
Citation: Wen, Y.; Chaolu, T.

Learning the Nonlinear Solitary

Wave Solution of the Korteweg–De

Vries Equation with Novel Neural

Network algorithm. Entropy 2023, 25,

704. https://doi.org/

10.3390/e25050704

Academic Editor: Nikolay Kolev

Vitanov

Received: 17 March 2023

Revised: 20 April 2023

Accepted: 22 April 2023

Published: 24 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Learning the Nonlinear Solitary Wave Solution of the
Korteweg–De Vries Equation with Novel Neural
Network Algorithm
Ying Wen 1,*,† and Temuer Chaolu 2,†

1 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
2 College of Sciences and Arts, Shanghai Maritime University, Shanghai 201306, China;

tmchaolu@shmtu.edu.cn
* Correspondence: 201840310002@stu.shmtu.edu.cn
† These authors contributed equally to this work.

Abstract: The study of wave-like propagation of information in nonlinear and dispersive media is
a complex phenomenon. In this paper, we provide a new approach to studying this phenomenon,
paying special attention to the nonlinear solitary wave problem of the Korteweg–De Vries (KdV)
equation. Our proposed algorithm is based on the traveling wave transformation of the KdV equation,
which reduces the dimensionality of the system, enabling us to obtain a highly accurate solution with
fewer data. The proposed algorithm uses a Lie-group-based neural network trained via the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) optimization method. Our experimental results demonstrate
that the proposed Lie-group-based neural network algorithm can simulate the behavior of the KdV
equation with high accuracy while using fewer data. The effectiveness of our method is proved
by examples.

Keywords: KdV equation; Lie groups; deep learning; BFGS; partial differential equations

1. Introduction

Nonlinear science is an interdisciplinary research field that spans a wide range of
scientific domains, including life science, mathematical science, spatial science, and geo-
graphic science. In recent decades, the study of solitons has become increasingly important
and widespread. Solitons are relevant in many fields of science, including fluid mechanics,
quantum mechanics, biology, ocean engineering, and more. Therefore, the solution of
soliton equations is theoretically and practically critical and has become an important
area of theoretical and application-based research. The investigation of soliton equation
solution techniques has not halted since the soliton theory was first put forward. Numer-
ous equations have verified several mature solution techniques, including the Painlevé
analysis [1], the Backlund transform method [2], the Darboux transform method [3], the
inverse scattering transform method [4], the Lie group and Lie algebra method [5], the
Hamiltonian structure method [6], etc. There are numerous approaches for finding the
exact solution to the soliton problem due to its complexity; however, these approaches
cannot be unified.

The ability to answer such scientific computing issues in conjunction with numerical
analysis has significantly improved with the development of machine learning [7]. The
most well-known area of machine learning research is deep learning. Researchers originally
proved a general approximation theorem [8] for neural networks, and deep learning
was later used in a variety of fields, including image recognition [9], natural language
processing [10], and optimization problems [11]. The neural networks have an advantage
over the dimensional catastrophe problem that traditional numerical approaches must
deal with because of the increased dimensionality and the linear rise in computational

Entropy 2023, 25, 704. https://doi.org/10.3390/e25050704 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25050704
https://doi.org/10.3390/e25050704
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5304-6027
https://doi.org/10.3390/e25050704
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25050704?type=check_update&version=1


Entropy 2023, 25, 704 2 of 12

effort. Differential equations and machine learning methods combined have been proven
to be advantageous. The combination of differential equations and machine learning
methods is beneficial in solving soliton problems. The performance of neural network-
based algorithms in predicting soliton solutions has been investigated, and these algorithms
have demonstrated promising results in terms of accuracy and the amount of required
data. With ongoing developments in machine learning, there is potential for further
advancements in the field of soliton equation solutions. Overall, the integration of machine
learning and soliton theory is a promising approach that can lead to significant progress in
various fields of science.

