Pattern Formation under Deep Supercooling by Classical Density Functional-Based Approach
Abstract
:1. Introduction
2. Classical Density Functional Theory-Based APFC Model and Its Phenomenological Corrections
2.1. Original APFC Model
2.2. Hyperbolic APFC Model
2.3. Modified APFC Model Containing the NEVC Effects
3. Nonequilibrium Solidifications of Hexagonal Crystals
3.1. Method and Simulations
3.2. Crystallization of the Polycrystal under Deep Supercooling
3.3. Nonequilibrium Patterns during the Growth of a Single Seed in the Presence of Other Potential Seeds
3.4. The Crystal Growth under the Deep Supercooling
3.5. The Role of the Short-Wave Interaction on the Nonequilibrium Crystallization
4. Faceted and Dendritic Growth of BCC Crystals
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.M.; Voisin, T.; McKeown, J.T.; Ye, J.; Calta, N.P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T.; et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63–71. [Google Scholar] [CrossRef]
- Ryschenkow, G.; Faivre, G. Bulk crystallization of liquid selenium Primary nucleation, growth kinetics and modes of crystallization. J. Cryst. Growth 1988, 87, 221–235. [Google Scholar] [CrossRef]
- Magill, J.H. Review Spherulites: A personal perspective. J. Mater. Sci. 2001, 36, 3143–3164. [Google Scholar] [CrossRef]
- Ediger, M.D. Spatially Heterogeneous Dynamics in Supercooled Liquids. Annu. Rev. Phys. Chem. 2000, 51, 99–128. [Google Scholar] [CrossRef]
- Tracht, U.; Wilhelm, M.; Heuer, A.; Feng, H.; Schmidt-Rohr, K.; Spiess, H.W. Length Scale of Dynamic Heterogeneities at the Glass Transition Determined by Multidimensional Nuclear Magnetic Resonance. Phys. Rev. Lett. 1998, 81, 2727–2730. [Google Scholar] [CrossRef]
- Gránásy, L.; Pusztai, T.; Warren, J.A.; Douglas, J.F.; Börzsönyi, T.; Ferreiro, V. Growth of ‘dizzy dendrites’ in a random field of foreign particles. Nat. Mater. 2003, 2, 92–96. [Google Scholar] [CrossRef]
- Ferreiro, V.; Douglas, J.F.; Warren, J.A.; Karim, A. Nonequilibrium pattern formation in the crystallization of polymer blend films. Phys. Rev. E 2002, 65, 042802. [Google Scholar] [CrossRef]
- Gránásy, L.; Pusztai, T.; Tegze, G.; Warren, J.A.; Douglas, J.F. Growth and form of spherulites. Phys. Rev. E 2005, 72, 011605. [Google Scholar] [CrossRef]
- Gránásy, L.; Pusztai, T.; Börzsönyi, T.; Warren, J.A.; Douglas, J.F. A general mechanism of polycrystalline growth. Nat. Mater. 2004, 3, 645–650. [Google Scholar] [CrossRef]
- Gránásy, L.; Rátkai, L.; Szállás, A.; Korbuly, B.; Tóth, G.I.; Környei, L.; Pusztai, T. Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review. Metall. Mater. Trans. A 2014, 45, 1694–1719. [Google Scholar] [CrossRef]
- Tegze, G.; Tóth, G.I.; Gránásy, L. Faceting and Branching in 2D Crystal Growth. Phys. Rev. Lett. 2011, 106, 195502. [Google Scholar] [CrossRef]
- Elder, K.R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling Elasticity in Crystal Growth. Phys. Rev. Lett. 2002, 88, 245701. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Gu, X.; Chen, Y.; Hao, L.; De Wit, J.; Jin, K. Phase-field crystal simulation facet and branch crystal growth. Appl. Phys. A 2018, 124, 385. [Google Scholar] [CrossRef]
- Tang, S.; Yu, Y.-M.; Wang, J.; Li, J.; Wang, Z.; Guo, Y.; Zhou, Y. Phase-field-crystal simulation of nonequilibrium crystal growth. Phys. Rev. E 2014, 89, 012405. [Google Scholar] [CrossRef]
- Muhammad, S.; Li, Y.; Yan, Z.; Maqbool, S.; Shi, S.; Muhammad, I. Phase-field crystal modeling of crystal growth patterns with competition of undercooling and atomic density. Phys. Chem. Chem. Phys. 2020, 22, 21858–21871. [Google Scholar] [CrossRef]
- Tóth, G.I.; Pusztai, T.; Tegze, G.; Tóth, G.; Gránásy, L. Amorphous Nucleation Precursor in Highly Nonequilibrium Fluids. Phys. Rev. Lett. 2011, 107, 175702. [Google Scholar] [CrossRef]
- Stefanovic, P.; Haataja, M.; Provatas, N. Phase-Field Crystals with Elastic Interactions. Phys. Rev. Lett. 2006, 96, 225504. [Google Scholar] [CrossRef]
- Galenko, P.; Danilov, D.; Lebedev, V. Phase-field-crystal and Swift-Hohenberg equations with fast dynamics. Phys. Rev. E 2009, 79, 051110. [Google Scholar] [CrossRef]
- Podmaniczky, F.; Tóth, G.I.; Tegze, G.; Gránásy, L. Hydrodynamic theory of freezing: Nucleation and polycrystalline growth. Phys. Rev. E 2017, 95, 052801. [Google Scholar] [CrossRef]
- Athreya, B.P.; Goldenfeld, N.; Dantzig, J.A. Renormalization-group theory for the phase-field crystal equation. Phys. Rev. E 2006, 74, 011601. [Google Scholar] [CrossRef]
