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Abstract: In this work, the problem of master–slave outer synchronization in different inner–outer
network topologies is presented. Specifically, the studied inner–outer network topologies are coupled
in master–slave configuration, where some particular scenarios concerning inner–outer topologies
are addressed in order to disclose a suitable coupling strength to achieve outer synchronization. The
novel MACM chaotic system is used as a node in the coupled networks, which presents robustness
in its bifurcation parameters. Extensive numerical simulations are presented where the stability of
the inner–outer network topologies is analyzed through a master stability function approach.
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1. Introduction

The emergence of rhythmic behaviors, such as synchronization, is a phenomenon that
can occur in many areas of daily life. Specifically, the phenomenon of synchronization,
i.e., the temporal adjustment of events between two or more objects or subjects, see [1], is
extensively studied by the scientific community today, and much of the effort is devoted
to analyzing how to achieve synchronization in networks. The phenomenon of synchro-
nization is found in multiple scientific areas, such as physics, chemistry, mathematics, and
computer science, see [2–9]. From the point of view of graph theory [10], we can establish
two of the main causes that directly affect achieving synchronization, (i) how the nodes are
communicated and (ii) how the nodes are coupled, where the first cause can be divided in
master–slave configuration (unidirectionally) and/or mutual configuration (bidirection-
ally), see [1,11], and the second cause could be divided into inner and/or outer coupling,
that is the inner and outer connection topology, see [12–21] for the respective coupling.

In many recent works, the synchronization problem is addressed for different, or even
combinations, of the aforementioned cases, where the case of outer synchronization is
taken as a more general case. We can cite some examples: in [22], the authors present an
outer coupling to achieve exponential synchronization between two networks, on the other
hand, in [23], the authors analyze an outer coupling for two fractional-order networks in a
master–slave configuration, in addition, outer synchronization between two complex dy-
namical networks with discontinuous coupling is analyzed in [24], and another recent work,
see [25], presents outer coupling to achieve synchronization between delayed coupling
networks with uncertain parameters, demonstrating the versatility of the study about outer
coupling for networks synchronization.
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As we can see, many recent works have focused on analyzing outer synchronization,
disclosing that it is a topic of current interest. On the other hand, in most of the aforemen-
tioned works, the effect of combining the different cases of communication and coupling
among nodes in a network is not analyzed, which gives rise to the conception of this work,
which focuses on addressing the analysis of different ways to couple and communicate
nodes in networks. Particularly, in this work, we focus on analyzing synchronization for
different inner–outer network topologies in master–slave configuration.

This work is organized as follows. In Section 2, details of how the analyzed networks
are built and also some preliminaries of synchronization of complex networks are presented.
In Section 3, we present the master stability function approach to study and compare the
stability of the synchronization state of the analyzed networks. In Section 4, the MACM
chaotic system and its characteristics are described. In Section 5, we present the main results
from the different analyzed inner–outer network topologies, and a numerical example
for a large number of networks is also presented. Finally, some conclusions are drawn in
Section 6.

2. Preliminaries in Complex Dynamical Networks

In this section, we give some preliminaries of complex networks, inner–outer coupling
network topologies, and synchronization. In this work, we consider M networks composed
of N nodes. The inner–outer coupling network topologies are represented by Ain and Aout,
respectively, which gives rise to the emergence of a complex network of networks of M×N
nodes. The communication of the nodes is made in a master–slave configuration both for
inner and outer networks, where each node constitutes a n-dimensional chaotic dynamical
system, described as follows

ẋi = f(xi) + ui, (1)

with i = 1, 2, . . . , M× N, where xi = (xi,1, xi,2, . . . , xi,n)
T ∈ Rn is the state vector of the

node i and ui = (ui,1, ui,2, . . . , ui,n)
T ∈ Rn is the input signal of the node i. Moreover, a

diffusive coupling that is well-known and extensively studied is used as follows,

ui = (A⊗ Γ)xi (2)

where Γn×n is a constant 0 or 1 matrix that determines the selection of the state variables
used in the inner and outer couplings, A(M×N)×(M×N) is the coupling matrix of the entire
network described as follows,