Recent advancements in deep neural networks have enabled researchers to solve dif-
ferential and partial differential equations (PDEs) with fewer data points while maintaining
high accuracy, making deep learning techniques an increasingly popular alternative to
traditional numerical methods. In the beginning, Lee et al. [12] employed Hopfield neural
networks to solve ordinary differential equation (ODE) models. Lagaris et al. [13] obtained
the trial solution within the error range by continuously optimizing the parameters of the
neural network and replacing the solution of the equation with the sum of the initial and
boundary value and the neural network function. Methods that require fewer data and pro-
duce quick results while maintaining high accuracy are gaining popularity. Chen et al. [14]
used neural networks to parameterize the derivatives of the hidden states rather than
directly parameterizing the hidden states, auto memory tuning, and adaptive computation
to compress the ODEs into the neural network. Raissi et al. [15,16] suggested the novel
loss function form to physical priors into the neural network architecture. Differential
equations and machine learning techniques are combined in the scientific machine learning
that Rackauckas et al. [17] proposed. Continuous convolutional neural networks were
employed by Habiba et al. [18] to learn PDE systems. Deep learning in machine learning
is increasingly being used as a framework to analyze PDEs, including the common non-
linear wave model KdV equation. Cellular neural networks can imitate KdV behavior, as
demonstrated experimentally by Bilotta et al. [19]. To forecast the solutions and parameters
of the KdV equation, Fang et al. [20] integrated conservation laws into neural networks.
Higher-order nonlinear soliton equations were solved by Cui et al. [21] using deep learning
techniques. A two-stage physics-informed neural network (PINN) approach was suggested
by Lin et al. [22] to more accurately and generally simulate the local wave solutions of the
productive equations. Lin et al. [23] followed up by using the Miura transform and PINN to
propose a PINN scheme based on Miura transform to solve the KdV equation. Wu et al. [24]
conducted a comprehensive study on the sampling method of PINN sampling and tested
its performance in the KdV equation, guiding researchers on the sampling method in sub-
sequent research. Applications of deep learning in analyzing PDEs, including the common
nonlinear wave model KdV equation, are gaining popularity. The literature [25] provides a
review of the broad application potential of deep neural networks for solving PDEs. This
approach is expected to be more widely adopted in future research, facilitating the progress
of scientific areas such as physics, biology, and finance.

While neural networks have been used to solve PDE problems, the development of
efficient algorithms that utilize minimal resources whilst still effectively addressing the
underlying properties of solutions remains an ongoing issue. In this paper, we propose a
novel approach that utilizes a Lie-group-based neural network algorithm for solving the
KdV equation. Our new method boasts good learning performance, which we affirm by
comparing its numerical results with those obtained from the true solution. Specifically,
inspired by the unique form of Lie group theory for solving first-order differential equa-
tions, we developed a novel method to address PDE problems by constructing a solution
consisting of a neural network function and a Lie-group-based solution. In our approach,
the sum of these two parts approximates the solution of the differential equation. To effec-
tively apply this approach to PDE problems, we first convert the PDEs into an ODEs. We
observed that constructing the solution in this manner eliminates the need to increase the
initial value item in the loss function whilst still fully satisfying the initial value. Moreover,



Entropy 2023, 25, 704 3 of 12

using only a small number of neural network parameters can improve fitting ability, all
thanks to the Lie-group-based solution. Our proposed approach is highly efficient since
the Lie-group-based solution captures the nonlinear characteristics of the KdV equation
well before training the neural network. As a result, the cost of the subsequent neural
network calculations is reduced. Our approach not only delivers precise predictions but
also highlights essential characteristics of the KdV solution such as the constancy of solitary
waves over time. By leveraging our method, we can better understand and analyze complex
physical phenomena described by the KdV equation, a feat that has remained challenging
using other techniques. The ability to capture these key features is crucial in advancing our
understanding of nonlinear dynamics and provides a significant boost to the predictive
power of our model.

Encouragingly, our investigation revealed that this new method can efficiently and
accurately capture complex phenomena in nonlinear waves. We developed all implementa-
tions using PyCharm 2021.2.3 and conducted simulations on a Lenovo laptop with a 2.60
GHz 2-core Intel(R) Core(TM) i5-3230M CPU and 8GB memory. The proposed approach
could serve as a foundation for future research exploring more general forms of PDEs while
reflecting upon the properties of the solutions. The code used in this study is made publicly
available to support reproducibility and ease further analyses.

The remainder of this essay is structured as follows. The algorithm presented in this
paper and its precise steps are shown in Section 2. The approach is used to solve the KdV
equation in Section 3, and this section goes into great depth about how it was accomplished
and how accurate the results were. We also study and evaluate our results. Concluding
comments and future research work are offered in Section 4.

2. The Main Idea of the Lie-Group-Based Neural Network Algorithm
2.1. Illustration of the Algorithms

Consider the general form of PDE as follows:

ut + N(x, u, ux, uxx, · · · ) = 0, x ∈ Ω, t ∈ [0, T]. (1)

The independent variables x, t, the solution u to be solved, and the partial derivatives
of u with respect to the space variable x make up the nonlinear function N. The equation is
subject to boundary or initial conditions.

