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Abstract: The coherent energy transfer between two identical two-level systems is investigated.
Here, the first quantum system plays the role of a charger, while the second can be seen as a quantum
battery. Firstly, a direct energy transfer between the two objects is considered and then compared to a
transfer mediated by an additional intermediate two-level system. In this latter case, it is possible
to distinguish between a two-step process, where the energy is firstly transferred from the charger
to the mediator and only after from the mediator to the battery, and a single-step in which the two
transfers occurs simultaneously. The differences between these configurations are discussed in the
framework of an analytically solvable model completing what recently discussed in literature.

Keywords: quantum batteries; coherent energy transfer; two-level system dynamics

1. Introduction

Over the last decades the field of quantum technologies has aroused a progressively
increasing interest in the scientific community due to the possibility of manipulating
and measuring miniaturized systems with very high precision [1–3]. In this direction,
the study of energy harvesting and transferring processes at the nanoscale paved the
way to the development of quantum thermodynamics [4–11], where the classical laws
of thermodynamics are reconsidered with the aim of describing thermal machines and
energy storage devices exploiting purely quantum mechanical effects. In particular, the
concept of quantum battery (QB) was introduced by R. Alicki and M. Fannes in their seminal
paper [12]. There, they considered the role played by entanglement in improving the storing
and extraction of energy from quantum systems with respect to their classical counterparts.
Since then, several theoretical models have been considered looking for quantum features
leading to improvement of the performances in this direction [13–16]. Great part of the
inspected models rely on platforms routinely used in the quantum computation domain,
such as collections of artificial atoms [17–28], and circuit quantum electrodynamics [29–36].
However, the first experimental evidence of a QB was recently presented by J. Quach et al.
in [37], in a setup consisting of a collection of fluorescent molecules embedded in a resonant
cavity. More recently, other experimental works based on quantum technology platforms
have been reported. For instance, a QB based on a three-level superconducting qubit
working in the transmon regime has been investigated [38]. Furthermore, very promising is
the opportunity to use IBM machines controlled in time to simulate the charging behaviour
of QBs [39].

Most works in the QBs literature have been devoted to study the charging of QBs
and the energy extraction from them. However, another important issue concerns the
investigation of the coherent energy transfer processes that can occur between a quantum
charger and a QB, allowing the realization of energetic networks able to connect distant
parts of more complex quantum devices [40–42]. Preliminary theoretical studies in this
direction have been proposed in [18,26], where the energy transfer processes between
simple systems were analyzed. In the first work, three analytically solvable scenarios were
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considered, namely the direct energy transfer between a quantum harmonic oscillator
(QHO) and a two-level system (TLS), or between two TLSs and finally between two QHOs.
In the second work [26], instead, a numerical approach was considered to understand how
the presence of a mediator, e.g., a TLS or a photonic cavity, can reduce the time and improve
the efficiency of the energy transfer with respect to the direct coupling between two TLSs.
In passing, it is interesting to note that the study of coherent energy transfer in quantum
devices presents analogies with the excitations transfer in light-harvesting photosynthetic
systems [43] and also with Förster resonant energy transfer between two light-sensitive
molecules, where the first one (the donor), initially in its electronic excited state, transfers
energy to the second one (the acceptor). This energy transfer is achieved through non-
radiative dipole-dipole interaction among the molecules and crucially depends on their
distance and their energy mismatch [44].

The present work fits in the emerging field of research devoted to the study of energetic
cost and management for emerging quantum technologies [45–47]. The possibility to
properly control the energy transfer within quantum devices represents an important step
forward in the so-called second quantum revolution [48]. Here, we provide an analytical
description of the coherent energy transfer between two identical TLSs, the first acting as a
charger and the second as the QB. The direct energy transfer between them is compared to
the case where a third identical TLS plays the role of a mediator. It is worth to underline
that similar setups have been considered in the field of quantum information theory to
implement high-fidelity two-qubit gates [49]. In the mediated case, we identify two different
energy transfer scenarios. The first being a two-step process, where the energy is initially
transferred from the charger to the mediator and only after from the mediator to the QB.
The second where the two transfers occurs simultaneously [26]. In all these schemes the
possibility to switch on and off in a controlled way the interaction between the different
parts of the system guarantees to transfer the energy only from the charger to the QB and
not viceversa. Different figures of merit are taken into account, with particular attention to
the energy stored inside each building block composing the device and to the time needed
to transfer the energy from the charger to the QB. As stated above, the performances will be
characterized varying in time the couplings between the various parts of the total system.

