total of 3× 5× 2.

The quality of classification is evaluated based on the test set. The accuracy measure
acc is analyzed. This is the defined as a fraction of correctly classified objects to all objects
in the test set.
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Figure 1. Imbalance of data—cardinality of decision classes in training and test sets.

The main goal of the experiments is to investigate how the number of objects artificially
generated based on a single object from a local table affects the quality of classification.
An additional purpose is to determine the guidelines that should be followed in deter-
mining such an optimal value depending on the characteristics of the data sets as well
as to check the effect of the degree of dispersion on the obtained quality of classification.
The different network structures and the impact of the number of neurons in the hidden
layers on the quality of classification are also studied. Comparison analysis to determine
whether the proposed approach performs equally well for balanced and imbalanced data is
carried out. To meet these objectives above, the scheme of the experiments is as follows.

• Studying different number of artificial objects generated based on a single object from
each local table. The number of artificial objects generated k ∈ {1, 2, 3, 4, 5} are studied.

• Studying different levels of dispersion: 3, 5, 7, 9, 11 local tables.
• Studying different number of neurons in the hidden layer. The number is determined

in proportion to the number of neurons in the input layer. The following values are
tested: {0.25, 0.5, 0.75, 1, 1.5, 1.75, 2, 2.5, 2.75, 3, 3.5, 3.75, 4, 4.5, 4.75, 5} × the number
of neurons in the input layer.

• Studying two versions for each data set—balanced and imbalanced versions.
• Studying an iterative approach modeled on federated learning in order to make

comparisons with the proposed approach.

Comparison of experimental results is made in terms of:

• The quality of classification for different number of artificial objects generated;
• The quality of classification for different versions of dispersion;
• The quality of classification for different number of neurons in the hidden layer;
• The quality of classification for balanced and imbalanced version of data sets.

Tables A1–A6, presented in Appendix A, show the classification accuracy obtained
for different versions of dispersion, different numbers of artificially generated objects,
and different numbers of neurons in the hidden layer for Vehicle imbalanced, Vehicle
balanced, Landsat Satellite imbalanced, Landsat Satellite balanced, Dry Bean imbalanced
and Dry Bean balanced data sets. Each experiment is performed three times. The average
of the three runs is given in the tables below. In each row of the tables, the best result is
in a bold font. The following sections present an analysis of the results included in these
tables from different perspectives. The last part presents a comparison with the approach
modeled on federated learning.
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3.1. Comparison of Quality of Classification for Different Numbers of Objects Artificially Generated

First, we compare the quality of classification using different number of artificially
generated objects. Table 2 shows a comparison of the best results (those in a bold font in
Tables A1–A6) obtained for different number of artificially generated objects. In the table,
for each dispersed data set, the best result is shown in a bold font.

Table 2. Comparison of classification accuracy acc obtained for different number of artificially
generated objects.

Data No. of No. of Artificially Generated Objects
Set Tables 1 2 3 4 5

Vehicle

3 0.724 0.688 0.73 0.702 0.693

imbalanced

5 0.71 0.696 0.728 0.724 0.714
7 0.698 0.699 0.72 0.719 0.713
9 0.698 0.707 0.709 0.727 0.703

11 0.694 0.71 0.673 0.728 0.696

Vehicle

3 0.73 0.705 0.726 0.735 0.731

balanced

5 0.738 0.748 0.722 0.738 0.726
7 0.757 0.739 0.756 0.752 0.759
9 0.743 0.718 0.736 0.747 0.773

11 0.705 0.726 0.706 0.719 0.713

Landsat
3 0.809 0.809 0.813 0.813 0.808

Satellite
5 0.815 0.809 0.82 0.811 0.813

imbalanced
7 0.814 0.809 0.811 0.81 0.809
9 0.805 0.813 0.808 0.806 0.809

11 0.804 0.815 0.81 0.8 0.804

Landsat
3 0.799 0.799 0.803 0.797 0.803

Satellite
5 0.799 0.797 0.805 0.801 0.8

balanced
7 0.8 0.791 0.801 0.793 0.791
9 0.794 0.793 0.795 0.793 0.796

11 0.79 0.791 0.789 0.798 0.792

Dry
3 0.915 0.917 0.913 0.917 0.914

Bean
5 0.913 0.915 0.912 0.914 0.913

imbalanced
7 0.911 0.915 0.911 0.91 0.914
9 0.912 0.913 0.91 0.911 0.913

11 0.912 0.914 0.908 0.911 0.911

Dry
3 0.915 0.918 0.913 0.916 0.913

Bean
5 0.912 0.916 0.913 0.913 0.913

balanced
7 0.911 0.915 0.913 0.912 0.911
9 0.913 0.913 0.907 0.911 0.911

11 0.911 0.911 0.913 0.912 0.909

As can be seen, for different data sets, different numbers of artificially generated
objects guarantee the best results. In the case of the Vehicle data set, it can only be said
that the approach with one artificial object gives the worst results. In the case of the Dry
Bean data set, definitely the use of two artificial objects generates the best results. For the
Landsat Satellite data set, it is hard to define any of these types of relations.

Statistical tests are performed in order to check the importance in the differences in the
obtained results acc for different number of objects artificially generated. The Friedman’s
test using all results from Table 2 is performed. Five dependent groups are analyzed
({1, 2, 3, 4, 5} number of artificial objects). The test did not confirm that differences among
the classification accuracy in these five groups are significant (p = 0.672). However, as can
be seen from Table 2, the classification accuracy obtained for different data sets are from
completely different ranges. Due to this discrepancy, it is difficult to prove the significance
of the differences. Therefore, it was decided to separate the obtained results against the
considered data sets. Thus, three sets (for Vehicle, for Landsat Satellite, and for Dry Bean)
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each containing a ten-element sample are obtained. The Friedman’s test confirmed the
significance of the differences for the Dry Bean data set with p = 0.003. The Wilcoxon
each-pair test confirmed the significant differences between the average accuracy values for
the following pairs: Vehicle—2 and 4 artificial objects, p = 0.01; Landsat Satellite—1 and 3
artificial objects, p = 0.03; Dry Bean—2 and 1 artificial objects, p = 0.008, 2 and 3 artificial
objects, p = 0.006, 2 and 4 artificial objects, p = 0.008, 2 and 5 artificial objects, p = 0.004.

Additionally, comparative box-plot charts for the values of the classification accuracy
and different data sets are created (Figure 2). As can be observed, for the Dry Bean data
set, the box-plot for the two artificial objects definitely stands out among the others. It can
also be concluded that using a single artificial object never generates good results. Taking
into account the results of the comparisons and the number of objects in the analyzed
data sets, a general conclusion can be drawn. For data sets with a large number of objects
(around 9000 objects), a smaller number of artificial objects such as two objects is optimal.
For smaller data sets with up to a thousand objects, a greater number of artificial objects
(three or four) produces better results. More specifically, the smaller the number of
objects in the local tables, the more artificially generated objects should be used in the
proposed approach.

Figure 2. Box-plot chart with (median, the first quartile—Q1, the third quartile—Q3) the value of
classification accuracy acc for the different numbers of objects artificially generated.