The following autonomous system of ODEs is obtained by transforming [26] the PDE:

dui
da

= fi(u1, u2, · · · , un), ui(0) = αi ∈ R1, i = 1, 2, · · · , n. (2)

where a ∈ O ⊂ R1 is independent variable x or t and ui = ui(a) is u in (1) and fi are
differential functions of own arguments after the variable t or x has been eliminated. αi is
the initial condition.

From [27], the solution of (2) can be written as Lie group solution û(a) = eaDα,
where D is the differential operator. According to theorem 2, D can be split into D1 + D2,
eaD = eaD1 + ∑∞

α=1 ∑∞
k=α

ak

k! Dk−α
1 D2Dα−1. The first part eaD1 is obtained from the equation

dū
da = D1ū, ū(0) = α, the second integral calculation should be replaced with the neural
network function form aN (a; θ), which offers superior simplicity and ease of computation.
The advantage of û(a) = ū(a) + aN (a; θ) for approximating the solution u of the (2) is that
the first part can easily capture the nonlinear nature of the equation which can accelerate
the convergence of the second part of the neural computation, while the second part uses a
simple neural network structure with fewer resources and less memory consumption, and
the sum of the two parts can effectively model the behavior of (1).



Entropy 2023, 25, 704 4 of 12

In our study, we use a fully connected neural network N with one input, one output,
m units in the hidden layer, and an activation function σ. The outputs of the network N
can be written as

N (a; θ) = ZL

= σ(W(L) · · · σ(W(l) · · · σ(W(2) · σ(W(1) · a + b(1)) + b(2))) + b(L)). (3)

The output of the layer l is Zl = σ(W(l) · Zl−1 + b(l)), {aτ}λ
τ=1 is the training point in

the definition domain, θ = {W(l), b(l)}L
l=1 is the parameters of the neural network, where

W(l) is the weight of layer l with respect to layer l − 1, bl is the bias of layer l, and w(l)
jk is

the weight from units k in the layer l− 1 to units j in the layer l. By adjusting the parameter
θ, we can enhance the approximation of u(a) via the network solution û(a) where σ is a
nonlinear activation function tanh = ex−e−x

ex+e−x .

W(l) =


wl

11 · · · wl
1mk−1

...
. . .

...
wl

mk1 · · · wl
mkmk−1

, (4)

b(l) =


bl

1
bl

2
...

bl
mk

. (5)

2.2. Details of the Algorithm

The unconstrained optimization process of (2) is measured by the following mean
square error equation

L(θ) = 1
λ

(
λ

∑
τ=1

n

∑
i=1

(
û′i(aτ)− fi

)2
)

, (6)

The trial solution û(a) is substituted into (2) so that the loss function (6) of the neural
network is minimized at the training points, and the parameter set {W, b} is found using
the optimization algorithm. λ is the number of training points and n denotes the number
of equations. When the number of equations increases, the number of training points can
be increased. The method can successfully approximate the solution u of (1) when L(θ)
is small enough. In addition to using the mean square error mentioned above to create
the loss function, we also used the average root mean square error LRMSE to evaluate the
superiority of the method.

LRMSE =
1
2 ∑

µ

Lµ(θ), (7)

where Lµ(θ) is the mean square error between the trial solution ûi(a) and the exact solution
ui(a). When the exact solution is not available, the numerical solution ui(a) is employed, µ

is the number of dependent variables, where L1(θ) =

√
1
λ

(
∑λ

τ=1(û(aτ , θ)− u(aτ))
2
)

.

3. Example for Korteweg–De Vries Equation

In this study, we present our novel method for identifying solitons of the KdV equation.
The KdV equation represents a fundamental model in mathematical physics and is typically



Entropy 2023, 25, 704 5 of 12

formulated as a PDE given by ut + 6uux + uxxx = 0. This equation is commonly used to
describe water waves and has been extensively studied in the previous literature [28].

To detect the soliton of the equation, we first perform a traveling transformation
denoted by ξ = x− vt, thereby enabling us to transform the PDE into an ODE. Specifically,
this transformation allows us to rewrite the equation in terms of the new variable ξ as

u′′′ + 6uu′ − vu′ = 0, (8)

with u = u(ξ). We seek the soliton to the (8) with properties u(0) = umax, u′(0) =
0, u′′(0) = u0 < 0 and u(±∞) = 0. Specifically, when ξ = 0, the wave value reaches its
peak at u(0) = 1. In our particular case, we take v = 2, umax = 1, u0 = −1 and consider
the variable ξ over the interval [−3, 3].

