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Simple Summary: We obtain expressions for the asymptotic distributions of the Rényi and Tsallis of
order q entropies, and Fisher information when computed on the maximum likelihood estimator of
probabilities from multinomial random samples. We recall results related to the Shannon entropy. We
build a test for comparing entropies of different types and categories.

Abstract: We obtain expressions for the asymptotic distributions of the Rényi and Tsallis of order q
entropies and Fisher information when computed on the maximum likelihood estimator of proba-
bilities from multinomial random samples. We verify that these asymptotic models, two of which
(Tsallis and Fisher) are normal, describe well a variety of simulated data. In addition, we obtain test
statistics for comparing (possibly different types of) entropies from two samples without requiring
the same number of categories. Finally, we apply these tests to social survey data and verify that the
results are consistent but more general than those obtained with a χ2 test.

Keywords: multinomial distribution; entropy; asymptotic distributions; hypothesis tests

1. Introduction

The multinomial distribution is an adequate model for describing how observations
fall into categories. Quoting Johnson et al. [1], “The Multinomial distribution, like the Mul-
tivariate Normal distribution among the continuous multivariate distributions, consumed
a sizable amount of the attention that numerous theoretical as well as applied researchers
directed towards the area of discrete multivariate distributions.”

The entropy of a (multivariate, in our case) random variable is a substantial quantity.
It quantifies the predictability of a system whose outputs can be described by such a model.
Entropy has several definitions, both conceptual and mathematical. The concept of entropy
originated as a way to relate a system’s energy and temperature [2]. The same concept was
used to describe the number of ways the particles of a system can be arranged.

Entropy has been seldom studied as a random variable. Hutcheson [3] and Hutcheson
and Shenton [4] discussed the exact expected value and variance of the Shannon entropy
under the multinomial model. These works also provided approximate expressions that
circumvent the numerical issues when using the exact value.

Jacquet and Szpankowski [5] studied high-quality analytic approximations of the
Rényi entropy, of which the Shannon entropy is a particular case, under the binomial
model. With the same approach, Cichoń and Golębiewski [6] obtained expressions for
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more general functionals that include the multinomial distribution. These works treat the
entropy as a fixed quantity. Cook et al. [7] studied almost unbiased estimators of functions
of the parameter of the binomial distribution. The authors extended those results to find an
almost-unbiased estimator for the entropy under multinomial laws.

Chagas et al. [8] treated the Shannon entropy as a random variable. The authors
obtained its asymptotic distribution when indexing by the maximum likelihood estimators
of the proportions under the multinomial distribution. This result allowed the devising of
unilateral and bilateral tests for comparing the entropy from two samples in a very general
way. These tests do not require having the same number of categories.

In this work, our attention is directed toward the asymptotic distribution of other
forms of entropy under the multinomial model. This allows the comparison of large
samples throughout their entropies and, with this, they may have different numbers of
classes. The comparison also allows using different types of entropy. We firstly apply
the multivariate delta method and, in the case of the Rényi entropy, we transform the
resulting multivariate normal distribution into that of the logarithm of the absolute value
of a normally distributed random variable. Then, we provide the general expression of a
test statistic that suits our needs.

This paper unfolds as follows. Section 2 recalls the main properties of the multinomial
distribution and defines the four types of entropies we will study. In Section 3, we present
the central results, i.e., the asymptotic distribution of those entropies. We describe the
techniques we used and left for Appendix A.1 technical details. We validate our results
with simulation studies in Section 4: we show the adequacy of the normal distribution as
limit law for the entropies under three probability models of different support, considering
various sample sizes. In Section 5, we show that these asymptotic properties lead to a
helpful hypothesis test between samples with different categories. We conclude the article
in Section 6. Appendix A.2 comments on applications that justify our choices of the number
of categories and sample sizes in the simulation studies. Appendix A.3 discloses relevant
computational information, including reproducibility.

2. Entropies and the Multinomial Distribution

Consider a series of n independent trials, where only one of k mutually exclusive
events π1, π2, . . . , πk must be observed in each one, with probability p = {p1, p2, . . . , pk}
such that p` ≥ 0 and ∑k

`=1 p` = 1. Let N = (N1, N2, . . . , Nk) be the random vector
that counts the number of occurrences of the events π1, π2, . . . , πk in the n trials, with
N` ≥ 0 and ∑k

`=1 N` = n. A sample from N, say n, is a k-variate vector of integer values
n = (n1, n2, . . . , nk). Then, the joint distribution of N is

Pr(N = n) = Pr(N1 = n1, N2 = n2, . . . , Nk = nk) = n!
k

∏
`=1

pn`
`

n`!
. (1)

We denote this situation as N ∼ Mult(n, p).
In practice, one does not know the true values of p, the probabilities that index

this multinomial distribution. Such values are estimated by computing p̂`, the propor-
tion of times the class (category, event) π` was observed among the k possible cate-
gories π = {π1, π2, . . . , πk} during the n trials. The maximum likelihood estimator for
p̂ = ( p̂1, p̂2, . . . , p̂k) is the random vector of proportions. This maximum likelihood estima-
tor coincides with the intuitive estimator based on the distribution’s first moments, and is
the most frequently used in applications.