3.2. Comparison of Quality of Classification for Different Versions of Dispersion

We now compare the classification accuracy obtained for different versions of data
dispersion. In Table 3 a comparison of the best results (those bolded in Tables A1–A6)
obtained for different version of dispersion is presented. In the table, for data set, the best
result is shown in a bold font.

As can be observed, in the case of Vehicle data set, the best results are obtained for
medium data dispersion (7 local tables) or even large data dispersion (11 local tables).
For this data set, the differences in results obtained for different versions of dispersion
are the greatest compared to the other data sets. For Landsat Satellite and Dry Bean data
sets, the smallest dispersion (3 local tables) gives better results. However, looking closely
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at the results, we can observe that the absolute differences noted for these data sets are
really small—at the third decimal place. So, we can conclude that for data sets with such
a large number of objects, the differences recorded for different degrees of dispersion are
really unremarkable.

Table 3. Comparison of classification accuracy acc obtained for different numbers of artificially
generated objects.

Data No. of Artificially No. of Local Tables
Set Generated Objects 3 5 7 9 11

Vehicle

1 0.724 0.71 0.698 0.698 0.694

imbalanced

2 0.688 0.696 0.699 0.707 0.71
3 0.73 0.728 0.72 0.709 0.673
4 0.702 0.724 0.719 0.727 0.728
5 0.693 0.714 0.713 0.703 0.696

Vehicle

1 0.73 0.738 0.757 0.743 0.705

balanced

2 0.705 0.748 0.739 0.718 0.726
3 0.726 0.722 0.756 0.736 0.706
4 0.735 0.738 0.752 0.747 0.719
5 0.731 0.726 0.759 0.773 0.713

Landsat
1 0.809 0.815 0.814 0.805 0.804

Satellite
2 0.809 0.809 0.809 0.813 0.815

imbalanced
3 0.813 0.82 0.811 0.808 0.81
4 0.813 0.811 0.81 0.806 0.8
5 0.808 0.813 0.809 0.809 0.804

Landsat
1 0.799 0.799 0.8 0.794 0.79

Satellite
2 0.799 0.797 0.791 0.793 0.791

balanced
3 0.803 0.805 0.801 0.795 0.789
4 0.797 0.801 0.793 0.793 0.798
5 0.803 0.8 0.791 0.796 0.792

Dry
1 0.915 0.913 0.911 0.912 0.912

Bean
2 0.917 0.915 0.915 0.913 0.914

imbalanced
3 0.913 0.912 0.911 0.91 0.908
4 0.917 0.914 0.91 0.911 0.911
5 0.914 0.913 0.914 0.913 0.911

Dry
1 0.915 0.912 0.911 0.913 0.911

Bean
2 0.918 0.916 0.915 0.913 0.911

balanced
3 0.913 0.913 0.913 0.907 0.913
4 0.916 0.913 0.912 0.911 0.912
5 0.913 0.913 0.911 0.911 0.909

Statistical tests are performed in order to confirm the importance in the differences in
the obtained results acc. At first, the values of the classification accuracy in five dependent
groups (3, 5, 7, 9, 11 local tables) are analyzed. The Friedman test confirmed a statistically
significant difference in the results obtained for the five different version of dispersion
being considered, χ2(28, 4) = 26.608, p = 0.00003. The Wilcoxon each-pair test confirmed
the significant differences between the average accuracy values for all pairs with 11 local
tables: 3 and 11 local tables p = 0.007, 5 and 11 local tables p = 0.001, 7 and 11 local tables
p = 0.004, 9 and 11 local tables p = 0.016.

Additionally, a comparative box-plot chart for the values of the classification accuracy
is created (Figure 3). Here, the distributions of the values obtained for different versions of
dispersion are similar; thus, we can conclude that for sufficiently large data sets (5000 ob-
jects), the degree of dispersion does not have a huge impact on the obtained results. More
specifically, the degree of dispersion has little effect on the quality of classification in the
proposed approach.
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Figure 3. Box-plot chart with (median, the first quartile—Q1, the third quartile—Q3) the value of
classification accuracy acc for different versions of dispersion.

3.3. Comparison of Quality of Classification for Different Numbers of Neurons in the Hidden Layer

In Tables A1–A6, which are presented earlier, all the results obtained for the different
analyzed number of neurons in the hidden layer are given. The best obtained classification
accuracies are also marked in those tables. It can be seen that these best results are generated
by a higher number of neurons in the hidden layer. The optimal values are above 3× the
number of neurons in the input layer up to 5× the number of neurons in the input layer.
This propriety does not depend on the number of objects in data set—no matter how large
the data set is, more neurons in the hidden layer gives better results. However, there is not
one universal number of neurons in the hidden layer that is optimal for every data set.

In order to notice certain patterns for particular data sets, heat maps are created based
on the results from Tables A1–A6 and shown in Figure 4. On the x-axis, the number of
neurons in the hidden layer is presented, while the number of artificial objects generated
and the version of the dispersion are shown on the y-axis. The color on the map is
determined by the classification accuracy value. Definitely for the Dry Bean data set,
the clearest pattern can be seen, which shows that increasing the number of neurons in the
hidden layer clearly improves classification accuracy. Additionally, for the Vehicle data set,
it can be seen that a higher number of neurons results in better quality. The least visible
dependence is found in the heat map for the Landsat Satellite data set. Here, for a large
number of neurons in the hidden layer, both very good classification quality and worse
results were observed. More specifically, it depends on the data set whether the increased
number of neurons in the hidden layer will improve the quality of classification, and this
impact is very different and specific to the data set.

3.4. Comparison of Quality of Classification for Balanced and Imbalanced Versions of Data Set

We will now focus on comparing the results obtained for balanced and imbalanced
data. In Table 4, a comparison of the best results (those in a bold font in Tables A1–A6)
obtained for balanced and imbalanced versions of each dispersed data is presented. In the
table, the best result is shown in a bold font for each dispersed data set.

Based on the results, it cannot be explicitly concluded that the proposed method gives
better results for balanced only or imbalanced data only as it depends on the data set in
question. For the Vehicle data set, better results are obtained with balanced data, while for
the Landsat Satellite data set, better results are obtained with imbalanced data. In both
cases, the Wilcoxon test for dependent samples confirmed the statistical significance of
the differences with p = 0.0001. In contrast, for the Dry Bean data set, the results in both
balanced and imbalanced versions are virtually the same. Here, the Wilcoxon test did not
confirm the significance of the differences (p = 0.523).
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Table 4. Comparison of classification accuracy acc obtained for imbalanced and balanced versions
of data.