This ODE formulation can be solved using our proposed method, which efficiently
detects soliton solutions in the equation. We transform the problem (8) to the standard
form in our method as

u̇1 = u2, u̇2 = u3, u̇3 = 2u2 − 6u1u2, (9)

with initial values u1(0) = 1, u2(0) = 0, u3(0) = −1 by introducing variables (u1, u2, u3) =
(u, u̇, ü). It corresponds to operator D = D1 + D2 with a selection D1 = u2∂u1 + u3∂u2 +
2u2∂u3 .

The associated initial value problem yields solutions

ū1(ξ) = −
1
2

(
cosh(

√
2ξ)− 3

)
; ū2(ξ) = −

1√
2

sinh(
√

2ξ);

ū3(ξ) = − cosh(
√

2ξ).

Therefore, we have trial solution û = ū + ξN (ξ, θ). The parameters of the neural network
N can be learned by minimizing the mean squared error loss (6)

L(ξ, θ) =
1
λ

(
λ

∑
τ=1

(
û′1(ξτ)− f1

)2
+
(
û′2(ξτ)− f2

)2
+
(
û′3(ξτ)− f3

)2
)

, (10)

where f1 = û2(ξτ), f2 = û3(ξτ), f3 = 2û2(ξτ)− 6û1(ξτ)û2(ξτ), τ = 1, 2, · · · , λ.
The comparisons of our solution ū1 and exact solution u = sech2

(
ξ√
2

)
to (8) are

given in the Figure 1. Our proposed method has been able to accurately approach the true
solution in the range of interest [−1, 1], indicating the first part of our solution is effective.
This not only improves the accuracy of our solution but also speeds up the computation of
the second part of our neural network, which ensures rapid convergence.

In this study, we investigate the ability of our proposed method to learn from sparse
training data. To accomplish this, we obtained a limited set of 250 training data within
the interval [−3, 3], which were used to train a feed-forward neural network with a single
hidden layer consisting of 30 units. The network solution û for the initial value problem (8)
was obtained by minimizing the mean square error of (6) using Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [29]. The comparison of the network solution û with the exact
solution u on the training set is presented in the left panel of Figure 2. Our method achieves
an accurate approximation of the exact solution u even when trained with small amounts
of data. The right panel of Figure 2 shows the comparison of the network solution û with
the exact solution u within the test set [−3, 3.3]. We observe that the network maintains
good generalization ability outside of the interval [−3, 3] and continues to provide accurate
approximations of the solution in the absence of training points. Our results suggest that the
proposed approach is capable of learning from limited training data, which is particularly
important in practical scenarios where data acquisition may be difficult or expensive.



Entropy 2023, 25, 704 6 of 12

u

1

-1.0 -0.5 0.0 0.5 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ξ

V
a
lu
e
s

Figure 1. Comparison of the efficiency of the first part ū1 of the network solution û1 with the exact

solution u = sech2
(

ξ/
√

2
)

of problem (8).

−3 −2 −1 0 1 2 3
ξ

0.2

0.4

0.6

0.8

1.0

Va
lu

es

Neural solution - ̂u1
̂xact solution - u

−3 −2 −1 0 1 2 3
ξ

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

es

Neural solution - ̂u1
̂xact solution - u

Figure 2. (Left): Comparison of our solution û with the exact solution u = sech2
(

ξ/
√

2
)

of
problem (8) in the training set. (Right): Comparison of our solution û with the exact solution

u = sech2
(

ξ/
√

2
)

of problem (8) in the test set.

The blue line in Figure 3 shows the relationship between the number of iterations
during training and the loss function L(ξ, θ), an error entirely attributed to the Lie group
method and the neural network’s ability to approximate u. When the number of iterations is
around 2000, L(θ) = 2.8378× 10−7. LRMSE = 7.6167× 10−5. To evaluate the effectiveness
of our proposed method, we compare it with existing PINN approaches. We conduct
experiments using 250 training points in the interval x ∈ [−1, 3], t ∈ [0, 1] and a single
hidden layer structure with 30 neurons. The loss function is set to L = 1

λ ∑λ
τ=1

(
L f + Lu

)
,

where L f = (ût + 6ûûx + ûxxx)
2, Lu = (û(0, xτ)− u(0, xτ))2 + (û(tτ ,−1)− u(tτ ,−1))2 +

(û(tτ , 3)− u(tτ , 3))2. The objective is to approximate the exact solution u with higher
accuracy under the same conditions as our proposed method. We compare the performance
of our method with other PINN algorithms by the number of iterations versus the loss
value. Our experimental results show that the PINN method produces better loss function
values until the number of iterations is 100, and our proposed method outperforms existing
methods in terms of convergence speed and accuracy after 100 iterations. As described in
Figure 3, the loss function L of PINN method reaches 10−3 after about 2000 iterations.

