A Semi-Quantum Secret-Sharing Protocol with a High Channel Capacity
Abstract
:1. Introduction
2. Protocol
3. Security Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [Google Scholar] [CrossRef]
- Chandramouli, A.; Choudhury, A.; Patra, A. A Survey on Perfectly Secure Verifiable Secret-Sharing. ACM Comput. Surv. CSUR 2022, 54, 1–36. [Google Scholar] [CrossRef]
- Blanton, M.; Kang, A.; Yuan, C. Improved building blocks for secure multi-party computation based on secret sharing with honest majority. In Proceedings of the Applied Cryptography and Network Securit: 18th International Conference, ACNS 2020, Rome, Italy, 19–22 October 2020. [Google Scholar]
- Liu, Y.; Zhao, Q. E-voting scheme using secret sharing and K-anonymity. World Wide Web 2019, 22, 1657–1667. [Google Scholar] [CrossRef]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145. [Google Scholar] [CrossRef]
- Portmann, C.; Renner, R. Security in quantum cryptography. Rev. Mod. Phys. 2022, 94, 025008. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 10–12 December 1984. [Google Scholar]
- Lo, H.K.; Curty, M.; Tamaki, K. Secure quantum key distribution. Nat. Photonics 2016, 8, 595–604. [Google Scholar] [CrossRef]
- Sun, Z.; Song, L.; Huang, Q.; Yin, L.; Long, G.; Lu, J.; Hanzo, L. Toward practical quantum secure direct communication: A quantum-memory-free protocol and code design. IEEE Trans. Commun. 2020, 68, 5778–5792. [Google Scholar] [CrossRef]
- Basso Basset, F.; Valeri, M.; Roccia, E.; Muredda, V.; Poderini, D.; Neuwirth, J.; Spagnolo, N.; Rota, M.B.; Carvacho, G.; Sciarrino, F.; et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 2021, 7, eabe6379. [Google Scholar] [CrossRef]
- Hillery, M.; Bužek, V. Berthiaume, Quantum secret sharing. Phys. Rev. A 1999, 59, 1829. [Google Scholar] [CrossRef]
- Williams, B.P.; Lukens, J.M.; Peters, N.A.; Qi, B.; Grice, W.P. Quantum secret sharing with polarization-entangled photon pairs. Phys. Rev. A 2019, 99, 062311. [Google Scholar] [CrossRef]
- Sutradhar, K.; Om, H. Efficient quantum secret sharing without a trusted player. Quantum Inf. Process. 2020, 19, 73. [Google Scholar] [CrossRef]
- Liao, Q.; Liu, H.; Zhu, L.; Guo, Y. Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 2021, 103, 032410. [Google Scholar] [CrossRef]
- Bennett, C.H.; Wiesner, S.J. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992, 69, 2881. [Google Scholar] [CrossRef]
- Cirac, J.I. Quantum computing and simulation: Where we stand and what awaits US. Nanophotonics 2020, 10, 453–456. [Google Scholar] [CrossRef]
- Boyer, M.; Kenigsberg, D.; Mor, T. Quantum key distribution with classical Bob. In Proceedings of the 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07), Guadeloupe, France, 2–6 January 2007. [Google Scholar]
- Iqbal, H.; Krawec, W.O. Semi-quantum cryptography. Quantum Inf. Process. 2020, 19, 97. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Yuan, K.; Li, C.; Li, H.; Chen, X. An efficient semi-quantum key distribution protocol based on EPR and single-particle hybridization. Quantum Inf. Comput. 2021, 21, 563–576. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Ye, C.; Li, C. Multi-party semi-quantum key distribution protocol based on hyperentangled Bell states. Front. Phys. 2022, 10, 966. [Google Scholar] [CrossRef]
- Guskind, J.; Krawec, W.O. Mediated semi-quantum key distribution with improved efficiency. Quantum Sci. Technol. 2022, 7, 035019. [Google Scholar] [CrossRef]
- Jiang, L.Z. Semi-quantum private comparison based on Bell states. Quantum Inf. Process. 2020, 19, 180. [Google Scholar] [CrossRef]
- Lin, P.H.; Hwang, T.; Tsai, C.W. Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 2019, 18, 207. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Chen, X.B.; Ye, C.Q.; Li, C.Y.; Hou, Y.Y. An efficient semi-quantum private comparison without pre-shared keys. Quantum Inf. Process. 2021, 20, 360. [Google Scholar] [CrossRef]
- Zhou, N.R.; Zhu, K.N.; Bi, W.; Gong, L.H. Semi-quantum identification. Quantum Inf. Process. 2019, 18, 197. [Google Scholar] [CrossRef]
- Rong, Z.; Qiu, D.; Mateus, P.; Zou, X. Mediated semi-quantum secure direct communication. Quantum Inf. Process. 2021, 20, 58. [Google Scholar] [CrossRef]
- Li, Q.; Chan, W.H.; Long, D.Y. Semi-quantum secret sharing using entangled states. Phys. Rev. A 2010, 82, 022303. [Google Scholar] [CrossRef]
- Li, L.; Qiu, D.; Mateus, P. Quantum secret sharing with classical Bobs. J. Phys. Math. Theor. 2013, 46, 045304. [Google Scholar] [CrossRef]
- Xie, C.; Li, L.; Qiu, D. A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 2015, 54, 3819–3824. [Google Scholar] [CrossRef]