Data
Set

No. of
Tables

No. of Art.
Objects Imbalanced Balanced Data

Set Imbalanced Balanced

1 0.724 0.73 0.915 0.915
2 0.688 0.705 0.917 0.918

3 3 0.73 0.726 0.913 0.913
4 0.702 0.735 0.917 0.916
5 0.693 0.731 0.914 0.913

1 0.71 0.738 0.913 0.912
2 0.696 0.748 0.915 0.916

5 3 0.728 0.722 0.912 0.913
4 0.724 0.738 0.914 0.913
5 0.714 0.726 0.913 0.913

1 0.698 0.757 0.911 0.911
2 0.699 0.739 0.915 0.915

Vehicle 7 3 0.72 0.756 Dry 0.911 0.913
4 0.719 0.752 Bean 0.91 0.912
5 0.713 0.759 0.914 0.911

1 0.698 0.743 0.912 0.913
2 0.707 0.718 0.913 0.913

9 3 0.709 0.736 0.91 0.907
4 0.727 0.747 0.911 0.911
5 0.703 0.773 0.913 0.911

1 0.694 0.705 0.912 0.911
2 0.71 0.726 0.914 0.911

11 3 0.673 0.706 0.908 0.913
4 0.728 0.719 0.911 0.912
5 0.696 0.713 0.911 0.909

1 0.809 0.799
2 0.809 0.799

3 3 0.813 0.803
4 0.813 0.797
5 0.808 0.803

1 0.815 0.799
2 0.809 0.797

5 3 0.82 0.805
4 0.811 0.801
5 0.813 0.8

1 0.814 0.8
2 0.809 0.791

Landsat 7 3 0.811 0.801
Satellite 4 0.81 0.793

5 0.809 0.791

1 0.805 0.794
2 0.813 0.793

9 3 0.808 0.795
4 0.806 0.793
5 0.809 0.796

1 0.804 0.79
2 0.815 0.791

11 3 0.81 0.789
4 0.8 0.798
5 0.804 0.792
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Figure 4. Heat maps on the accuracy levels of all data sets.

Comparative box-plot charts for the values of the classification accuracy in two groups
of imbalanced and balanced data are created (Figure 5). The graphs confirm earlier conclu-
sions; hence, it can be said that the proposed method handles balanced and imbalanced data
comparably. In fact, the final result depends on the specifics of the data set. Determining
the specific characteristics of the data sets that influenced the results requires further study.
More specifically, it depends on the data set whether applying the SMOTE method for
balancing the data set improves the quality of classification.
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Figure 5. Box-plot chart with (median, the first quartile—Q1, the third quartile—Q3) the value of
classification accuracy acc for imbalanced and balanced versions of data sets.

3.5. Comparison of Quality of Classification of the Proposed Approach with an Iterative Approach
Modeled on Federated Learning

In this section, the results obtained from the approach modeled on federated learn-
ing [7,8,11] will be presented. Then a comparison will be made with the results obtained
for the proposed approach.

The main difference between the proposed approach and the one based on federated
learning is the iterative aggregation of local models. In the proposed approach, local models
aggregation occurs only once. The approach modeled on federated learning involves the
following steps:

1. Generation of local MLP neural networks based on local tables created analogously as
described in Section 2.1. This means that missing attributes are filled in local tables,
and artificial objects are generated.

2. The obtained weights and biases from local models are sent to a central server.
3. At the central server, the average of the weights and biases are computed, and the

global model obtained is sent back to the local devices.
4. Local devices accept the global model, and once again, trained weights and biases are

sent to the central server. Steps 3 and 4 are iterated three times.
5. The global model is post-training on a stratified half of the test set and its accuracy is

tested on the remaining half. At another step, the global model is post-training on the
other half and tested on the remaining half, after which the classification accuracy is
averaged. This is the final step of the process.

As may be noted, an effort was made to provide a fair comparison as both the artificial
objects and the post-training process were used in the above approach. An important
difference between the proposed approach and the above model is the iterative aggregation
of the global model. In addition, the same numbers of artificial objects generated and the
same number of neurons in the hidden layer were also analyzed. Of course, the exper-
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iments were performed on the same data sets in terms of the degree of dispersion and
balanced/imbalanced version. The full results are not given here for the sake of readability
and clarity of the paper. Table 5 gives comparison of the results obtained for the proposed
approach and the one based on federated learning. In the table, a better result from the two
approaches is shown in a bold font. As can be seen, in the overwhelming number of cases,
the proposed approach produced better results. Only in thirteen cases for the Vehicle data
set did the approach modeled on federated learning produce slightly better results.

Table 5. Comparison of classification accuracy acc obtained for the proposed approach (PA) and the
approach modeled on federated learning (FL).

Approach PA FL PA FL PA FL PA FL PA FL

Data No. of No. of Artificially Generated Objects
Set Tables 1 1 2 2 3 3 4 4 5 5

Vehicle

3 0.724 0.677 0.688 0.677 0.73 0.673 0.702 0.709 0.693 0.724

imbalanced

5 0.71 0.681 0.696 0.673 0.728 0.693 0.724 0.717 0.714 0.709
7 0.698 0.705 0.699 0.693 0.72 0.661 0.719 0.665 0.713 0.701
9 0.698 0.673 0.707 0.685 0.709 0.709 0.727 0.697 0.703 0.677
11 0.694 0.673 0.71 0.673 0.673 0.673 0.728 0.689 0.696 0.661

Vehicle

3 0.73 0.65 0.705 0.713 0.726 0.752 0.735 0.713 0.731 0.689

balanced

5 0.738 0.709 0.748 0.669 0.722 0.701 0.738 0.732 0.726 0.713
7 0.757 0.709 0.739 0.748 0.756 0.665 0.752 0.736 0.759 0.764
9 0.743 0.717 0.718 0.756 0.736 0.728 0.747 0.748 0.773 0.748
11 0.705 0.709 0.726 0.736 0.706 0.74 0.719 0.693 0.713 0.748

Landsat
3 0.809 0.759 0.809 0.766 0.813 0.773 0.813 0.783 0.808 0.781

Satellite
5 0.815 0.766 0.809 0.768 0.82 0.781 0.811 0.78 0.813 0.781

imbalanced
7 0.814 0.779 0.809 0.77 0.811 0.777 0.81 0.777 0.809 0.769
9 0.805 0.771 0.813 0.767 0.808 0.784 0.806 0.786 0.809 0.782
11 0.804 0.771 0.815 0.773 0.81 0.775 0.8 0.781 0.804 0.782

Landsat
3 0.799 0.74 0.799 0.734 0.803 0.743 0.797 0.77 0.803 0.773

Satellite
5 0.799 0.74 0.797 0.759 0.805 0.746 0.801 0.777 0.8 0.774

balanced
7 0.8 0.76 0.791 0.752 0.801 0.766 0.793 0.777 0.791 0.773
9 0.794 0.75 0.793 0.759 0.795 0.762 0.793 0.774 0.796 0.765
11 0.79 0.757 0.791 0.776 0.789 0.761 0.798 0.763 0.792 0.788

Dry
3 0.915 0.881 0.917 0.904 0.913 0.883 0.917 0.877 0.914 0.894

Bean
5 0.913 0.872 0.915 0.889 0.912 0.883 0.914 0.893 0.913 0.893

imbalanced
7 0.911 0.88 0.915 0.899 0.911 0.889 0.91 0.878 0.914 0.873
9 0.912 0.877 0.913 0.891 0.91 0.875 0.911 0.875 0.913 0.889
11 0.912 0.887 0.914 0.891 0.908 0.878 0.911 0.889 0.911 0.893

Dry
3 0.915 0.893 0.918 0.91 0.913 0.889 0.916 0.87 0.913 0.89

Bean
5 0.912 0.876 0.916 0.9 0.913 0.884 0.913 0.859 0.913 0.88

balanced
7 0.911 0.878 0.915 0.895 0.913 0.9 0.912 0.884 0.911 0.889
9 0.913 0.881 0.913 0.89 0.907 0.881 0.911 0.87 0.911 0.881
11 0.911 0.876 0.911 0.896 0.913 0.872 0.912 0.887 0.909 0.886

Statistical tests are performed to confirm the significance of the differences in the
obtained results acc for the proposed approach and the approach modeled on federated
learning. The Wilcoxon test using all results from Table 5 is performed. Two dependent
groups are analyzed (PA—the proposed approach, FL—the approach modeled on federated
learning). The test confirms that differences among the classification accuracy in these
two groups are significant (p = 0.0001). Additionally, comparative box-plot charts for
the values of the classification accuracy are created (Figure 6). The graphs confirm earlier
conclusions, and hence it can be said that the proposed method generates better results
than the approach modeled on federated learning.
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Figure 6. Box-plot chart with (median, the first quartile—Q1, the third quartile—Q3) the value of clas-
sification accuracy acc for the proposed approach and the approach modeled on federated learning.