We study the distribution of several forms of entropy of the random vector p̂ for fixed
k. Notice that p̂ is computed over a single k-variate measurement of random proportions
corresponding to a single random sample from N ∼ Mult(n, p). The asymptotic behaviors
we derive hold for typical cases in which n� k.

The Shannon entropy measures the disorder or unpredictability of systems character-
ized by a probability distribution. On the one hand, the minimum Shannon value occurs
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when there is complete knowledge about the system behavior and total confidence in
predicting the following observation. On the other hand, when a uniform distribution
describes the system’s behavior, that is, when all possibilities have the same probability of
occurrence, the knowledge about the behavior of the data is minimal. In Chagas et al. [8],
we studied the asymptotic distribution of the Shannon entropy. In this work, we extend
those results to three other forms of entropy.

Other types of descriptors have been proposed in the literature to extract additional
information not captured by the Shannon entropy. Tsallis [9] and Rényi [10], for instance,
proposed parametric versions, which include the Shannon entropy.

Fisher information [11] is defined by an average logarithm derivative of a contin-
uous probability density function. In the case of discrete densities, this measure can be
approximated using differences of probabilities between consecutive distribution elements.
While the Shannon entropy captures the degree of unpredictability of a system, the Fisher
information is related to the rate of change of consecutive observations and, thus, quantifies
small changes and perturbations.

Given a type of entropy H, we are interested in the distribution of H(p) when indexed
by p̂, the maximum likelihood estimator of p. Our problem then becomes finding the
distribution of H(p̂) for the following:

• The Shannon entropy

HS(p̂) = −
k

∑
`=1

p̂` log p̂`, (2)

• The Tsallis entropy with index q ∈ R \ {1}

Hq
T(p̂) =

k

∑
`=1

p̂` − p̂q
`

q− 1
, (3)

• The Rényi entropy of order q ∈ R+ \ {1}

Hq
R(p̂) =

1
1− q

log
k

∑
`=1

p̂q
` , (4)

• The Fisher information, also termed “Fisher Information Measure” in the literature,
with renormalization coefficient F0 = 4

HF(p̂) = F0

k−1

∑
`=1

(√
p̂`+1 −

√
p̂`
)2. (5)

Among other possibilities, we used Equation (2.7) from Ref. [12].

3. Asymptotic Distributions of Entropies

The main results of this section are the asymptotic distributions of the Shannon (2),
Tsallis of order q (3), and Rényi of order q (4) entropies, and Fisher information (5). These
results are presented, respectively, in Equations (30)–(32) and (35). Notice that the Rényi
entropy is not asymptotically normally distributed, while the other three are.

We recall the following theorems known respectively as the delta method and its
multivariate version. We refer to Lehmann and Casella [13] for their proofs.

Theorem 1. Let Xn be a sequence of independent and identically distributed random variables such
that
√

n[Xn − θ] converges in distribution to aN (0, σ2). If ∂h/∂θ exists and does not vanish, then√
n[h(Xn)− h(θ)] converges in distribution to a N (0, σ2[∂h/∂θ]2).

Theorem 2. Let Xn = (X1n, X2n, . . . , Xkn) be a sequence of independent and identically dis-
tributed vectors of random variables such that

√
n[X1n − θ1, X2n − θ2, . . . , Xkn − θk] converges in
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distribution to a multivariate normal distribution Nn(0, Σ), where Σ is the covariance matrix. Sup-
pose that h1, h2, . . . , hk are real functions continuously differentiable in a neighborhood of the param-
eter point θ = (θ1, θ2, . . . , θk) and such that the matrix of partial derivatives B = (∂h`/∂θ)k

`,=1 is
non-singular in the mentioned neighborhood. Then, the following convergence in distribution holds:

√
n
[
h1(Xn)− h1(θ), h2(Xn)− h2(θ), . . . , hk(Xn)− hk(θ)

] D−→ N (0, BΣB′),

where B′ denotes the transpose of B.