We investigate the prediction accuracy of several neural network architectures using
the same training points to analyze the performance of our proposed method in more detail.
We study the loss function L(θ) for different numbers of hidden layers and different num-



Entropy 2023, 25, 704 7 of 12

bers of neurons per layer. Table 1 presents the results of our analysis, demonstrating the
impact of varying the architecture of the neural network on prediction accuracy. Here, the
training points are fixed to the range [−3, 3] of 250 uniformly spaced points. As expected,
we observe that as the number of layers and neurons increases, the prediction accuracy
systematically improves. This is in line with the general notion that larger and deeper
neural networks have greater expressive power and are better equipped to approximate
complex functions. It is worth noting that while increasing the number of neurons and
layers in a neural network can improve its performance, it also comes at a cost of increased
computational complexity and potentially slower training times. Therefore, in practical set-
tings, it is important to balance the trade-off between model complexity and computational
efficiency. Our findings suggest that, given sufficient training data, our proposed method
can be used to build highly accurate models, but careful consideration must be given to the
size of the neural network when implementing it in practical applications.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

10−5

10−3

10−1

101

103

105

Lo
ss

Pinn_loss
Lie_loss

Figure 3. The variation curve of the loss function with the number of iterations for the PINN approach
and the Lie-group-based neural network algorithm for problem (8).

Table 1. The loss function L(θ) for different number of hidden layers and different number of neurons
per layer. Here, the training points are fixed to the range [−3, 3] of 250 uniformly spaced points.

Neurons
L(θ) 30 40 50
Layers

1 2.3× 10−7 1.9× 10−7 2.0× 10−7

2 3.1× 10−8 3.5× 10−8 2.7× 10−8

3 1.6× 10−8 1.8× 10−8 1.5× 10−8

The results of this experiment are summarized in Figure 4. Specifically, the top left
panel shows the true solution u(t, x) of the KdV equation, while the right panel displays
the spatiotemporal solution û(t, x) predicted according to the chosen optimal parameter
θ. We observe that our approach is highly accurate in approximating the true solution.
The bottom panel of Figure 4 gives a more detailed evaluation of the predicted solution
û(t, x). For different times t = 0.3, 0.5, and 0.8, we compare the exact and predicted
solutions in particular at the bottom of Figure 4. Our experimental results demonstrate that
our approach can produce highly accurate predictions even for complex spatiotemporal
problems such as the KdV equation.



Entropy 2023, 25, 704 8 of 12

-2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1

x

u
(t
,x
)

t=0.3

-2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1

x

u
(t
,x
)

t=0.5

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1

x

u
(t
,x
)

t=0.8

Figure 4. (Top): The true solution u = sech2
(
(x− 2t)/

√
2
)

of the KdV equation is on the left, the

predicted solution û(t, x) is on the right. (Bottom): Comparison of predicted and exact solutions at
time t = 0.3, 0.5, and 0.8. (The dashed blue line indicates the exact solution u(t, x), and the solid red
line indicates the predicted solution û(t, x)).

To further investigate the effectiveness of the algorithm in approximating the per-
formance of the true solution of the KdV equation, with the true solution u = 2/3 −
2 tanh2(ξ) [30] , the solitary wave with wave peak u(ξ) = 2/3 is sought under the traveling
wave transform ξ = x + 4t with the initial conditions v = −4, umax = 2/3, u0 = −4 and
consider the interval [−3, 3] for variable ξ.

The initial value problem u1(0) = 2/3, u2(0) = 0, u3(0) = −4 for problem (9). Choose
the operator D1 that u2∂u1 + u3∂u2 − 4u2∂u3 . The associated initial value problem yields
solutions, ū1(ξ) = − 1

3 cos(2ξ), ū2(ξ) = −2 sin(2ξ) and ū3(ξ) = −4 cos(2ξ). The decompo-
sition part of the trial solution constructed from the Lie group can capture the nonlinear
nature of the problem (8), as illustrated by a comparison between u and ū1 in Figure 5.

