A Note on Cumulant Technique in Random Matrix Theory
Abstract
:1. Introduction
2. Methods
2.1. Determinantal Point Process and Cluster Functions
2.2. Linear Statistics in Classical Compact Groups
2.3. Multivariate Linear Statistics and Number Theory Connections
- (i)
- (ii)
- (iii)
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wigner, E. Characteristic Vectors of Bordered Matrices with Infinite Dimension. I. Ann. Math. 1955, 62, 548–564. [Google Scholar] [CrossRef]
- Wigner, E. Characteristic Vectors of Bordered Matrices with Infinite Dimension. II. Ann. Math. 1957, 65, 203–207. [Google Scholar] [CrossRef]
- Wigner, E. On the Distribution of the Roots of Certain Symmetric Spaces. Ann. Math. 1958, 67, 325–327. [Google Scholar] [CrossRef]
- Bai, Z.D. Methodologies in Spectral Analysis of Large Dimensional Random Matrices, a Review. Stat. Sin. 1999, 9, 611–677. [Google Scholar]
- Bose, A.; Hazra, R.S.; Saha, K. Patterned Random Matrices and Method of Moments. In Proceedings of the International Congress of Mathematicians, Hyderabad, India, 19–27 August 2010; pp. 2203–2231. [Google Scholar]
- Diaconu, S. More Limiting Distributions for Eigenvalues of Wigner Matrices. arXiv 2022, arXiv:2203.08712. [Google Scholar] [CrossRef]
- Diaconu, S. Finite Rank Perturbations of Heavy-Tailed Wigner Matrices. arXiv 2022, arXiv:2208.02756. [Google Scholar]
- Feldheim, O.; Sodin, S. A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices. Geom. Funct. Anal. 2010, 20–21, 88–123. [Google Scholar] [CrossRef]
- Peche, S.; Soshnikov, A. Wigner Random Matrices with Non-Symmetrically Distributed Entries. J. Stat. Phys. 2007, 129, 857–884. [Google Scholar] [CrossRef]
- Sinai, Y.; Soshnikov, A. A Refinement of Wigner’s Semicircle Law in a Neighborhood of the Spectrum Edge for Random Symmetric Matrices. Funct. Anal. Its Appl. 1998, 32, 114–131. [Google Scholar] [CrossRef]
- Sodin, S. Several Applications of the Moment Method in Random Matrix Theory. In Proceedings of the International Congress of Mathematicians, Seoul, Republic of Korea, 13–21 August 2014; pp. 451–475. [Google Scholar]
- Soshnikov, A. Universality at the Edge of the Spectrum in Wigner Random Matrices. Commun. Math. Phys. 1999, 207, 697–733. [Google Scholar] [CrossRef]
- Yin, Y.Q.; Bai, Z.D.; Krishnaiah, P.R. On the Limit of the Largest Eigenvalue of the Large Dimensional Sample Covariance Matrix. Probab. Theory Relat. Fields 1988, 78, 509–521. [Google Scholar] [CrossRef]
- Costin, O.; Lebowitz, J. Gaussian Fluctuations in Random Matrices. Phys. Rev. Lett. 1995, 75, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Borodin, A. Determinantal Point Processes. In The Oxford Handbook of Random Matrix Theory; Akemann, B., Baik, J., Di Francesco, P., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 231–249. [Google Scholar]
- Soshnikov, A. Determinantal Random Point Fields. Russ. Math. Surv. 2000, 55, 923–975. [Google Scholar] [CrossRef]
- Soshnikov, A. Gaussian Fluctuation in Airy, Bessel, Sine and Other Determinantal Random Point Fields. J. Stat. Phys. 2000, 100, 491–522. [Google Scholar] [CrossRef]
- Soshnikov, A. Gaussian Limit for Determinantal Random Point Fields. Ann. Probab. 2002, 30, 171–187. [Google Scholar] [CrossRef]
- Hough, J.B.; Krishnapur, M.; Peres, Y.; Virag, B. Determinantal Processes and Independence. Probab. Surv. 2006, 3, 206–229. [Google Scholar] [CrossRef]