Now, we focus on the case N ∼ Mult(n, p). Let p̂ = N/n be the vector of sample
proportions which coincides with the maximum likelihood estimator (MLE) of p and
Yn =

√
n(p̂− p). Then

Yn
D−→ N (0, Dp − pp′),

where Dp = Diag(p1, p2, . . . , pk).
Let us explore the covariance matrix in this case:

Dp − pp′ =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pk

−


p1
p2
...

pk

(p1 p2 · · · pk
)

(6)

=


p1 − p2

1 −p1 p2 · · · −p1 pk
−p2 p1 p2 − p2

2 · · · −p2 pk
...

...
. . .

...
−pk p1 −pk p2 · · · pk − p2

k

 (7)

It means that the covariance matrix Σp ∈ Rk×k we are interested in is of the form

(Σp)` =

{
p`(1− p`) if ` = ,
−p`p if ` 6= .

(8)

The above statements are generalized. In the following, we obtain new results for the
Tsallis and Rényi entropies, and for the Fisher information. For the sake of completeness,
we also include the results for the Shannon entropy.

In order to apply the delta method using Theorem 2, we consider the following functions:

hS
` (p1, p2, . . . , pk) = p` log p`, (9)

hT
` (p1, p2, . . . , pk) = p` − pq

` , (10)

hR
` (p1, p2, . . . , pk) = pq

` , (11)

hF
` (p1, p2, . . . , pk) =

(√
p`+1 −

√
p`
)2, (12)

for ` = 1, 2, . . . , k except for (12) that holds for ` = 1, 2, . . . , k − 1. The assumptions are
verified, and thus,
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∂hS
`

∂p`
= log p` + 1 and

∂hS
`

∂p
= 0 if  6= `, (13)

∂hT
`

∂p`
= 1− qpq−1

` and
∂hT

`

∂p
= 0 if  6= `, (14)

∂hR
`

∂p`
= qpq−1

` and
∂hR

`

∂p
= 0 if  6= `, (15)

∂hF
`

∂p
=

√
p`+1 −

√
p`

(−1)`+−1√p
if  = `, `+ 1 and

∂hF
`

∂p
= 0 if  6= `, `+ 1. (16)

Finally, we need the covariance matrix of the multivariate normal limit distribution,
which is

Σ∆M
p =

(
∂hM`
∂p

)k

`,=1

Σp

(
∂hM`
∂p

)k

`,=1

′

, (17)

whereM ∈ {S, T, R, F}. Since (∂hM` /∂p)k
`,=1 are diagonal matrices forM ∈ {S, T, R},

we can use Equation (A1) to conclude that

(Σ∆S
p )` =

{
(p` − p2

`)(log p` + 1)2 if ` = ,
−p`p(log p` + 1)(log p + 1) if ` 6= ;

(18)

(Σ∆T
p )` =

{
(p` − p2

`)(1− qpq−1
` )2 if ` = ,

−p`p(1− qpq−1
` )(1− qpq−1

 ) if ` 6= ;
(19)

(Σ∆R
p )` =

{
q2(p` − p2

`)p2(q−1)
` if ` = ,

−q2(p`p)q if ` 6= .
(20)

In the case of Σ∆F
p , from Equations (A3) and (A4) we have the following:

• For `,  = 1, 2, . . . , k− 2 and ` 6= − 1, ,  + 1:

(Σ∆F
p )` =

(√
p`+1 −

√
p`
)(√

p+1 −
√

p

)(√
p`+1 p +

√
p`p+1 −

√
p`p −

√
p`+1 p+1

)
. (21)

• For ` = 1, 2, . . . , k− 2:

(Σ∆F
p )`,`−1 =

(√
p`+1 −

√
p`
)(√

p` −
√

p`−1
)(√

p`+1 p`−1 + p` − 1−√p`p`−1 −
√

p`+1 p`
)
. (22)

• For ` = 1, 2, . . . , k− 2:

(Σ∆F
p )`` =

(√
p`+1 −

√
p`
)2(2√p`p`+1 + 2− p` − p`+1

)
. (23)

• For ` = 1, 2, . . . , k− 2:

(Σ∆F
p )`,`+1 =

(√
p`+1 −

√
p`
)(√

p`+2 −
√

p`+1
)(

p`+1 − 1 +
√

p`p`+2 −
√

p`p`+1 −
√

p`+1 p`+2
)
. (24)

• For  = 1, 2, . . . , k− 2:

(Σ∆F
p )k−1, = (

√
pk −

√
pk−1)(

√
p+1 −

√
p)

(
pk p+1
√p+1

−
pk−1 p√p

)
. (25)

• Finally,
(Σ∆F

p )k−1,k−1 = (
√

pk −
√

pk−1)
2(1− pk−1). (26)
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Hence, we conclude that

√
n
[
hM1 ( p̂1)− hM1 (p1), hM2 ( p̂2)− hM2 (p2), . . . , hMk′ p̂k′ − hMk′ (pk′)