1

u

-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

ξ

V
a
lu
e
s

Figure 5. Comparison of the efficiency of the first part ū1 of the network solution û1 with the exact
solution u = 2/3− 2 tanh2(ξ) of problem (8).

Using the BFGS algorithm, the same network structure with a single hidden layer
containing 30 neurons, training data equally spaced at 250 training points in the range



Entropy 2023, 25, 704 9 of 12

[−3, 3], and the same test data are learned u. The results are presented in Figure 6, where it
is evident that our approach yields remarkable accuracy in predicting u.

−3 −2 −1 0 1 2 3
ξ

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Va
lu

es

Neural solution - ̂u1
̂xact solution - u

−3 −2 −1 0 1 2 3
ξ

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Va
lu

es

Neural solution - ̂u1
̂xact solution - u

Figure 6. (Left): Comparison of our solution û with the exact solution u = 2/3− 2 tanh2(ξ) of
problem (8) in the training set. (Right): Comparison of our solution û with the exact solution
u = 2/3− 2 tanh2(ξ) of problem (8) in the test set.

The number of iterations and the loss function L(ξ, θ) are shown in Figure 7, where we
observe that in this case, L(θ) = 5.4765× 10−7, indicating the high accuracy of our approach.

0 250 500 750 1000 1250 1500 1750 2000
Training Iterations

10−6

10−4

10−2

100

102

104

Lo
g 

Lo
ss

BFGS

Figure 7. The variation curve of the Loss function with the number of iterations for the Lie-group-
based neural network algorithm.

In Figure 8, we present a comparison between the true solution u = 2/3− 2 tanh2(x + 4t)
of the KdV equation (top left panel) and the predicted solution û (top right panel). Interest-
ingly, the waveform of the single soliton does not change with time, as shown in the bottom
panel of Figure 8 which gives the exact and predicted solutions for different times t = 0.3, 0.5,
and 0.8.



Entropy 2023, 25, 704 10 of 12

-4 -3 -2 -1 0 1 2

-1.2

-0.8

-0.4

0

0.4

x

u
(t
,x
)

t=0.3

-4 -3 -2 -1 0 1

-1.2

-0.8

-0.4

0

0.4

x

u
(t
,x
)

t=0.5

-5 -4 -3 -2 -1 0

-1.2

-0.8

-0.4

0

0.4

x

u
(t
,x
)

t=0.8

Figure 8. (Top): The true solution u = 2/3− 2 tanh2(x + 4t) of the KdV equation is on the left, the
predicted solution û(t, x) is on the right. (Bottom): Comparison of predicted and exact solutions at
time t = 0.3, 0.5, and 0.8. (The dashed blue line indicates the exact solution u(t, x), and the solid red
line indicates the predicted solution û(t, x)).

The complex nonlinear behavior of the KdV equation can be precisely captured by the
Lie-groups-based neural network algorithm using just a minimal quantity of initial data
(30 neurons in a single hidden layer with 250 training points).

4. Discussion and Conclusions

Our study focuses on the restoration of the dynamic behavior of the KdV equation
using a Lie-group-based neural network algorithm. Compare with the existing PINN learn-
ing method, experimental findings demonstrate that our proposed method can accurately
restore the dynamic behavior of the KdV equation with high accuracy and fast convergence
under a small number of parameters and a simple network structure. In addition, a deep
study is done for our proposed algorithm, and the accuracy is improved when the number
of hidden layers increases with the number of neurons contained, but the time cost spent is
also relatively high.

To confirm the accuracy and reliability of our proposed algorithm, we searched for
other solitary solutions of the KdV equation. In the study presented in [31], an evaluation
related to the design and efficacy of automatic tools for the derivation of solitary solutions
of nonlinear differential equations is discussed. The study confirms by proof that the
technique fails when considering the space of system parameters and initial conditions.
To overcome these challenges, we can learn existing learning methods, such as the PINN
method, to add both the errors generated by the initial and boundary conditions into
the loss function. The change in our proposed algorithm in the way the loss function is
constructed is made L = LI + LF, where LI is the error generated by the network solution
û in the initial or boundary term. This modification to the construction of the loss function
ensures that errors arising from both the initial and boundary conditions are considered in
the prediction process, leading to more accurate results overall. Furthermore, the choice of
operator D1 plays a crucial role in subsequent neural network computation, and selecting
the appropriate operator is vital to ensure precise and reliable results.