4. Conclusions

The paper presented a new method for generating a global MLP model based on dis-
persed data with different sets of conditional attributes present in local tables. The novelty
proposed is the method of generating artificial objects to train local networks with identical
structure. An exhaustive comparison of the proposed method has been carried out in
terms of the number of artificially generated objects, network structure, data balancing,
and degree of data sparseness. The main conclusions are as follows. The greater the number
of objects in local tables, the smaller the number of artificially generated objects is sufficient
to generate optimal results. For smaller data sets, a greater number of artificial objects
(three or four) produces better results. For large data sets, data balancing and the degree
of dispersion have no significant impact on the quality of classification. In most cases,
a higher number of neurons in the hidden layer gives better results; however, this is very
data-dependent and specific. The best results are obtained for the number of neurons in
the hidden layer equal to three to five times the number of neurons in the input layer.
The paper also confirmed that the proposed method gives better results than the method
modeled on federated learning.

In the proposed approach, many aspects should be considered in the future. Among the
main plans are to test other ways of aggregating local models and proposing a new method
for generating a global training set used in the post-training phase.
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Appendix A

Tables A1–A6 show the classification accuracy obtained for different versions of
dispersion, different numbers of artificially generated objects, and different numbers of
neurons in the hidden layer for Vehicle imbalanced, Vehicle balanced, Landsat Satellite
imbalanced, Landsat Satellite balanced, Dry Bean imbalanced, and Dry Bean balanced data
sets, respectively.
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Table A1. Results of classification accuracy acc for the proposed approach with one hidden layer and different number of artificially generated objects—Vehicle
imbalanced data set. Designation I is used for the number of neurons in the input layer.

No. of Artificial No. of No. of Neurons in Hidden Layer

Objects Tables 0.25 × I 0.5 × I 0.75 × I 1 × I 1.5 × I 1.75 × I 2 × I 2.5 × I 2.75 × I 3 × I 3.5 × I 3.75 × I 4 × I 4.5 × I 4.75 × I 5 × I

3 0.283 0.331 0.522 0.664 0.703 0.694 0.717 0.713 0.698 0.663 0.703 0.724 0.680 0.711 0.719 0.697
5 0.281 0.664 0.678 0.690 0.693 0.659 0.699 0.694 0.702 0.664 0.703 0.699 0.694 0.706 0.710 0.694

1 7 0.446 0.640 0.664 0.686 0.636 0.659 0.669 0.659 0.698 0.682 0.676 0.669 0.673 0.685 0.696 0.685
9 0.466 0.605 0.572 0.626 0.667 0.660 0.659 0.698 0.690 0.654 0.682 0.677 0.675 0.668 0.642 0.692
11 0.283 0.516 0.559 0.537 0.661 0.652 0.644 0.676 0.636 0.694 0.651 0.680 0.648 0.669 0.661 0.664

3 0.283 0.308 0.664 0.675 0.673 0.680 0.668 0.675 0.685 0.673 0.676 0.685 0.664 0.673 0.685 0.688
5 0.281 0.398 0.644 0.671 0.677 0.665 0.673 0.665 0.690 0.664 0.678 0.682 0.688 0.696 0.680 0.690

2 7 0.283 0.672 0.650 0.669 0.696 0.665 0.673 0.686 0.689 0.668 0.699 0.688 0.693 0.688 0.673 0.692
9 0.283 0.667 0.639 0.652 0.660 0.667 0.680 0.690 0.663 0.707 0.701 0.673 0.693 0.678 0.678 0.659
11 0.283 0.283 0.639 0.654 0.699 0.677 0.699 0.676 0.680 0.707 0.692 0.680 0.665 0.696 0.710 0.678

3 0.283 0.675 0.635 0.648 0.647 0.706 0.720 0.698 0.707 0.703 0.730 0.723 0.705 0.697 0.694 0.703
5 0.283 0.630 0.677 0.711 0.680 0.697 0.717 0.714 0.697 0.690 0.714 0.690 0.728 0.710 0.710 0.707

3 7 0.283 0.280 0.654 0.684 0.685 0.677 0.688 0.701 0.720 0.692 0.709 0.713 0.693 0.692 0.719 0.715
9 0.283 0.280 0.685 0.682 0.692 0.699 0.673 0.705 0.709 0.697 0.701 0.688 0.688 0.682 0.685 0.707
11 0.283 0.283 0.656 0.668 0.630 0.655 0.668 0.643 0.672 0.659 0.673 0.672 0.654 0.671 0.660 0.671

3 0.283 0.546 0.65 0.638 0.671 0.694 0.681 0.668 0.688 0.66 0.68 0.678 0.667 0.689 0.69 0.702
5 0.283 0.518 0.634 0.657 0.676 0.681 0.664 0.69 0.723 0.696 0.692 0.697 0.69 0.724 0.693 0.665

4 7 0.283 0.375 0.684 0.667 0.694 0.68 0.696 0.693 0.668 0.678 0.707 0.678 0.696 0.719 0.709 0.718
9 0.283 0.525 0.673 0.69 0.69 0.706 0.693 0.693 0.718 0.702 0.688 0.727 0.689 0.697 0.709 0.685
11 0.283 0.283 0.661 0.701 0.728 0.684 0.707 0.692 0.701 0.699 0.69 0.706 0.705 0.717 0.724 0.698

3 0.352 0.617 0.63 0.646 0.669 0.671 0.664 0.65 0.686 0.669 0.652 0.685 0.671 0.693 0.663 0.635
5 0.283 0.644 0.692 0.652 0.681 0.701 0.685 0.693 0.673 0.694 0.692 0.702 0.701 0.706 0.714 0.71

5 7 0.283 0.391 0.678 0.663 0.692 0.713 0.678 0.673 0.699 0.713 0.69 0.69 0.703 0.676 0.706 0.681
9 0.283 0.52 0.644 0.634 0.685 0.694 0.652 0.703 0.698 0.696 0.692 0.686 0.669 0.692 0.681 0.682
11 0.283 0.283 0.659 0.661 0.657 0.667 0.689 0.667 0.678 0.685 0.661 0.663 0.696 0.68 0.673 0.68
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Table A2. Results of classification accuracy acc for the proposed approach with one hidden layer and different number of artificially generated objects—Vehicle
balanced data set. Designation I is used for the number of neurons in the input layer.