] D−→ N (0, Σ∆M
p ), (27)

whereM ∈ {S, T, R, F} and k′ = k in all cases except for the case of the Fisher information
in which k′ = k− 1. An equivalent expression is

√
n
[
hM1 ( p̂1), hM2 ( p̂2), . . . , hMk′ ( p̂k′)

] D−→ N
√n


hM1 (p1)
hM2 (p2)

...
hMk′ (pk′)

, Σ∆M
p

. (28)

If Y is a vector of random variables such that
√

nY D−→ N (
√

nµ, Σ), then it can be
proved that E(

√
nY) →

√
nµ and Var(

√
nY) → Σ. Provided well-known properties, it

holds that E(Y)→ µ and Var(Y)→ 1/nΣ. Applying this to (28),

[
hM1 ( p̂1), hM2 ( p̂2), . . . , hMk′ ( p̂k′)

] D−→ N



hM1 (p1)
hM2 (p2)

...
hMk′ (pk′)

,
1
n

Σ∆M
p

. (29)

Now, using (29), we find the asymptotic distribution of (2)–(5). In order to do so, we
need to know the distribution of the sum of k Gaussian random variables with different
means and an arbitrary covariance matrix.

For any k-dimensional multivariate normal distribution Z ∼ N (µ, Σ), with µ ∈ Rk

and covariance matrix Σ = (σ`), holds that the distribution of W = aTZ, with a ∈ Rk, is
N
(
aTµ, ∑k

`=1 a2
`σ`` + 2 ∑k−1

`=1 ∑k
=i+1 a`aσ`

)
. Using the limit distribution presented in (29)

and a = (−1,−1, . . . ,−1), we directly have the asymptotic distribution of the Shannon
entropy as follows:

HS(p̂) = −
k

∑
`=1

p̂` log p̂`
D−→

N
(
−

k

∑
`=1

p` log p`,
1
n

k

∑
`=1

p`(1− p`)(log p` + 1)2 − 2
n

k−1

∑
=1

k

∑
`=+1

p`p(log p` + 1)(log p + 1)

)
. (30)

With similar arguments and a = (1, 1, . . . , 1), we obtain the asymptotic distribution
for the Tsallis entropy of order q:

Hq
T(p̂) =

k

∑
`=1

p̂` − p̂q
`

q− 1
D−→ N

(
k

∑
`=1

p` − pq
`

q− 1
,

k

∑
`=1

(p` − p2
`)(1− qpq−1

` )2

n(q− 1)2 − 2
k−1

∑
=1

k

∑
`=+1

p`p(1− qpq−1
` )(1− qpq−1

 )

n(q− 1)2

)
. (31)

The procedure is analogous for the Fisher information but with a = (1, 1, . . . , 1) ∈
R

k−1. Hence, it can be proved that

HF(p̂) = F0

k−1

∑
`=1

(
√

p̂`−1 −
√

p̂`)2 D−→ N
(

F0

k−1

∑
`=1

(
√

p`−1 −
√

p`)2,
F0

n
Σ∗
)

, (32)

where
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Σ∗ =
(√

pk −
√

pk−1
)2
(1− pk−1) +

k−2

∑
`=1

(√
p`+1 −

√
p`
)2(2√p`p`+1 − p` − p`+1 + 2

)
+

2
k−2

∑
`=3

`−2

∑
j=1

[(√
p`+1 −

√
p`
)(√

p+1 −
√

p

)(√
p`+1 p +

√
p`p+1 −

√
p`p −

√
p`+1 p+1

)]
+

2
k−2

∑
=1

[(√
pk −

√
pk−1

)(√
p+1 −

√
p

)(
pk
√

p+1 − pk−1
√

p

)]
+

2
k−2

∑
`=2

[(√
p`+1 −

√
p`
)(√

p` −
√

p`−1
)(√

p`+1 p`−1 −
√

p`p`−1 −
√

p`+1 p` + p` − 1
)]

. (33)

To obtain expression (33), we use the symmetry of the covariance matrix which implies
that ∑k−1

`=1 ∑k
=`+1 a`aσ` = ∑k−1

`=2 ∑`−1
=1 a`aσ`. It is worth noticing that the expression of the

covariance matrix for Fisher information is more complicated than the previously analyzed
entropies since the matrix of partial derivatives is not diagonal in this case.