- Ameur, Y.; Hedenmalm, H.; Makarov, N. Fluctuations of Eigenvalues of Random Normal Matrices. Duke Math. J. 2011, 159, 31–81. [Google Scholar] [CrossRef]
- Haimi, A.; Romero, J.L. Normality of Smooth Statistics for Planar Determinantal Point Processes. arXiv 2022, arXiv:2210.10588. [Google Scholar]
- Rider, B.; Virag, B. Complex Determinantal Processes and H1 Noise. Electron. J. Probab. 2007, 12, 1238–1257. [Google Scholar] [CrossRef]
- Soshnikov, A. Level Spacings Distribution for Large Random Matrices: Gaussian Fluctuations. Ann. Math. 1998, 148, 573–617. [Google Scholar] [CrossRef]
- Soshnikov, A. Statistics of Extreme Spacings in Determinantal Random Point Processes. Mosc. Math. J. 2005, 5, 705–719. [Google Scholar] [CrossRef]
- Weyl, H. The Classical Groups: Their Invariants and Representations, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Dyson, F.J. Statistical Theory of the Energy Levels of Complex Systems. III. J. Math. Phys. 1962, 3, 1191–1198. [Google Scholar] [CrossRef]
- Meckes, E.S. The Random Matrix Theory of the Classical Compact Groups; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Mehta, M.L. Random Matrices, 3rd ed.; Elsevier Ltd.: New York, NY, USA, 2004. [Google Scholar]
- Diaconis, P.; Shahshahani, M. On Eigenvalues of Random Matrices. J. Appl. Probab. 1994, 31A, 49–62. [Google Scholar] [CrossRef]
- Johansson, K. On Szego’s Asymptotic Formula for Toeplitz Determinants and Generalizations. Bull. Des Sci. Math. 1988, 112, 257–304. [Google Scholar]
- Johansson, K. On Random Matrices from the Compact Classical Groups. Ann. Math. 1997, 145, 519–545. [Google Scholar] [CrossRef]
- Courteaut, K.; Johansson, K.; Lambert, G. From Berry-Esseen to Super-exponential. arXiv 2022, arXiv:2204.03282. [Google Scholar]
- Johansson, K.; Lambert, G. Multivariate Normal Approximation for Traces of Random Unitary Matrices. Ann. Probab. 2021, 49, 2961–3010. [Google Scholar] [CrossRef]
- Diaconis, P. Patterns in Eigenvalues. Bull. New Ser. Am. Math. Soc. 2003, 40, 155–178. [Google Scholar] [CrossRef]
- Malyshev, V.A.; Minlos, R.A. Gibbs Random Fields. Cluster Expansions; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Soshnikov, A. Central Limit Theorem for Local Linear Statistics in Classical Compact Groups and Related Combinatorial Identities. Ann. Probab. 2000, 28, 1353–1370. [Google Scholar] [CrossRef]
- Haake, F.; Kus, M.; Sommers, H.J.; Schomerus, H.; Zyczkowski, K. Secular Determinants of Random Unitary Matrices. J. Phys. A 1996, 29, 3641–3658. [Google Scholar] [CrossRef]
- Haake, F.; Sommers, H.-J.; Weber, J. Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices. J. Phys. A 1999, 32, 6903–6913. [Google Scholar] [CrossRef]
- Spohn, H. Interacting Brownian Particles: A Study of Dyson Model. In Hydrodynamic Behavior and Interacting Particle Systems; Papanicolau, G., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 151–179. [Google Scholar]
- Soshnikov, A. Gaussian Fluctuation for Smoothed Local Correlations in CUE. J. Stat. Phys. 2023, 190, 13. [Google Scholar] [CrossRef]
- Breuer, J.; Duits, M. Central Limit Theorems for Biorthogonal Ensembles and Asymptotics of Recurrence Coefficients. J. Am. Math. Soc. 2017, 30, 27–66. [Google Scholar] [CrossRef]
- Deleporte, A.; Lambert, G. Universality for Free Fermions and the Local Weyl Law for Semiclassical Schrödinger Operators. arXiv 2021, arXiv:2109.02121. [Google Scholar]