No. of Artificial No. of No. of Neurons in Hidden Layer

Objects Tables 0.25 × I 0.5 × I 0.75 × I 1 × I 1.5 × I 1.75 × I 2 × I 2.5 × I 2.75 × I 3 × I 3.5 × I 3.75 × I 4 × I 4.5 × I 4.75 × I 5 × I

3 0.283 0.685 0.705 0.692 0.689 0.702 0.720 0.699 0.713 0.705 0.710 0.718 0.726 0.730 0.714 0.727
5 0.374 0.656 0.542 0.680 0.697 0.696 0.727 0.694 0.702 0.693 0.713 0.711 0.738 0.694 0.705 0.728

1 7 0.283 0.684 0.715 0.730 0.745 0.751 0.739 0.743 0.731 0.745 0.755 0.738 0.744 0.739 0.739 0.757
9 0.283 0.707 0.685 0.552 0.710 0.707 0.735 0.731 0.743 0.738 0.726 0.715 0.732 0.732 0.730 0.709
11 0.446 0.538 0.654 0.676 0.682 0.660 0.678 0.682 0.656 0.681 0.688 0.705 0.677 0.697 0.681 0.696

3 0.283 0.583 0.651 0.644 0.685 0.696 0.664 0.69 0.675 0.69 0.684 0.672 0.693 0.696 0.705 0.69
5 0.283 0.283 0.686 0.711 0.715 0.711 0.732 0.734 0.724 0.724 0.73 0.722 0.736 0.738 0.731 0.748

2 7 0.283 0.567 0.715 0.702 0.713 0.728 0.726 0.71 0.699 0.718 0.739 0.738 0.713 0.705 0.703 0.717
9 0.377 0.689 0.642 0.686 0.682 0.717 0.676 0.715 0.707 0.698 0.689 0.705 0.711 0.718 0.685 0.702
11 0.283 0.697 0.64 0.685 0.671 0.696 0.698 0.711 0.689 0.694 0.709 0.718 0.705 0.688 0.726 0.709

3 0.302 0.685 0.681 0.647 0.697 0.707 0.706 0.710 0.693 0.696 0.690 0.694 0.675 0.689 0.726 0.715
5 0.283 0.677 0.701 0.686 0.675 0.693 0.711 0.713 0.703 0.710 0.703 0.714 0.701 0.722 0.718 0.706

3 7 0.283 0.490 0.740 0.715 0.739 0.739 0.734 0.736 0.747 0.735 0.755 0.740 0.756 0.740 0.751 0.736
9 0.283 0.465 0.652 0.702 0.684 0.697 0.709 0.727 0.693 0.701 0.720 0.723 0.699 0.736 0.728 0.717
11 0.283 0.490 0.681 0.657 0.676 0.693 0.706 0.698 0.689 0.684 0.698 0.688 0.701 0.696 0.686 0.692

3 0.283 0.676 0.61 0.71 0.717 0.702 0.728 0.734 0.735 0.718 0.726 0.705 0.732 0.731 0.718 0.701
5 0.283 0.647 0.677 0.696 0.694 0.694 0.703 0.667 0.717 0.717 0.722 0.73 0.738 0.736 0.718 0.728

4 7 0.283 0.701 0.554 0.726 0.71 0.73 0.718 0.74 0.727 0.717 0.745 0.73 0.73 0.73 0.748 0.752
9 0.283 0.283 0.701 0.697 0.711 0.711 0.722 0.747 0.73 0.744 0.741 0.72 0.738 0.735 0.722 0.727
11 0.283 0.283 0.669 0.705 0.675 0.688 0.702 0.703 0.697 0.71 0.719 0.69 0.717 0.698 0.694 0.713

3 0.283 0.402 0.699 0.652 0.689 0.714 0.731 0.718 0.726 0.709 0.69 0.672 0.673 0.707 0.73 0.697
5 0.283 0.549 0.655 0.688 0.696 0.685 0.678 0.718 0.681 0.718 0.711 0.726 0.722 0.715 0.701 0.71

5 7 0.283 0.486 0.697 0.706 0.694 0.715 0.759 0.722 0.741 0.722 0.736 0.747 0.743 0.727 0.732 0.731
9 0.283 0.323 0.688 0.736 0.718 0.761 0.741 0.773 0.739 0.738 0.748 0.705 0.753 0.74 0.741 0.744
11 0.283 0.283 0.68 0.673 0.682 0.682 0.688 0.678 0.675 0.702 0.697 0.701 0.696 0.713 0.706 0.686
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Table A3. Results of classification accuracy acc for the proposed approach with one hidden layer and different number of artificially generated objects—Landsat
Satellite imbalanced data set. Designation I is used for the number of neurons in the input layer.

No. of Artificial No. of No. of Neurons in Hidden Layer

Objects Tables 0.25 × I 0.5 × I 0.75 × I 1 × I 1.5 × I 1.75 × I 2 × I 2.5 × I 2.75 × I 3 × I 3.5 × I 3.75 × I 4 × I 4.5 × I 4.75 × I 5 × I

3 0.588 0.789 0.789 0.793 0.806 0.802 0.808 0.805 0.799 0.809 0.805 0.806 0.809 0.806 0.802 0.801
5 0.235 0.793 0.795 0.809 0.804 0.807 0.803 0.798 0.809 0.803 0.810 0.805 0.811 0.813 0.815 0.810

1 7 0.747 0.795 0.788 0.795 0.796 0.805 0.814 0.813 0.808 0.810 0.800 0.808 0.807 0.797 0.799 0.805
9 0.778 0.791 0.794 0.792 0.791 0.793 0.795 0.801 0.797 0.798 0.800 0.804 0.800 0.805 0.801 0.803
11 0.793 0.787 0.789 0.801 0.794 0.798 0.789 0.799 0.791 0.804 0.799 0.802 0.802 0.796 0.802 0.803

3 0.765 0.787 0.791 0.803 0.8 0.797 0.796 0.808 0.792 0.804 0.798 0.809 0.803 0.809 0.803 0.803
5 0.558 0.489 0.802 0.797 0.803 0.802 0.807 0.803 0.809 0.807 0.802 0.797 0.799 0.807 0.809 0.802

2 7 0.235 0.795 0.798 0.804 0.795 0.797 0.805 0.795 0.799 0.792 0.809 0.803 0.807 0.801 0.805 0.803
9 0.235 0.79 0.794 0.797 0.799 0.797 0.798 0.805 0.8 0.797 0.796 0.813 0.801 0.796 0.796 0.803
11 0.235 0.795 0.792 0.784 0.804 0.802 0.8 0.806 0.805 0.808 0.803 0.815 0.81 0.807 0.815 0.801

3 0.713 0.786 0.798 0.800 0.807 0.796 0.812 0.801 0.804 0.808 0.807 0.809 0.813 0.800 0.810 0.806
5 0.750 0.794 0.796 0.804 0.803 0.805 0.810 0.807 0.811 0.812 0.807 0.820 0.810 0.809 0.803 0.804