The case of Rényi entropy is different because, following the previous methodology,
we can prove that

k

∑
`=1

p̂q
`
D−→ N

(
k

∑
`=1

pq
` ,

1
n

k

∑
`=1

q2(p` − p2
`)p2(q−1)

` − 2
n

k−1

∑
`=1

k

∑
=`+1

q2(p p`)q

)
. (34)

Hence,

Hq
R(p̂) =

1
1− q

log
k

∑
`=1

p̂q
`
D−→P

q
R, (35)

where

P
q
R(x) =

1− q
σ∗
√

2π
exp[(1− q)x log(k)] exp

{
−1

2

(
exp[(1− q)x log(k)]− µ∗

σ∗

)2
}

, (36)

with µ∗ = ∑k
`=1 pq

` and σ∗ = n−1 ∑k
`=1 q2(p` − p2

`)p2(q−1)
` − 2n−1 ∑k−1

`=1 ∑k
=`+1 q2(p`p)q.

Notice that this is not a normal distribution but the distribution of the logarithm of the
absolute value of a normally distributed random variable.

Often, in practice, these entropies are scaled to be in [0, 1]; these are called “normalized
entropies”. The following modifications must be considered in the normalized versions
of the entropies. For the normalized Shannon entropy, the asymptotic mean and variance
are multiplied by 1/ log k and 1/(log k)2, respectively. In the case of the normalized Tsallis
entropy, the asymptotic mean and variance are multiplied by (q− 1)/(1− k1−q) and (q−
1)2/(1− k1−q)2, respectively. Finally, the asymptotic distribution of the normalized Rényi
entropy is P̃

q
R(x) = log kPq

R(x log k). Notice that normalized entropies do not depend on
the logarithm basis. The Fisher information is, as defined in (5), already normalized.

4. Analysis and Validation

In this section, we study the empirical distribution of the entropies computed from
p̂ under three models, four categories (k ∈ {6, 24, 120, 720}), and three sample sizes
(n ∈ {102k, 103k, 104k}) that depend on the number of categories. These choices of k and n
are based on the values that appear in signal analysis with ordinal patterns; see details of
this technique in Appendix A.2.

We considered the following probability functions p = (p1, p2, . . . , pk):

1. Linear: p` = 2`/(k(k + 1)), 1 ≤ ` ≤ k.
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2. One-Almost-Zero: p` = 1/k for 1 ≤ ` ≤ k− 2, pk−1 = ε0, and pk = 2/k− ε0 with
ε0 = 2.220 446× 10−16 (the smallest positive number for which, in our computer
platform, 1 + ε0 > 1).

3. Half-and-Half: p` = 1/k + ε/k for 1 ≤ ` ≤ k/2, and p` = 1/k− ε/k for k/2 + 1 ≤
` ≤ k, with ε ∈ {0.1, 0.3, 0.5, 0.8}.

These probability functions are illustrated, for k = 6 and ε = 0.3, in Figure 1. We
studied the behavior of the Shannon entropy, the Rényi entropy with q ∈ {1/3, 2/5}, the
Tsallis entropy with q ∈ {1/2, 3/2}, and the Fisher information computed on samples of
sizes n ∈ {102k, 103k, 104k}. We used 300 independent samples (replicates).
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Figure 1. Linear, One-Almost-Zero, and Half-and-Half probability functions for k = 6 and ε = 0.3.

Although Equation (35) shows that the Rényi entropy is not asymptotically normal,
we verified that its density is similar to that of a Gaussian distribution. With this in mind,
we also checked of the normality of Rényi entropies. We used the Anderson–Darling test
to verify the null hypothesis that the data follow a normal distribution. We chose this test
because it uses the hypothesized distribution in calculating critical values. This test is more
sensitive than other alternatives; see, for instance, the book by Lehman and Romano [14].

From Table 1, we notice that the Fisher information is the one that fails most times
to pass the normality test at the 1 %. The situation that appears with p-value = 0.0010 in
the table has, in fact, p-value = 9.606 130× 10−3; the table shows rounded values. Figure 2
shows four of these cases, namely for k = 6, n = 600, and ε = 0.1, 0.3, 0.5, 0.8. We notice
that the deviation from the normal hypothesis is more prevalent in both tails, being that
the observations are larger than the theoretical quantiles.

Table 1. Situations for which the p-values of the Anderson–Darling test for the normality of samples
of size 300 are less than 0.01 (“HF” stands for the Fisher information; “HaH” and “OAZ” are the
Half-And-Half and One-Almost-Zero models).

Type Model ε k n p-Value

HF HaH 0.8 6 600 0.0030
HF HaH 0.1 6 600 0.0000
HF HaH 0.1 24 2400 0.0000
HF HaH 0.8 24 2400 0.0064
HF HaH 0.1 6 6000 0.0000
HF HaH 0.3 6 600 0.0000
HF HaH 0.1 120 120,000 0.0089
HF HaH 0.1 24 24000 0.0004
HF Linear 0 6 600 0.0000
HF Linear 0 24 2400 0.0000

H1/3
R HaH 0.1 6 600 0.0000

H1/3
R HaH 0.1 24 2400 0.0001

H1/3
R OAZ 0 24 2400 0.0000

H2/3
R HaH 0.1 6 600 0.0000

H2/3
R HaH 0.1 24 2400 0.0001

H2/3
R OAZ 0 24 2400 0.0000

HS HaH 0.1 6 600 0.0001
HS HaH 0.1 24 2400 0.0002
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Table 1. Cont.