- Lambert, G. CLT for Biorthogonal Ensembles and Related Combinatorial Identities. Adv. Math. 2018, 329, 590–648. [Google Scholar] [CrossRef]
- Lambert, G. Mesoscopic Fluctuations for Unitary Invariant Ensembles. Electron. J. Probab. 2018, 23, 1–33. [Google Scholar] [CrossRef]
- Aguirre, A.; Soshnikov, A.; Sumpter, J. Pair Dependent Linear Statistics for CβE. Random Matrices Theory Appl. 2021, 10, 2150035. [Google Scholar] [CrossRef]
- Aguirre, A.; Soshnikov, A. A Note on Pair Dependent Linear Statistics with Slowly Growing Variance. Theor. Math. Phys. 2020, 205, 502–512. [Google Scholar] [CrossRef]
- Sumpter, J.C. Pair Dependent Linear Statistics for Circular Random Matrices. Ph.D. Thesis, University of California at Davis, Davis, CA, USA, 2021. [Google Scholar]
- Chhaibi, R.; Najnudel, J.; Nikeghbali, A. The Circular Unitary Ensemble and the Riemann Zeta Function: The Microscopic Landscape and a New Approach to Ratios. Invent. Math. 2017, 207, 23–113. [Google Scholar] [CrossRef]
- Conrey, J.B. L-Functions and Random Matrices. In Mathematics Unlimited—2001 and Beyond; Engquist, B., Schmid, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 331–352. [Google Scholar]
- Keating, J. Random Matrices and Number Theory: Some Recent Themes. In Stochastic Processes and Random Matrices. Lecture Notes of the Les Houches Summer School: Volume 104; Schehr, G., Altland, A., Fyodorov, Y., O’Connell, N., Cugliandolo, L., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 348–381. [Google Scholar]
- Mezzadri, F.; Snaith, N.C. (Eds.) Recent Perspectives in Random Matrix Theory and Number Theory; London Mathematical Society Lecture Note Series 322; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Montgomery, H.L. On Pair Correlation of Zeros of the Zeta Function. Proc. Symp. Pure Math. 1973, 24, 181–193. [Google Scholar]
- Montgomery, H.L. Distribution of the Zeros of the Riemann Zeta Function. In Proceedings of the International Congress of Mathematicians, Vancouver, DC, Canada, 21–29 August 1974; pp. 379–381. [Google Scholar]
- Hejhal, D. On the Triple Correlation of the Zeros of the Zeta Function. Int. Math. Res. Notes 1994, 7, 293–302. [Google Scholar] [CrossRef]
- Rudnick, Z.; Sarnak, P. Zeros of Principal L-functions and Random Matrix Theory. Duke Math. J. 1996, 81, 269–322. [Google Scholar] [CrossRef]
- Feng, R.; Goetze, F.; Yao, D. Determinantal Point Processes on Spheres: Multivariate Linear Statistics. arXiv 2023, arXiv:2301.09216. [Google Scholar]
- Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Rains, E. High Powers of Random Elements of Compact Lie Groups. Probab. Theory Relat. Fields 1997, 107, 219–241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soshnikov, A.; Wu, C. A Note on Cumulant Technique in Random Matrix Theory. Entropy 2023, 25, 725. https://doi.org/10.3390/e25050725
Soshnikov A, Wu C. A Note on Cumulant Technique in Random Matrix Theory. Entropy. 2023; 25(5):725. https://doi.org/10.3390/e25050725
Chicago/Turabian StyleSoshnikov, Alexander, and Chutong Wu. 2023. "A Note on Cumulant Technique in Random Matrix Theory" Entropy 25, no. 5: 725. https://doi.org/10.3390/e25050725
APA StyleSoshnikov, A., & Wu, C. (2023). A Note on Cumulant Technique in Random Matrix Theory. Entropy, 25(5), 725. https://doi.org/10.3390/e25050725