A = c1Ain + c2Aout = c1(I⊗Ai) + c2(Ao ⊗ Γo) (3)

where Ain(M×N)×(M×N) and Aout(M×N)×(M×N) are the inner and outer coupling matrices
respectively; c1 and c2 are the inner and outer coupling strengths, respectively; I(M×M) is
the identity matrix; Γo(N×N) is a constant 0 or 1 diagonal matrix that determines the node
selection to be used in order to couple the networks (note that if we want to use cross nodes
in the outer coupling, we must add the corresponding term in (3) for this type of links); Ai
and Ao are suitable base matrices of inner and outer coupling topologies, where ⊗ is the
Kronecker product.

Now, suppose we have connected complex networks, it can be shown that zero is
an eigenvalue of A with multiplicity 1 and all the other eigenvalues are strictly negative,
see [26,27]. Figures 1–3 show a graphic representation of the general scheme of the inner–
outer coupling network topologies to be used in this work.

According to [27], the complex networks (1) is said to achieve (asymptotically) syn-
chronization, if:

x1(t) = x2(t) = . . . = xM×N(t), as t→ ∞. (4)
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Figure 1. Graphic representation of ring network: (a) inner ring topology in master–slave configura-
tion and (b) inner–outer ring coupling topology in master–slave configuration.

Figure 2. Graphic representation of star network: (a) inner star topology in master–slave configuration
and (b) inner–outer star coupling topology in master–slave configuration.
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Figure 3. Graphic representation of small-world network: (a) inner small-world topology in master–
slave configuration and (b) inner–outer small-world coupling topology in master–slave configuration.

It is desired that coupling conditions (2) and (3) guarantee that the synchronization
state be a solution, x1(t) ∈ Rn, of the master node of the master network, that is

ẋ1(t) = f(x1(t)), (5)

where x1(t) can be an equilibrium point, a periodic orbit, or a chaotic attractor. Thus, the
stability of the synchronization state,

x2(t) = x3(t) = . . . = xM×N(t) = x1(t), (6)

of the complex network of networks (1) is determined by the dynamics of the master chaotic
node x1(t), matrix Γ, and the coupling matrix A (with their respective implied coupling
strengths c1, c2, and matrices Ai, Ao, and Γo).

3. Master Stability Function

We use the master stability function to study and compare the stability of inner and
outer network synchronization [28]. According to [28], for (2) and (3), each block of the
diagonalized variational equation by blocks is as follows

ξ̇k = [Df(x1) + ζkΓ]ξk (7)

with k = 0, 1, 2, . . . , (M × N)− 1, where ζk is an eigenvalue of the coupling matrix A,
with ζ0 = 0. As mentioned in Section 2, Γ determines the state variables to be used in
the couplings, where the maximum Lyapunov exponent λmax is calculated for the generic
variational Equation (7). By using certain inner and outer coupling strengths c1 and c2,
the sign of λmax is verified, which indicates the synchronization state, for λmax < 0 the
synchronization state is stable, while for λmax > 0, the synchronization state is unstable.
For the computational calculation of the maximum Lyapunov exponents λmax, we use a
modified version of the algorithm presented in [29]. For the calculation of the maximum
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Lyapunov exponents, we use the programming software Matlab with initial conditions
x1(0) = [0.1, 0.1, 0.1]T in the Ode45 function for a simulation of 100 time units.

4. MACM Chaotic System

In this section, we present the chaotic MACM system used as a node that has robust-
ness in its bifurcation parameters, see [30]. The chaotic system is given byẋ1

ẋ2
ẋ3

 =

−ax1 − bx2x3
−x1 + cx2
d− x2

2 − x3

 (8)

where a, b, c, d ∈ R+ and x1 = (x1, x2, x3)
T ∈ Rn is the state vector of the system (8).