Type Model ε k n p-Value

HS OAZ 0 24 2400 0.0000
H1/2

T HaH 0.1 6 600 0.0000
H1/2

T HaH 0.1 24 2400 0.0001
H1/2

T OAZ 0 24 2400 0.0000
H3/2

T HaH 0.1 6 600 0.0001
H3/2

T HaH 0.1 24 2400 0.0003
H3/2

T OAZ 0 24 2400 0.0000

The normality hypothesis was rejected at the 1% level by the Anderson–Darling test in
only 24 out of 432 situations, showing that the asymptotic Gaussian model for the entropies
is a good description for these data. Table 1 shows those situations.
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Figure 2. Empirical densities and normal QQ-plots of the Fisher information in situations that fail to
pass the normality test at 1 %.

With the aim to assess the goodness of fit of the asymptotic models, we applied the
Kolmogorov–Smirnov test to fifty replicates of samples. Table 2 shows the results where
the p-value of the test is at least equal to 0.05.
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It is worth noticing that even in those cases where the p-value is lesser than 0.05, the
asymptotic models are a good fit to the data as can be seen in several examples exhibited in
Figure 3. The Fisher information shows the worst fitting. Additionally, notice in Figure 3d
that, although the asymptotic distribution of the Rényi entropy is not normal, the probability
density function is visually very close to the Gaussian model. We verified this similarity in
all the cases we considered.

Table 2. Situations for which the p-values of the Kolmogorov–Smirnov test of samples of size 50 are larger
than or equal to 0.05 (“HaH” and “OAZ” are the Half-And-Half and One-Almost-Zero models).

Type Model ε k n Type Model ε k n

HS

HaH

0.1
6, 24 103k, 104k

H3/2
T

HaH

0.1
6, 24 103k, 104k

120, 720 104k 120, 720 104k

0.3

6, 120 for all

0.3

6, 120 for all
24 103k 24 103k

720 103k, 104k 720 103k, 104k

0.5
6, 24 for all

0.5
6, 24 for all

120, 720 103k, 104k 120, 720 103k, 104k

0.8

6 102k, 103k

0.8

6 102k, 103k
24, 720 for all 24, 720 for all

120 103k, 104k 120 103k, 104k

Linear 0
6, 24, 120 for all

Linear 0
6, 24, 120 for all

720 103k, 104k 720 102k, 104k

OAZ 0 6, 24 for all OAZ 0 6, 24 for all

HF

HaH

0.1 6 103k

H1/3
R

HaH

0.3 6 102k, 103k

0.3 6, 24 for all 0.5 6 for all

0.5

6 102k, 103k 0.8 6 102k, 103k

24 103k, 104k Linear 0 6 for all

120 104k
OAZ 0

6 for all

0.8
6 102k, 103k 24 102k

24 for all

H2/3
R

HaH

0.3 6 for all

Linear 0
6 103k, 104k 0.5 6 for all

24 104k 0.8 6 102k, 103k

OAZ 0 6, 24 for all Linear 0 6 for all

H1/2
T

HaH

0.1
6, 24 103k, 104k OAZ 0 6 102k, 103k

120, 720 104k

0.3

6, 120 for all
24 103k

720 103k, 104k

0.5
6, 24 for all

120, 720 103k, 104k

0.8

6 102k, 103k
24 for all

120, 720 103k, 104k

Linear 0 for all for all

OAZ 0

6, 24 for all
120 103k, 104k
720 104k
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Figure 3. Examples of cases where the null hypothesis of the Kolmogorov–Smirnov test is rejected.
The histograms are computed with samples of size 300 using the Freedman–Diaconis rule [15], and
the green lines are the asymptotic probability density functions. (a) Type: HS, Model: OAZ, k = 120,
n = 104k, p-val = 0.00202; (b) Type: HF, Model: OAZ, k = 120, n = 104k, p-val = 0.00013; (c) Type:
H1/3

R , Model: Linear, k = 24, n = 104k, p-val ≈ 0; (d) Type: H1/2
T , Model: HaH, ε = 0.8, k = 6,

n = 104k, p-val = 0.04297.

5. Application

Inspired by an example from Agresti [16] (p. 200), we extracted data from the General
Social Survey (GSS, a project of the independent research organization NORC at the
University of Chicago, with principal funding from the National Science Foundation,
available at https://gss.norc.org/. The data were downloaded on 24 December 2022).
Table 3 shows the level of agreement to the assertion “Religious people are often too
intolerant” as measured in three years.