- Goldenfeld, N.; Athreya, B.P.; Dantzig, J.A. Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model. Phys. Rev. E 2005, 72, 020601. [Google Scholar] [CrossRef]
- Galenko, P.K.; Sanches, F.I.; Elder, K.R. Traveling wave profiles for a crystalline front invading liquid states: Analytical and numerical solutions. Phys. D Nonlinear Phenom. 2015, 308, 1–10. [Google Scholar] [CrossRef]
- Ankudinov, V.; Elder, K.R.; Galenko, P.K. Traveling waves of the solidification and melting of cubic crystal lattices. Phys. Rev. E 2020, 102, 062802. [Google Scholar] [CrossRef]
- Galenko, P.K.; Elder, K.R. Marginal stability analysis of the phase field crystal model in one spatial dimension. Phys. Rev. B 2011, 83, 064113. [Google Scholar] [CrossRef]
- Wang, K.; Xiao, S.; Chen, J.; Yao, S.; Hu, W.; Zhu, W.; Wang, P.; Gao, F. Exploring atomic mechanisms of microstructure evolutions in crystals under vacancy super- or undersaturation states by a kinetic amplitude-expanded phase-field-crystal approach. Int. J. Plast. 2022, 157, 103386. [Google Scholar] [CrossRef]
- Emmerich, H.; Löwen, H.; Wittkowski, R.; Gruhn, T.; Tóth, G.I.; Tegze, G.; Gránásy, L. Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: An overview. Adv. Phys. 2012, 61, 665–743. [Google Scholar] [CrossRef]
- Hansen, J.P.; Mcdonald, I.R. Theory of Simple Liquids: With Applications to Soft Matter, 4th ed.; Academic press: Cambridge, MA, USA, 2013. [Google Scholar]
- Swift, J.; Hohenberg, P.C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 1977, 15, 319–328. [Google Scholar] [CrossRef]
- Yeon, D.-H.; Huang, Z.-F.; Elder, K.R.; Thornton, K. Density-amplitude formulation of the phase-field crystal model for two-phase coexistence in two and three dimensions. Philos. Mag. 2010, 90, 237–263. [Google Scholar] [CrossRef]
- Chan, P.Y.; Goldenfeld, N. Nonlinear elasticity of the phase-field crystal model from the renormalization group. Phys. Rev. E 2009, 80, 065105. [Google Scholar] [CrossRef]
- Ofori-Opoku, N.; Stolle, J.; Huang, Z.-F.; Provatas, N. Complex order parameter phase-field models derived from structural phase-field-crystal models. Phys. Rev. B 2013, 88, 104106. [Google Scholar] [CrossRef]
- Salvalaglio, M.; Backofen, R.; Voigt, A.; Elder, K.R. Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal model. Phys. Rev. E 2017, 96, 023301. [Google Scholar] [CrossRef]
- Bangerth, W.; Hartmann, R.; Kanschat, G. deal.II—A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 2007, 33, 24. [Google Scholar] [CrossRef]
- Haxhimali, T.; Karma, A.; Gonzales, F.; Rappaz, M. Orientation selection in dendritic evolution. Nat. Mater. 2006, 5, 660–664. [Google Scholar] [CrossRef]
- Kurz, W.; Fisher, D.J.; Trivedi, R. Progress in modelling solidification microstructures in metals and alloys: Dendrites and cells from 1700 to 2000. Int. Mater. Rev. 2019, 64, 311–354. [Google Scholar] [CrossRef]
- Tegze, G.; Gránásy, L.; Tóth, G.I.; Podmaniczky, F.; Jaatinen, A.; Ala-Nissila, T.; Pusztai, T. Diffusion-Controlled Anisotropic Growth of Stable and Metastable Crystal Polymorphs in the Phase-Field Crystal Model. Phys. Rev. Lett. 2009, 103, 035702. [Google Scholar] [CrossRef]
- Cheng, Z.; Chaikin, P.M.; Zhu, J.; Russel, W.B.; Meyer, W.V. Crystallization Kinetics of Hard Spheres in Microgravity in the Coexistence Regime: Interactions between Growing Crystallites. Phys. Rev. Lett. 2001, 88, 015501. [Google Scholar] [CrossRef]
- Jaatinen, A.; Ala-Nissila, T. Extended phase diagram of the three-dimensional phase field crystal model. J. Phys. Condens. Matter 2010, 22, 205402. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Chen, W.; Xiao, S.; Chen, J.; Hu, W. Pattern Formation under Deep Supercooling by Classical Density Functional-Based Approach. Entropy 2023, 25, 708. https://doi.org/10.3390/e25050708
Wang K, Chen W, Xiao S, Chen J, Hu W. Pattern Formation under Deep Supercooling by Classical Density Functional-Based Approach. Entropy. 2023; 25(5):708. https://doi.org/10.3390/e25050708
Chicago/Turabian StyleWang, Kun, Wenjin Chen, Shifang Xiao, Jun Chen, and Wangyu Hu. 2023. "Pattern Formation under Deep Supercooling by Classical Density Functional-Based Approach" Entropy 25, no. 5: 708. https://doi.org/10.3390/e25050708
APA StyleWang, K., Chen, W., Xiao, S., Chen, J., & Hu, W. (2023). Pattern Formation under Deep Supercooling by Classical Density Functional-Based Approach. Entropy, 25(5), 708. https://doi.org/10.3390/e25050708