Figure 4 shows the attractors when parameters values are a = b = 2, c = 0.5, and d = 10,
and initial conditions are (x1, x2, x3) = (1, 1, 1).

Figure 4. Phase planes of the MACM chaotic system (8) with a = 2, b = 2, c = 0.5, and d = 10: (a) x1

versus x2 phase plane; (b) x1 versus x3 phase plane; (c) x2 versus x3 phase plane.

The robustness of bifurcation parameter values makes the MACM system (8) suitable
to be used in different applications, for example, in secure message transmission. The
Lyapunov exponents (LEs) for a variation of the parameter bifurcation values a and d in a
range from 0 to 10 are shown in Figure 5.

Figure 5. LEs for MACM chaotic system (8) with b = 2 and c = 0.5 for: (a) 0 ≤ a ≤ 10 and
(b) 0 ≤ b ≤ 10 .

Note that there are parameter values that can generate instability in system (8), for
example, if we use 0 < a < 0.8, system (8) becomes unstable, so it is important to select
parameter values (see Figure 5) that generate chaotic attractors.



Entropy 2023, 25, 707 6 of 11

5. Analysis of Master–Slave Inner–Outer Coupling Network Topologies

This section addresses the analysis and comparison of different scenarios involving
master–slave inner and outer coupled networks in different topologies. The coupled nodes
within the inner–outer coupled network are described as followsẋi1

ẋi2
ẋi3

 =

−axi1 − bxi2xi3 + ui1
−xi1 + cxi2 + ui2
d− x2

i2 − xi3 + ui3

, (9)

where i = 1, 2, . . . , M× N.
It is important to note that when we use parameter values a = b = 2, c = 0.5, d = 10,

and initial conditions (x11, x12, x13) = (1, 1, 1), that is, in the master node, a chaotic motion
(chaotic attractor) is established for the synchronization state in (6).

5.1. Inner Topology of Ring, Star, and Small-World Networks in Master–Slave Configuration

First of all, inner coupled networks in ring, star, and small-world topologies are ana-
lyzed, where the coupling matrices Ai corresponding to the different coupling topologies in
master–slave configuration are given as follows, for the inner ring topology (see Figure 1a)
the matrix Ai is

Ai = Air =


0 0 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

, (10)

where the sub-index r indicates ring, while for the inner star topology (see Figure 2a) the
matrix Ai is defined as follows

Ai = Ais =


0 0 0 0 0
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

, (11)

where the sub-index s indicates star. An interesting type of non-regular network is the
so-called small-world network. These types of networks, which are neither regular nor
random, are found mostly in technological, biological, and social networks. In this work,
we use the model of Newman and Watts (see [31,32]) in order to build a very simple
small-world network to use in our analysis. We started with a ring topology network to
which links are added with a probability p1 = 0.3 obtaining a clustering coefficient of 0.4,
an average path length of 1.04, and an average grade of 2.8. The resulting matrix for the
inner small-world topology (see Figure 3a)) is as follows

Ai = Aisw =


0 0 0 0 0
1 −3 1 1 0
0 1 −3 1 1
0 1 1 −3 1
1 0 1 1 −3

, (12)