Table 3. GSS data about religious intolerance.

Year 1998 2008 2018

STRONGLY AGREE 148 285 186
AGREE 429 602 496
NOT AGREE/DISAGREE 278 210 229
DISAGREE 275 196 181
STRONG DISAGREE 72 30 38
Total 1202 1323 1130

The p-values of pairwise χ2 tests for the null hypotheses that the underlying probabili-
ties are equal are

1998 and 2008: 3.43× 10−22,

1998 and 2018: 2.01× 10−8,

2008 and 2018: 1.06× 10−3.

https://gss.norc.org/
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On the one hand, these values attest that 1998 and 2008 and 1998 and 2018 are very
different. On the other hand, although significant, the change between 2008 and 2018 is not
so significant.

Table 4 shows the asymptotic mean and variance (in entropies normalized units) of
the entropies of the proportions reported in Table 3.

Table 4. Asymptotic mean and variance of entropies.

Mean Variance

1998 2008 2018 1998 2008 2018

HS 0.914 0.839 0.863 0.0000724 0.0001081 0.0001175
H1/3

R 0.967 0.933 0.947 0.0001172 0.0002375 0.0002122
H2/3

R 0.939 0.881 0.902 0.0000317 0.0000500 0.0000512
H1/2

T 0.932 0.868 0.892 0.0000500 0.0000871 0.0000842
H3/2

T 0.919 0.849 0.870 0.0000622 0.0001089 0.0001183
HF 0.516 0.702 0.642 0.0008028 0.0011355 0.0011917

We perform the same hypothesis test with the asymptotic quantities presented in
Table 4. Table 5 shows the p-values of the null hypothesis that the entropies are equal, using
the test discussed by Chagas et al. [8] (Section 5):

p-value ≈ 2

(
1−Φ

( ∣∣H(p̂1)− H(p̂2)
∣∣√

σ̂2
n1,p̂1

+ σ̂2
n2,p̂2

))
, (37)

where Φ is the cumulative distribution function of a standard normal random variable, H
is any of the considered entropies computed with the observed proportions p̂i, i = 1, 2, and
σ̂2

ni ,p̂i is the corresponding sample asymptotic variance that takes into account the sample
size ni. Notice that the test based on entropies compares only these features, and not the
underlying distribution.

Table 5. p-values of the hypothesis of equal entropies.

1998–2008 1998–2018 2008–2018

HS 0.0000000 0.0002606 0.1029
H1/3

R 0.0705681 0.2520262 0.5316
H2/3

R 0.0000000 0.0000478 0.0404
H1/2

T 0.0000000 0.0004471 0.0690
H3/2

T 0.0000001 0.0002316 0.1672
HF 0.0000219 0.0045777 0.2118

The results in Table 5 are consistent with those provided by the χ2 tests, i.e., the most
significant differences arise between 1998 and 2008 and between 1998 and 2018. Moreover,
the tests based on entropies do not reject the null hypothesis in the pair 2008–2018, except
for Rényi entropy of order 2/3. The increased p-values are a consequence of the information
reduction: whereas the χ2 test compares count-by-count, those based on entropies compare
two scalars.

In the second part of this application, we will illustrate the use of test statistics based
on entropies for comparing samples with different categories. Situations like this may
appear when applying alternative versions of the same questionnaire in a series of surveys.

We collapsed the categories of 1998 into three: “agreement” (by adding “strongly
agree” and “agree”), “indifference” (“not agree/disagree”), and “disagreement” (by adding
“disagree” and “strong disagree”). The resulting asymptotic mean entropies and asymptotic
variances are shown in Table 6.
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Table 6. Asymptotic mean and variance of entropies of the collapsed entries of 1998.

Mean Variance

HS 0.955 0.0000678
H1/3

R 0.985 0.0000171
H2/3

R 0.970 0.0000083
H1/2

T 0.971 0.0000281
H3/2

T 0.949 0.0000896
HF 0.192 0.0000678

Table 7 presents the p-values of the tests that verify the null hypothesis of the same
entropy between the collapsed 1998 data (three categories), and 2008 and 2018 (five cate-
gories). These results agree with those presented in Table 5. Such an agreement suggests
that, although the number of categories was reduced in 1998 from five to three, the tests
based on entropies cope with the loss of information.

Table 7. p-values of the hypotheses of equal entropies using collapsed data in 1998.