Notably, the success of our approach depends on capturing the mathematical substance
of the equation solutions, which is often overlooked in machine learning techniques used
for numerical solutions of differential equations. Recent research has shown that more
implicit information about the solutions could be ignored when using these approaches.
However, our proposed algorithm overcomes this limitation with only a shallow neural
network model and limited data. Through our validation process, we have shown that our
proposed algorithm performs effectively, producing highly accurate predictions for solitary



Entropy 2023, 25, 704 11 of 12

solutions of the KdV equation. Our approach offers a new avenue for accurately predicting
complex nonlinear solutions of PDEs and lays the foundation for future studies into other
similar problems,which motivates us to study models in other interdisciplinary fields, such
as finance or medical biology. The future work requires more research on optimization
techniques to improve performance in addition to addressing parameter constraints or
initial value constraints encountered in appeal problems.

Author Contributions: Conceptualization, Y.W. and T.C.; methodology, Y.W.; software, Y.W.; valida-
tion, Y.W.; writing—original draft preparation, Y.W.; writing—review and editing, Y.W. and T.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
11571008.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included within
the article. The link to the code is https://github.com/yingWWen/Learning_the_nonlinear_solitary\
_wave_solution_of_KdV_equation_with_novel_neural_network_algorithm, accessed on 16 March
2023.

Acknowledgments: The authors thank the support of the National Natural Science Foundation of
China with grant number 11571008.

Conflicts of Interest: As far as we know, there are no conflicts of interest or financial or other conflicts.
The funders had no role in the design of the study; in the collection, analyses, or interpretation of
data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Khater, A.; Callebaut, D.; Shamardan, A.; Ibrahim, R. Bäcklund transformations and Painlevé: Exact soliton solutions for strongly

rarefied relativistic cold plasma. Phys. Plasmas 1997, 4, 3910–3922. [CrossRef]
2. Nimmo, J.; Freeman, N. The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form. J. Phys. A

Math. Gen. 1984, 17, 1415. [CrossRef]
3. Huang, D.; Li, D.; Zhang, H. Explicit N-fold Darboux transformation and multi-soliton solutions for the (1+1)-dimensional

higher-order Broer–Kaup system. Chaos Solitons Fractals 2007, 33, 1677–1685. [CrossRef]
4. Arkadiev, V.; Pogrebkov, A.; Polivanov, M. Inverse scattering transform method and soliton solutions for Davey-Stewartson II

equation. Phys. D Nonlinear Phenom. 1989, 36, 189–197. [CrossRef]
5. Kumar, S.; Kumar, D. Solitary wave solutions of (3+1)-dimensional extended Zakharov–Kuznetsov equation by Lie symmetry

approach. Comput. Math. Appl. 2019, 77, 2096–2113. [CrossRef]
6. Ferapontov, E.; Galvao, C.; Mokhov, O.; Nutku, Y. Bi-Hamiltonian Structure in 2-d Field Theory. Commun. Math. Phys. 1997,

186, 649–669. [CrossRef]
7. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B

(Methodol.) 1977, 39, 1–22.
8. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
9. Komar, M.; Yakobchuk, P.; Golovko, V.; Dorosh, V.; Sachenko, A. Deep neural network for image recognition based on the Caffe

framework. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv,
Ukraine, 21–25 August 2018; pp. 102–106.

10. Li, H. Deep learning for natural language processing: Advantages and challenges. Natl. Sci. Rev. 2018, 5, 24–26. [CrossRef]
11. Louati, H.; Bechikh, S.; Louati, A.; Hung, C.C.; Said, L.B. Deep convolutional neural network architecture design as a bi-level

optimization problem. Neurocomputing 2021, 439, 44–62. [CrossRef]
12. Lee, H.; Kang, I.S. Neural algorithm for solving differential equations. J. Comput. Phys. 1990, 91, 110–131. [CrossRef]
13. Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans.

Neural Netw. 1998, 9, 987–1000. [CrossRef] [PubMed]
14. Chen, R.T.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D.K. Neural ordinary differential equations. In Proceedings of the Advances

in Neural Information Processing Systems 31 (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018; Volume 31.
15. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial

differential equations. arXiv 2017, arXiv:1711.10561.
16. Raissi, M. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 2018,

19, 932–955.