where the sub-index sw indicates small-world. In order to establish which state vari-
able is better to use in the master–slave communication among the nodes of the net-
works, we calculate the maximum Lyapunov exponent λmax in (1) using (8) as a node
and applying (10)–(12) with different values (the most representative) of Γ as follows:
Γ0,0,1 = diag[0, 0, 1], Γ0,1,0 = diag[0, 1, 0], Γ0,1,1 = diag[0, 1, 1], Γ1,0,0 = diag[1, 0, 0], Γ1,0,1 =
diag[1, 0, 1], Γ1,1,0 = diag[1, 1, 0], and Γ1,1,1 = diag[1, 1, 1]. Figure 6 shows the λmax of the
different values of Γ used in the ring, star, and small-world inner coupling topologies. Note
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that for the results shown in Figure 6, c2 in (3) is zero and λmax is obtained for 0 ≤ c1 ≤ 3
with steps of 0.5. Consequently, we can deduce that Γ1,0,1 = diag[1, 0, 1] is a suitable value
to couple the nodes because if we use only two state variables in order to couple the nodes,
the best result is obtained, therefore, we propose to use Γ1,0,1 in the analyzed topologies
in order to achieve inner and outer synchronization. Note that in case of carrying out
the numerical simulations to corroborate the results in Figure 6, possible values of initial
conditions are xi1,i2,i3(0) = [rand(1.01, 1.02), 0.1, 0.1] for i = 1, 2, . . . , N ×M.

Figure 6. Maximum Lyapunov exponent λmax for 0 ≤ c1 ≤ 3 and different values of Γ: (a) inner ring
topology, (b) inner star topology, and (c) inner small-world topology.

5.2. Outer Topology of Ring, Star, and Small-World Networks in Master–Slave Configuration

In this section, an analysis of the combinations between inner and outer topologies is
presented in order to reveal which of the analyzed cases achieves outer synchronization in
the most optimal way, i.e., with the minimum values of coupling strength c1 and c2. As a
notation to refer to the different inner–outer coupling network topologies, we use the letter
R for ring, S for star, and SW for small-world networks, for example, for a combination of
the inner ring and outer ring topologies, we denoted it with notation R− R (see Figure 1b),
for a combination of inner star and outer star topologies, we denoted it with notation S− S
(see Figure 2b), for a combination of inner small-world and outer small-world topologies,
we denoted it with notation SW − SW (see Figure 3b), and so on for the other inner–outer
coupling network topologies. On the other hand, we can have some of the combinations
of inner–outer coupling network topologies where we have previously established that
a suitable option to use is Γ1,0,1 = diag[1, 0, 1], with this in mind, we can perform an
analysis by applying different values of Γo to verify which case performs better for outer
synchronization. Figure 7 shows the maximum Lyapunov exponents λmax setting the value
c1 = 2 for different values of Γo, (as previously mentioned, Γo is the matrix that indicates
which nodes are chosen to outwardly couple the networks), the most representative values
are chosen (for a range 0 ≤ c2 ≤ 5) as follows; Γo1 = diag[1, 0, 0, 0, 0], Γo2 = diag[1, 1, 0, 0, 0],
Γo3 = diag[1, 1, 1, 0, 0], Γo4 = diag[1, 1, 1, 1, 0], and Γo5 = diag[1, 1, 1, 1, 1]. Perhaps one could
think that the more outer couplings, the better performance when it comes to achieving
outer synchronization, but as we can see from Figure 7, in all cases, for the lower bounds
of values c2 there is no difference in selecting some Γo unless redundancy is wanted in
the outer couplings among the networks, even for the upper bounds c2, using fewer
nodes to outwardly couple the networks results in a better performance to achieve outer
synchronization, so for practical purposes, in the following, we use Γo1 = diag[1, 0, 0, 0, 0].

In order to analyze the outer synchronization state using different inner–outer coupling
network topologies, that is, for R − R, R − S, R − SW, S − R, S − S, S − SW, SW − R,
SW − S, and SW − SW, we calculate the maximum Lyapunov exponent λmax, taking into
account c1 versus c2 with N = 5, M = 5, Γ = diag[1, 0, 1], and Γo = diag[1, 0, 0, 0, 0], where
Figure 8 shows that the best combination in order to achieve outer synchronization in a
master–slave configuration is an S− S coupling network topology, which encompasses all
other inner–outer coupling network topologies.
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Figure 7. Maximum Lyapunov exponent λmax for c1 = 2, 0 ≤ c2 ≤ 5 and Γo1 = diag[1, 0, 0, 0, 0],
Γo2 = diag[1, 1, 0, 0, 0], Γo3 = diag[1, 1, 1, 0, 0], Γo4 = diag[1, 1, 1, 1, 0], Γo5 = diag[1, 1, 1, 1, 1]: (a) R− R,
(b) R− S, (c) R− SW, (d) S− R, (e) S− S, (f) S− SW, (g) SW − R, (h) SW − S, and (i) SW − SW.