- Yin, A.; Wang, Z.; Fu, F. A novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 2017, 31, 1750150. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Liu, C.; Peng, Y.; Chan, W.H.; Li, L. Limited resource semiquantum secret sharing. Quantum Inf. Process. 2018, 17, 285. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, J.; Bai, M.Q.; Yang, X.; Mo, Z.W. Limited resource semi-quantum secret sharing based on multi-level systems. Int. J. Theor. Phys. 2019, 58, 2883–2892. [Google Scholar] [CrossRef]
- Tsai, C.W.; Yang, C.W.; Lee, N.Y. Semi-quantum secret sharing protocol using W-state. Mod. Phys. Lett. A 2019, 34, 1950213. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Chen, X.B.; Ye, C.Q.; Li, H.J. An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 2021, 20, 217. [Google Scholar] [CrossRef]
- Hu, W.; Zhou, R.G.; Luo, J. Semi-quantum secret sharing in high-dimensional quantum system using product states. Chin. J. Phys. 2022, 77, 1701–1712. [Google Scholar] [CrossRef]
- Wang, X.L.; Cai, X.D.; Su, Z.E.; Chen, M.C.; Wu, D.; Li, L.; Liu, N.L.; Lu, C.Y.; Pan, J.W. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 2015, 518, 516–519. [Google Scholar] [CrossRef]
- Ye, T.Y.; Li, H.K.; Hu, J.L. Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 2020, 59, 2807–2815. [Google Scholar] [CrossRef]
- Cabello, A. Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 2000, 85, 5635. [Google Scholar] [CrossRef]
Case | Bob’s Operation |
---|---|
QSS | Quantum secret sharing |
SQSS | Semi-quantum secret sharing |
DoF | Degree of freedom |
DoFs | Degrees of freedom |
QKD | Quantum key distribution |
SQKD | Semi-quantum key distribution |
SIFT | Measure and prepare the qubits with Z basis |
CTRL | Reflect the qubits without disturbance |
X_P(X_S) | X basis under polarization DoF (spatial mode DoF) |
Z_P(Z_S) | Z basis under polarization DoF (spatial mode DoF) |
K_A | Alice’s secret bit |
K_B | Bob’s secret bit |
K_C | Charlie’s secret bit |
Qubit efficency |
Case | Bob’s Operation | Charlie’s Operation | Alice’s Operation | Usage |
---|---|---|---|---|
1 | SIFT | SIFT | Measure the qubits B and C with | Generate raw key, check for eavesdropping |
2 | SIFT | CTRL | Measure the qubits B with and measure the qubits C with | Check for eavesdropping |
3 | CTRL | SIFT | Measure the qubits B with and Measure the qubits C with | Check for eavesdropping |
4 | CTRL | CTRL | Measure the qubits B and C with | Check for eavesdropping |
Secret Information 1 and 2 | Bob’s Results | Charlie’s Results | Alice’s Results |
---|---|---|---|
0 and 0 | |||
0 and 1 | |||
1 and 0 | |||
1 and 1 | |||
0 and 1 | |||
0 and 0 | |||
1 and 1 | |||
1 and 0 | |||
1 and 0 | |||
1 and 1 | |||
0 and 0 | |||
0 and 1 | |||
1 and 1 | |||
1 and 0 | |||
0 and 1 | |||
0 and 0 |
Reference | Quantum Source | Measurement | Decoy Photons | DoF | Sharing Message | Qubit Effigency |
---|---|---|---|---|---|---|
[27] | GHZ-type states | Single qubit measurement, Bell measurement, three-qubit joint measurement | No | 1 | Unspecific | |
[28] | Two-qubit product states | Single qubit measurement | No | 1 | Unspecific | |
[29] | Two entangled states | Single qubit measurement, two-particle measurement, three-particle measurement | No | 1 | Specific | |
[30] | Bell states | Single qubit measurement, Bell measurement | No | 1 | Unspecific | - |
[31] | Two-qubit product states | Single qubit measurement | No | 1 | Unspecific | |
[32] | Two-qubit product states | - | No | 1 | Unspecific | |
[33] | W states | Single qubit measurement, Bell measurement | No | 1 | Unspecific | |
[34] | Bell states | Single qubit measurement, Bell measurement | Yes | 1 | Specific | < |
[35] | Product states | Single qubit measurement | No | 1 | Unspecific | |
Proposed protocol | Two-qubit product hyper-entangled states | Single hyper-entangled qubit measurement | No | 2 | Unspecific |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Bian, G.; Chang, J.; Tang, Y.; Li, J.; Ye, C. A Semi-Quantum Secret-Sharing Protocol with a High Channel Capacity. Entropy 2023, 25, 742. https://doi.org/10.3390/e25050742
Tian Y, Bian G, Chang J, Tang Y, Li J, Ye C. A Semi-Quantum Secret-Sharing Protocol with a High Channel Capacity. Entropy. 2023; 25(5):742. https://doi.org/10.3390/e25050742
Chicago/Turabian StyleTian, Yuan, Genqing Bian, Jinyong Chang, Ying Tang, Jian Li, and Chongqiang Ye. 2023. "A Semi-Quantum Secret-Sharing Protocol with a High Channel Capacity" Entropy 25, no. 5: 742. https://doi.org/10.3390/e25050742
APA StyleTian, Y., Bian, G., Chang, J., Tang, Y., Li, J., & Ye, C. (2023). A Semi-Quantum Secret-Sharing Protocol with a High Channel Capacity. Entropy, 25(5), 742. https://doi.org/10.3390/e25050742