1998–2008 1998–2018

HS 0.00000 0.0000
H1/3

R 0.00115 0.0107
H2/3

R 0.00000 0.0000
H1/2

T 0.00000 0.0000
H3/2

T 0.00000 0.0000
HF 0.00000 0.0000

6. Conclusions

We presented expressions for the asymptotic distribution of the Rényi and Tsallis
entropies of order q, and Fisher information. The Fisher information and the Tsallis and
Shannon entropies have limit normal distribution with means and variances that depend
on the underlying probability of patterns and the number of patterns. The Rényi entropy
follows, asymptotically, a different distribution, cf. (35), but a Gaussian law can well ap-
proximate it. Those expressions pose no numerical challenges other than setting 0 log 0 .

= 0.
We verified that these asymptotic distributions are good models for data arising from both
simulations with a variety of models and from the analysis of actual data.

On the one hand, the Fisher information is the one that fails more frequently to pass
the Anderson–Darling normality tests. On the other hand, it does not provide evidence to
reject the same hypothesis under the One-Almost-Zero model.

The distributions we present here can be used for building test statistics, as discussed
by Chagas et al. [8]. Moreover, Equation (37) allows performing tests with mixed types
of distributions, a situation that may appear in Internet of Things applications, in which,
citing Borges et al. [17], one has to deal with “large time series data generated at different
rates, of different types and magnitudes, possibly having issues concerning uncertainty,
inconsistency, and incompleteness due to missing readings and sensor failures.”
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Notation
The following notation is used in this manuscript:

p vector of probabilities
p′ the transpose of p
p̂ an estimator of p
N multivariate discrete random variable
n a sample from N
HS Shannon entropy
Hq

T Tsallis entropy of order q
Hq

R Rényi entropy of order q
HF Fisher information measure
Σ covariance matrix

Appendix A

Appendix A.1. Matrix Operations

Consider the real matrix M ∈Rk×k, and denote as M′ its transpose. If D = Diag (d1, d2, . . . , dk)
∈ Rk×k, then

(DMD′)ij =
k

∑
r=1

(DM)irD′rj =
k

∑
r=1

k

∑
s=1

Dis MsrD′rj

= Dii MijDjj =

{
d2

i Mii if i = j,
didj Mij if i 6= j.

(A1)

We consider now

B =


b11 b12 0 0 · · · 0 0
0 b22 b23 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · bk−1,k bkk
0 0 0 0 · · · 0 bkk

 ∈ Rk×k.

Analogous to the computation in Equation (A1), it can be seen that

(BMB′)ij =
k

∑
r=1

k

∑
s=1

Bis MsrB′rj =
k

∑
r=1

k

∑
s=1

Bis MsrBjr. (A2)

Due to the form of B, if i, j = 1, 2, . . . , k− 1 then

(BMB′)ij =
k

∑
r=1

(Bii Mir + Bi,i+1Mi+1,r)Bjr

= (Bii Mij + Bi,i+1Mi+1,j)Bjj + (Bii Mi,j+1 + Bi,i+1Mi+1,j+1)Bj,j+1. (A3)

If i = k, replacing in Equation (A2),



Entropy 2023, 25, 734 15 of 16

(BMB′)kj =
k

∑
r=1

Bkk MkrBjr =

{
Bkk(MkjBjj + Mk,j+1Bj,j+1) if j 6= k,
B2

kk Mkk if j = k.
(A4)

Appendix A.2. Ordinal Patterns

Symbolic data analysis [18] encompasses methods that study the statistical properties
of data aggregated by criteria that meet some scientific question. Such methods have
attracted lots of attention because they present competitive results in many data analysis
applications [17,19,20].

Ordinal patterns [21] belong to this class of techniques. They impose low computa-
tional complexity and are inherently robust. This approach consists of constructing a set of
symbolic ordinal patterns based on intrinsic data characteristics without any prior model.
Ordinal patterns often reveal and quantify the underlying time series dynamics. In spite of
their successful application to biomedicine, economics, mechanics and electronics engineering,
image analysis and remote sensing, to name a few (see, for instance, Refs. [20,22,23]), little is
known about the statistical properties of the features they induce. One of these features is
entropy, in its several forms.

Signal analysis with ordinal patterns requires coding D observations into k = D!
categories, in which D is typically small [8,20,24]. Motivated by these applications, we
chose k ∈ {6, 24, 120, 720}, which allows checking results in various categories. Bear in
mind that, when using ordinal patterns, the subsequent patterns are not independent and,
thus, the multinomial distribution is an approximation.

Appendix A.3. Computational Information

This article was written in Rmarkdown and is fully reproducible. We used RStudio version
2022.07.2 and R version 4.2.1. The code and data are available at https://gitlab.ecs.vuw.ac.nz/
freryal/asymptotic-distribution-of-various-types-of-entropyunder-the-multinomial-law,
accessed on 26 April 2023.
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