https://github.com/yingWWen/Learning_the_nonlinear_solitary\ _wave_solution_of_KdV_equation_with_novel_neural_network_algorithm
https://github.com/yingWWen/Learning_the_nonlinear_solitary\ _wave_solution_of_KdV_equation_with_novel_neural_network_algorithm
http://doi.org/10.1063/1.872511
http://dx.doi.org/10.1088/0305-4470/17/7/009
http://dx.doi.org/10.1016/j.chaos.2006.03.015
http://dx.doi.org/10.1016/0167-2789(89)90258-3
http://dx.doi.org/10.1016/j.camwa.2018.12.009
http://dx.doi.org/10.1007/s002200050123
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1093/nsr/nwx110
http://dx.doi.org/10.1016/j.neucom.2021.01.094
http://dx.doi.org/10.1016/0021-9991(90)90007-N
http://dx.doi.org/10.1109/72.712178
http://www.ncbi.nlm.nih.gov/pubmed/18255782


Entropy 2023, 25, 704 12 of 12

17. Rackauckas, C.; Ma, Y.; Martensen, J.; Warner, C.; Zubov, K.; Supekar, R.; Skinner, D.; Ramadhan, A.; Edelman, A. Universal
differential equations for scientific machine learning. arXiv 2020, arXiv:2001.04385.

18. Habiba, M.; Pearlmutter, B.A. Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE. In Proceedings of
the 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 9–10
December 2021; pp. 1–4.

19. Bilotta, E.; Pantano, P. Cellular nonlinear networks meet KdV equation: A new paradigm. Int. J. Bifurc. Chaos 2013, 23, 1330003.
[CrossRef]

20. Fang, Y.; Wu, G.Z.; Kudryashov, N.A.; Wang, Y.Y.; Dai, C.Q. Data-driven soliton solutions and model parameters of nonlinear
wave models via the conservation-law constrained neural network method. Chaos Solitons Fractals 2022, 158, 112118. [CrossRef]

21. Cui, S.; Wang, Z.; Han, J.; Cui, X.; Meng, Q. A deep learning method for solving high-order nonlinear soliton equations. Commun.
Theor. Phys. 2022, 74, 075007. [CrossRef]

22. Lin, S.; Chen, Y. A two-stage physics-informed neural network method based on conserved quantities and applications in
localized wave solutions. J. Comput. Phys. 2022, 457, 111053. [CrossRef]

23. Lin, S.; Chen, Y. Physics-informed neural network methods based on Miura transformations and discovery of new localized
wave solutions. Phys. D Nonlinear Phenom. 2023, 445, 133629. [CrossRef]

24. Wu, C.; Zhu, M.; Tan, Q.; Kartha, Y.; Lu, L. A comprehensive study of non-adaptive and residual-based adaptive sampling for
physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2023, 403, 115671. [CrossRef]

25. Blechschmidt, J.; Ernst, O.G. Three ways to solve partial differential equations with neural networks– review. GAMM-Mitteilungen
2021, 44, e202100006. [CrossRef]

26. Vitanov, N.K. Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions
of nonlinear PDEs. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1176–1185. [CrossRef]

27. Wen, Y.; Chaolu, T.; Wang, X. Solving the initial value problem of ordinary differential equations by Lie group based neural
network method. PLoS ONE 2022, 17, e0265992. [CrossRef]

28. Bluman, G.W.; Cheviakov, A.F.; Anco, S.C.; Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Construction of Mappings Relating
Differential Equations. In Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010;
pp. 121–186.

29. Dennis, J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; SIAM: Philadelphia, PA,
USA, 1996.

30. Griffiths, G.; Schiesser, W.E. Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with MATLAB
and Maple; Academic Press: Cambridge, MA, USA, 2010.

31. Navickas, Z.; Ragulskis, M. Comments on “A new algorithm for automatic computation of solitary wave solutions to nonlinear
partial differential equations based on the Exp-function method”. Appl. Math. Comput. 2014, 243, 419–425. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S0218127413300036
http://dx.doi.org/10.1016/j.chaos.2022.112118
http://dx.doi.org/10.1088/1572-9494/ac7202
http://dx.doi.org/10.1016/j.jcp.2022.111053
http://dx.doi.org/10.1016/j.physd.2022.133629
http://dx.doi.org/10.1016/j.cma.2022.115671
http://dx.doi.org/10.1002/gamm.202100006
http://dx.doi.org/10.1016/j.cnsns.2010.06.011
http://dx.doi.org/10.1371/journal.pone.0265992
http://dx.doi.org/10.1016/j.amc.2014.06.029

	Introduction
	The Main Idea of the Lie-Group-Based Neural Network Algorithm
	Illustration of the Algorithms
	Details of the Algorithm

	Example for Korteweg–De Vries Equation
	Discussion and Conclusions
	References