Figure 8. Maximum Lyapunov exponent λmax for c1 versus c2 applying different inner–outer topolo-
gies with Γ = diag[1, 0, 1] and Γo = diag[1, 0, 0, 0, 0].

5.3. A Big Network in Inner–Outer Network Coupling Topology S− S in Master–Slave Configuration

Based on the obtained results of the Section 5.2, an inner–outer network coupling
topology S − S is now used (the most suitable to achieve outer synchronization in a
master–slave configuration) for N = 5 nodes and a large number of networks M = 100
with Γ = diag[1, 0, 1], Γo = diag[1, 0, 0, 0, 0], Ai = Ais as in (11), and Ao(M×M) selected
as follows

Ao =


0 0 0 . . . 0
1 −1 0 . . . 0
1 0 −1 . . . 0
...

. . . . . . . . .
...

1 0 0 . . . −1

, (13)

where we can deduce that the maximum Lyapunov exponent λmax (for this case it is the
same as the case of Figure 7e), where to achieve outer synchronization we can either use
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c1 = 2 or c2 = 2. It should be noted that this analysis can be extended for any other chaotic
node, number of nodes N, and number of networks M. Figure 9a–c shows the temporal
dynamics for this case, and Figure 9d–f shows the errors between the master node and
the other nodes in the network, the values of the initial conditions are taken as follows
xi1,i2,i3(0) = [rand(1.01, 1.02), 0.1, 0.1] for i = 1, 2, . . . , N ×M.

Figure 9 corroborates that this analysis can be extended for a large number of networks
M and, therefore, a large number of nodes N ×M.

Figure 9. Inner–outer coupling network topology S − S with N = 5 and M = 100. Temporal
dynamics (a) xi1, (b) xi2, and (c) xi3, and errors between the master node and the other nodes in the
network; (d) x11 − xi1, (e) x12 − xi2, and (f) x13 − xi3.

6. Conclusions

By means of an analysis based on the master stability function approach, which is
widely used to determine synchronization in networks, it has been shown that if we use
Γ = diag[1, 0, 1] in inner coupling topologies R, S, and SW, we obtain a suitable stable inner
synchronization state; therefore, these two states (xi,1 and xi,3 from (9)) were used as the
suitable option to connect the nodes innerly and outwardly. On the other hand, there is not
much difference when we outwardly couple networks with more than one node using inner–
outer coupling network topologies R− R, R− S, R− SW, S− R, S− S, S− SW, SW − R,
SW − S, and SW − SW, so it was determined to use a Γo = diag[1, 0, 0, 0, 0]. The final
analysis shows us that the best combination to achieve outer synchronization in a master–
slave configuration is the inner–outer coupling network topology S− S. Additionally, an
example for a large number of networks was presented using the inner–outer coupling
network topology S− S as an example to verify the obtained results from the accomplished
analysis. Moreover, we can deduce that some inner–outer coupling topologies will be
better than others for some potential applications despite the fact that the inner–outer
coupling network topology S − S achieves outer synchronization more efficiently. On
the other hand, the possibility of extending this study is open, for example, we can use
different configurations of matrix A, different forms, and eventually different dimensions
of the chaotic node; also, we can increase the number of nodes N and the number of
networks M in order to combine this study with other synchronization control techniques,
such as, for example, the fractal variational principle for an optimal control problem and
the synchronization in the fractal vibration systems, or the possibility of making some
transformation to a fractional order study, among others.
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