3 7 0.556 0.794 0.799 0.789 0.805 0.798 0.797 0.799 0.790 0.801 0.806 0.811 0.799 0.803 0.798 0.801
9 0.556 0.797 0.801 0.797 0.802 0.800 0.805 0.801 0.801 0.808 0.804 0.807 0.802 0.807 0.804 0.805
11 0.235 0.753 0.794 0.791 0.795 0.803 0.805 0.795 0.796 0.799 0.810 0.799 0.804 0.794 0.793 0.792

3 0.623 0.796 0.794 0.807 0.809 0.805 0.795 0.801 0.807 0.802 0.811 0.812 0.797 0.813 0.809 0.81
5 0.781 0.798 0.795 0.804 0.79 0.808 0.801 0.805 0.8 0.798 0.81 0.807 0.808 0.808 0.804 0.811

4 7 0.558 0.78 0.796 0.8 0.791 0.797 0.805 0.795 0.801 0.81 0.803 0.8 0.804 0.803 0.796 0.801
9 0.784 0.797 0.797 0.796 0.794 0.79 0.797 0.783 0.806 0.803 0.804 0.796 0.803 0.803 0.796 0.798
11 0.235 0.792 0.793 0.794 0.795 0.794 0.797 0.796 0.793 0.799 0.795 0.784 0.794 0.796 0.794 0.8

3 0.235 0.783 0.786 0.794 0.79 0.803 0.791 0.792 0.803 0.805 0.789 0.802 0.797 0.807 0.803 0.808
5 0.561 0.794 0.8 0.793 0.811 0.809 0.806 0.791 0.809 0.806 0.812 0.812 0.801 0.813 0.813 0.809

5 7 0.66 0.79 0.796 0.799 0.799 0.809 0.803 0.797 0.805 0.806 0.8 0.801 0.802 0.808 0.806 0.803
9 0.559 0.792 0.802 0.792 0.799 0.792 0.805 0.809 0.8 0.801 0.803 0.806 0.801 0.799 0.802 0.801
11 0.235 0.789 0.799 0.798 0.79 0.797 0.799 0.802 0.8 0.801 0.801 0.803 0.801 0.8 0.804 0.794
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Table A4. Results of classification accuracy acc for the proposed approach with one hidden layer and different number of artificially generated objects—Landsat
Satellite balanced data set. Designation I is used for the number of neurons in the input layer.

No. of Artificial No. of No. of Neurons in Hidden Layer

Objects Tables 0.25 × I 0.5 × I 0.75 × I 1 × I 1.5 × I 1.75 × I 2 × I 2.5 × I 2.75 × I 3 × I 3.5 × I 3.75 × I 4 × I 4.5 × I 4.75 × I 5 × I

3 0.767 0.794 0.791 0.782 0.787 0.792 0.787 0.788 0.779 0.787 0.799 0.796 0.786 0.789 0.780 0.786
5 0.238 0.740 0.778 0.781 0.785 0.781 0.793 0.788 0.793 0.795 0.789 0.796 0.787 0.785 0.790 0.799

1 7 0.417 0.776 0.789 0.793 0.795 0.800 0.793 0.784 0.793 0.794 0.798 0.791 0.789 0.783 0.800 0.796
9 0.238 0.782 0.787 0.786 0.790 0.780 0.785 0.782 0.781 0.786 0.780 0.785 0.782 0.787 0.787 0.794
11 0.238 0.741 0.780 0.781 0.785 0.788 0.787 0.789 0.788 0.789 0.781 0.782 0.790 0.783 0.784 0.789

3 0.238 0.775 0.779 0.789 0.782 0.781 0.791 0.79 0.791 0.789 0.788 0.789 0.788 0.785 0.799 0.791
5 0.238 0.787 0.793 0.795 0.778 0.786 0.793 0.789 0.794 0.796 0.791 0.795 0.788 0.797 0.791 0.787

2 7 0.238 0.788 0.786 0.787 0.785 0.78 0.781 0.781 0.778 0.79 0.791 0.767 0.782 0.782 0.777 0.785
9 0.689 0.789 0.783 0.791 0.787 0.793 0.777 0.786 0.785 0.789 0.792 0.792 0.787 0.787 0.789 0.781
11 0.563 0.772 0.783 0.785 0.78 0.779 0.782 0.789 0.782 0.783 0.772 0.785 0.791 0.78 0.785 0.789

3 0.562 0.782 0.786 0.781 0.778 0.779 0.787 0.794 0.780 0.781 0.791 0.773 0.801 0.787 0.803 0.790
5 0.238 0.785 0.787 0.795 0.791 0.788 0.788 0.790 0.798 0.786 0.784 0.784 0.805 0.782 0.787 0.790

3 7 0.238 0.792 0.786 0.790 0.785 0.793 0.797 0.777 0.786 0.788 0.792 0.801 0.798 0.789 0.780 0.798
9 0.564 0.781 0.784 0.786 0.795 0.791 0.791 0.787 0.794 0.794 0.787 0.795 0.792 0.787 0.794 0.792
11 0.567 0.775 0.780 0.782 0.788 0.780 0.783 0.786 0.785 0.780 0.779 0.786 0.788 0.784 0.789 0.773

3 0.753 0.774 0.778 0.788 0.788 0.783 0.779 0.788 0.788 0.781 0.783 0.787 0.775 0.787 0.796 0.797
5 0.568 0.787 0.788 0.79 0.794 0.786 0.786 0.793 0.79 0.799 0.79 0.781 0.79 0.797 0.797 0.801

4 7 0.566 0.773 0.78 0.787 0.792 0.784 0.771 0.79 0.781 0.783 0.791 0.775 0.793 0.79 0.779 0.775
9 0.238 0.773 0.788 0.778 0.775 0.78 0.787 0.78 0.78 0.763 0.793 0.771 0.785 0.791 0.787 0.784
11 0.566 0.785 0.787 0.78 0.784 0.781 0.782 0.782 0.791 0.778 0.784 0.776 0.79 0.776 0.776 0.798

3 0.569 0.781 0.794 0.793 0.787 0.779 0.794 0.799 0.797 0.803 0.8 0.788 0.794 0.797 0.792 0.798
5 0.676 0.777 0.781 0.784 0.785 0.8 0.792 0.795 0.798 0.784 0.786 0.781 0.792 0.794 0.793 0.792

5 7 0.734 0.779 0.781 0.78 0.781 0.778 0.782 0.778 0.787 0.775 0.78 0.779 0.791 0.789 0.788 0.769
9 0.401 0.788 0.78 0.787 0.792 0.79 0.794 0.787 0.784 0.793 0.789 0.796 0.772 0.793 0.783 0.78
11 0.238 0.759 0.785 0.785 0.787 0.784 0.79 0.792 0.788 0.791 0.786 0.786 0.787 0.786 0.782 0.788
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Table A5. Results of classification accuracy acc for the proposed approach with one hidden layer and different number of artificially generated objects —Dry Bean
imbalanced data set. Designation I is used for the number of neurons in the input layer.

No. of Artificial No. of No. of Neurons in Hidden Layer

Objects Tables 0.25 × I 0.5 × I 0.75 × I 1 × I 1.5 × I 1.75 × I 2 × I 2.5 × I 2.75 × I 3 × I 3.5 × I 3.75 × I 4 × I 4.5 × I 4.75 × I 5 × I

3 0.877 0.891 0.892 0.902 0.902 0.904 0.904 0.910 0.912 0.910 0.910 0.912 0.912 0.913 0.915 0.915
5 0.541 0.888 0.894 0.900 0.900 0.907 0.903 0.907 0.907 0.909 0.913 0.911 0.911 0.912 0.911 0.911

1 7 0.885 0.887 0.893 0.894 0.901 0.900 0.902 0.903 0.905 0.906 0.909 0.910 0.911 0.911 0.911 0.911
9 0.879 0.890 0.888 0.893 0.897 0.899 0.903 0.904 0.905 0.907 0.906 0.907 0.908 0.910 0.912 0.911
11 0.882 0.890 0.892 0.893 0.899 0.899 0.902 0.904 0.905 0.908 0.907 0.908 0.910 0.912 0.912 0.910

3 0.886 0.889 0.903 0.905 0.911 0.914 0.911 0.912 0.912 0.912 0.916 0.915 0.916 0.916 0.917 0.917
5 0.822 0.89 0.904 0.899 0.902 0.905 0.905 0.91 0.911 0.911 0.911 0.912 0.914 0.914 0.914 0.915

2 7 0.88 0.895 0.903 0.896 0.904 0.908 0.908 0.907 0.908 0.911 0.911 0.911 0.911 0.914 0.915 0.913
9 0.884 0.888 0.896 0.894 0.899 0.902 0.905 0.905 0.905 0.906 0.91 0.912 0.912 0.912 0.911 0.913
11 0.884 0.891 0.897 0.894 0.897 0.899 0.902 0.904 0.907 0.906 0.908 0.912 0.909 0.913 0.911 0.914

3 0.885 0.895 0.897 0.898 0.904 0.905 0.907 0.908 0.910 0.911 0.911 0.913 0.912 0.912 0.912 0.913
5 0.886 0.888 0.890 0.902 0.902 0.906 0.905 0.906 0.907 0.909 0.909 0.910 0.910 0.910 0.912 0.912

3 7 0.804 0.887 0.896 0.892 0.902 0.903 0.902 0.908 0.907 0.906 0.909 0.907 0.909 0.911 0.911 0.911
9 0.520 0.886 0.890 0.895 0.896 0.899 0.897 0.905 0.904 0.902 0.907 0.907 0.907 0.910 0.909 0.909
11 0.633 0.886 0.891 0.896 0.897 0.897 0.900 0.900 0.902 0.902 0.903 0.905 0.905 0.906 0.907 0.908

3 0.79 0.894 0.895 0.9 0.907 0.907 0.909 0.91 0.909 0.91 0.913 0.913 0.913 0.914 0.914 0.917
5 0.884 0.893 0.899 0.9 0.903 0.903 0.903 0.907 0.909 0.911 0.909 0.911 0.911 0.91 0.911 0.914

4 7 0.866 0.887 0.889 0.896 0.901 0.898 0.898 0.905 0.906 0.905 0.906 0.909 0.909 0.908 0.91 0.91
9 0.887 0.886 0.892 0.892 0.898 0.902 0.903 0.903 0.905 0.906 0.91 0.908 0.91 0.909 0.911 0.911
11 0.78 0.889 0.895 0.896 0.898 0.899 0.9 0.901 0.903 0.906 0.909 0.908 0.908 0.909 0.909 0.911

3 0.876 0.892 0.901 0.898 0.901 0.91 0.908 0.911 0.913 0.909 0.912 0.914 0.914 0.914 0.914 0.911
5 0.882 0.887 0.893 0.897 0.903 0.903 0.906 0.909 0.907 0.908 0.91 0.91 0.911 0.912 0.913 0.913

5 7 0.883 0.89 0.893 0.895 0.898 0.902 0.901 0.904 0.906 0.908 0.91 0.911 0.91 0.913 0.911 0.914
9 0.883 0.887 0.889 0.894 0.899 0.899 0.901 0.903 0.906 0.904 0.907 0.908 0.911 0.913 0.91 0.911
11 0.856 0.889 0.892 0.892 0.897 0.898 0.897 0.907 0.903 0.902 0.906 0.908 0.908 0.91 0.911 0.908
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Table A6. Results of classification accuracy acc for the proposed approach with one hidden layer and different number of artificially generated objects—Dry Bean
balanced data set. Designation I is used for the number of neurons in the input layer.

No. of Artificial No. of No. of Neurons in Hidden Layer

Objects Tables 0.25 × I 0.5 × I 0.75 × I 1 × I 1.5 × I 1.75 × I 2 × I 2.5 × I 2.75 × I 3 × I 3.5 × I 3.75 × I 4 × I 4.5 × I 4.75 × I 5 × I

3 0.421 0.891 0.897 0.898 0.901 0.905 0.904 0.910 0.910 0.911 0.911 0.912 0.911 0.914 0.913 0.915
5 0.883 0.891 0.894 0.900 0.902 0.904 0.904 0.909 0.909 0.909 0.910 0.910 0.909 0.910 0.911 0.912

1 7 0.657 0.888 0.893 0.894 0.897 0.897 0.900 0.904 0.905 0.905 0.907 0.908 0.909 0.909 0.911 0.911
9 0.881 0.885 0.894 0.896 0.898 0.898 0.901 0.903 0.905 0.907 0.908 0.910 0.907 0.911 0.913 0.912
11 0.871 0.887 0.892 0.894 0.895 0.903 0.903 0.902 0.903 0.908 0.909 0.909 0.909 0.910 0.911 0.909

3 0.897 0.902 0.905 0.906 0.912 0.91 0.914 0.916 0.914 0.916 0.916 0.917 0.918 0.916 0.917 0.918
5 0.886 0.901 0.906 0.905 0.907 0.909 0.909 0.911 0.907 0.91 0.913 0.915 0.914 0.914 0.916 0.913

2 7 0.634 0.892 0.903 0.901 0.907 0.904 0.905 0.909 0.915 0.911 0.914 0.912 0.914 0.913 0.91 0.914
9 0.863 0.894 0.896 0.9 0.903 0.906 0.908 0.908 0.908 0.907 0.912 0.91 0.912 0.912 0.912 0.913
11 0.878 0.895 0.894 0.892 0.902 0.901 0.901 0.909 0.905 0.908 0.906 0.91 0.909 0.91 0.91 0.911

3 0.413 0.890 0.898 0.901 0.904 0.908 0.909 0.908 0.909 0.908 0.910 0.912 0.912 0.913 0.913 0.911
5 0.580 0.889 0.891 0.896 0.899 0.906 0.907 0.905 0.906 0.908 0.909 0.909 0.913 0.913 0.912 0.911

3 7 0.887 0.889 0.894 0.900 0.900 0.903 0.904 0.905 0.906 0.909 0.910 0.912 0.910 0.913 0.912 0.912
9 0.606 0.884 0.892 0.893 0.897 0.903 0.899 0.901 0.901 0.904 0.904 0.905 0.906 0.904 0.907 0.906
11 0.734 0.891 0.892 0.894 0.898 0.898 0.901 0.902 0.905 0.906 0.906 0.906 0.909 0.911 0.910 0.913

3 0.884 0.893 0.894 0.897 0.905 0.904 0.907 0.909 0.911 0.91 0.914 0.911 0.913 0.913 0.914 0.916
5 0.884 0.892 0.894 0.893 0.902 0.904 0.902 0.904 0.909 0.909 0.907 0.909 0.912 0.911 0.913 0.913

4 7 0.884 0.888 0.894 0.897 0.9 0.9 0.903 0.905 0.906 0.907 0.909 0.909 0.907 0.909 0.91 0.912
9 0.854 0.888 0.886 0.89 0.901 0.902 0.903 0.901 0.904 0.904 0.902 0.905 0.91 0.909 0.91 0.911
11 0.844 0.89 0.893 0.895 0.896 0.905 0.901 0.906 0.905 0.906 0.907 0.909 0.909 0.912 0.911 0.912

3 0.883 0.889 0.899 0.901 0.906 0.908 0.907 0.908 0.91 0.909 0.91 0.912 0.912 0.911 0.913 0.913
5 0.884 0.895 0.896 0.9 0.905 0.907 0.903 0.906 0.906 0.907 0.911 0.91 0.911 0.912 0.913 0.912

5 7 0.801 0.885 0.889 0.896 0.901 0.905 0.9 0.904 0.905 0.906 0.908 0.907 0.911 0.911 0.91 0.91
9 0.882 0.888 0.891 0.892 0.898 0.9 0.9 0.903 0.903 0.901 0.907 0.908 0.907 0.911 0.91 0.911
11 0.425 0.891 0.892 0.892 0.897 0.897 0.897 0.905 0.904 0.905 0.907 0.909 0.907 0.907 0.909 0.909
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2. Piwowarczyk, M.; Muke, P.Z.; Telec, Z.; Tworek, M.; Trawiński, B. Comparative analysis of ensembles created using diversity

measures of regressors. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada,
11–14 October 2020; pp. 2207–2214.

3. Muzammal, M.; Talat, R.; Sodhro, A.H.; Pirbhulal, S. A multi-sensor data fusion enabled ensemble approach for medical data
from body sensor networks. Inf. Fusion 2020, 53, 155–164. [CrossRef]

4. Przybyła-Kasperek, M. Comparison of Dispersed Decision Systems with Pawlak Model and with Negotiation Stage in Terms
of Five Selected Fusion Methods. In Proceedings of the Computational Collective Intelligence ICCCI 2018 10th International
Conference, ICCCI 2018, Bristol, UK, 5–7 September 2018; pp. 301–310. [CrossRef]

5. Seydi, S.T.; Saeidi, V.; Kalantar, B.; Ueda, N.; van Genderen, J.L.; Maskouni, F.H.; Aria, F.A. Fusion of the multisource datasets for
flood extent mapping based on ensemble convolutional neural network (CNN) model. J. Sens. 2022, 2022, 2887502. [CrossRef]

6. Firouzi, R.; Rahmani, R.; Kanter, T. Federated learning for distributed reasoning on edge computing. Procedia Comput. Sci. 2021,
184, 419–427. [CrossRef]

7. Połap, D. Fuzzy consensus with federated learning method in medical systems. IEEE Access 2021, 9, 150383–150392. [CrossRef]
8. Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A survey on security and privacy of

federated learning. Future Gener. Comput. Syst. 2021, 115, 619–640. [CrossRef]
9. Marfo, K.F.; Przybyła-Kasperek, M. Radial basis function network for aggregating predictions of k-nearest neighbors local models

generated based on independent data sets. Procedia Comput. Sci. 2022, 207, 3234–3243. [CrossRef]
10. Przybyła-Kasperek, M.; Marfo, K.F. Neural network used for the fusion of predictions obtained by the K-Nearest neighbors

algorithm based on independent data sources. Entropy 2021, 23, 1568. [CrossRef] [PubMed]
11. Venkatesha, Y.; Kim, Y.; Tassiulas, L.; Panda, P. Federated learning with spiking neural networks. IEEE Trans. Signal Process. 2021,

69, 6183–6194. [CrossRef]
12. Senousy, Z.; Abdelsamea, M.M.; Mohamed, M.M.; Gaber, M.M. 3E-Net: Entropy-based elastic ensemble of deep convolutional

neural networks for grading of invasive breast carcinoma histopathological microscopic images. Entropy 2021, 23, 620. [CrossRef]
[PubMed]

13. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.

14. Li, X.; Li, X.; Pan, D.; Zhu, D. On the learning property of logistic and softmax losses for deep neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 4739–4746.

15. Kingma, D.P.; Ba, J. In Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations, ICLR, San Diego, CA, USA, 7–9 May 2015.

16. Mannor, S.; Peleg, D.; Rubinstein, R. The cross entropy method for classification. In Proceedings of the 22nd International
Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 561–568.

17. Schapire, R.E. Explaining Adaboost. Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 37–52.

18. Siebert, J.P. Vehicle Recognition Using Rule Based Methods; Turing Institute: London, UK, 1987.
19. Asuncion, A.; Newman, D.J. UCI Machine Learning Repository; University of Massachusetts Amherst: Amherst, MA, USA, 2007.

Available online: https://archive.ics.uci.edu (accessed on 10 March 2023).
20. Koklu, M.; Ozkan, I.A. Multiclass classification of dry beans using computer vision and machine learning techniques. Comput.

Electron. Agric. 2020, 174, 105507. [CrossRef]
21. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
22. Ingrid, R.; Zdravko, M. An introduction to the weka data mining system. In Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, Seattle, WA, USA, 8–11 March 2017; p. 742.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.inffus.2019.06.021
http://dx.doi.org/10.1007/978-3-319-98446-9_28
http://dx.doi.org/10.1155/2022/2887502
http://dx.doi.org/10.1016/j.procs.2021.03.053
http://dx.doi.org/10.1109/ACCESS.2021.3125799
http://dx.doi.org/10.1016/j.future.2020.10.007
http://dx.doi.org/10.1016/j.procs.2022.09.381
http://dx.doi.org/10.3390/e23121568
http://www.ncbi.nlm.nih.gov/pubmed/34945874
http://dx.doi.org/10.1109/TSP.2021.3121632
http://dx.doi.org/10.3390/e23050620
http://www.ncbi.nlm.nih.gov/pubmed/34065765
https://archive.ics.uci.edu
http://dx.doi.org/10.1016/j.compag.2020.105507
http://dx.doi.org/10.1613/jair.953

	Introduction
	Materials and Methods 
	First Stage—Training Local Models, MLP Neural Networks, Based on Local Tables
	Second Stage—Aggregation of Local Models to the Global Model
	Third Stage—Post-Training the Global Model Using a Small Training Set

	Results 
	Comparison of Quality of Classification for Different Numbers of Objects Artificially Generated
	Comparison of Quality of Classification for Different Versions of Dispersion
	Comparison of Quality of Classification for Different Numbers of Neurons in the Hidden Layer
	Comparison of Quality of Classification for Balanced and Imbalanced Versions of Data Set
	Comparison of Quality of Classification of the Proposed Approach with an Iterative Approach Modeled on Federated Learning

	Conclusions 
	Appendix A
	References