The paper is organized as follows. In Section 2 the models for the direct and TLS-
mediated cases are introduced, showing how it is possible to find analytical equations for
the time evolution of the state of the total system on-resonance. The analytical formula
for the stored energy, for both the direct and the TLS-mediated scenario, are discussed in
Section 3. The form of the time dependent function employed to switch on and off the
interaction between each part is shown in Section 4 along with the explicit expressions for
the corresponding stored energy and transfer times. The main results obtained in the direct
and TLS-mediated scenarios are compared in Section 5. Finally, Section 6 is devoted to
the conclusions.

2. Model and Setting

The energy transfer process between two TLSs is considered. The first plays the role of
a charger (C) and the second acts as a QB or as a user of the transferred energy (B). Notice
that, according to the conventional literature on QB, we use the word “charger” to indicate
a device able to provide energy to the QB [18,31,39]. The free Hamiltonian describing this
system is (hereafter we set h̄ = 1)

H0 = HC + HB =
ωC

2
σC

z +
ωB

2
σB

z (1)

where C and the B are characterized by energies ωC and ωB respectively and where σC/B
z

are the z component of Pauli matrices acting on the respective Hilbert spaces. For each TLS
one can identify a ground state |0C/B〉 and an excited state |1C/B〉 such that



Entropy 2023, 25, 758 3 of 18

σC/B
z |0C/B〉 = −|0C/B〉 (2)

σC/B
z |1C/B〉 = +|1C/B〉.

In the following the two TLSs are considered to interact both via a direct coupling between
them and also with another TLS (M) which mediates their interaction.

Notice that the following discussion will be brought up considering the total system as
a closed quantum system. In general, dissipation due to interaction with the environment
can affect the dynamics [50–53]. However, when the TLSs are weakly coupled to the
environment, it is possible to accurately control and mitigate dissipation increasing the
decoherence (tr) and dephasing (tϕ) times [54,55]. Therefore, if one considers the dynamics
of the QB for times t� tr, tϕ dissipation effects can be safely neglected [21,23].

2.1. Direct Coupling Case

First of all, we consider a configuration where C and B are directly coupled (see
Figure 1) via a dipole-dipole interaction between the TLSs [56]. This configuration presents
similarities with the Förster resonant energy transfer between molecules [44]. Indeed, also
in this case the dipole-dipole nature of the interaction make it relevant only for close enough
quantum systems.

ωBωC
|1C⟩
|0C⟩ |0B⟩

|1B⟩g

Figure 1. Scheme of a direct energy transfer process between a quantum charger, with energy
separation ωC, and a QB, with energy separation ωB. The coupling constant g between the two TLS
is modulated through a time dependent switching function.

In the rotating wave approximation (RWA) [57–59], the complete Hamiltonian can
then be written as

Hdir(t) = H0 + g f (t)(σC
−σB

+ + σC
+σB
−), (3)

where g is a coupling constant, f (t) is a time-dependent switching function that will be
specified in the following and

σC/B
± =

σC/B
x ± iσC/B

y

2
(4)

the usual ladder operators with σC/B
x,y the Pauli matrices associated to the x and y direction

respectively. In writing the above expression, counter-rotating term of the form σC
−σB
− and

σC
+σB

+ have been safely neglected, which is a good approximation for g . 0.1ωB,C [59].
As the initial state of the charger-QB system, at time t = 0, we choose

|ψ(0)〉 = |1C0B〉 ≡ |ψ1〉 =
(

1
0

)
, (5)

which is the tensor product of the excited state of the charger and the ground state of
the QB.

Due to the conservation of the excitations number in the dynamics [26] it is possible to
work in the basis

|1C0B〉 ≡ |ψ1〉 =
(

1
0

)
(6)

|0C1B〉 ≡ |ψ2〉 =
(

0
1

)
,
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which allows to write for the chosen initial state in Equation (5) the Hamiltonian in
Equation (3) as the 2× 2 matrix whose elements are

Hij(t) = 〈ψi|Hdir(t)|ψj〉, (7)

where i, j = 1, 2. The Hamiltonian can be then written as

Hdir(t) =


ωC −ωB

2
g f (t)

g f (t) −ωC −ωB

2

. (8)

To simplify the model we choose to work with identical TLSs (ωC = ωB), for which one has

Hdir(t) =

 0 g f (t)

g f (t) 0

. (9)

To study the dynamics of the system it is necessary to solve the Schrödinger equation

i
d
dt
|ψ(t)〉 = Hdir(t)|ψ(t)〉, (10)

where the state evolved in time |ψ(t)〉 can be written in spinorial form as

|ψ(t)〉 = a1(t)|ψ1〉+ a2(t)|ψ2〉 ≡
(

a1(t)
a2(t)

)
. (11)

Consequently one obtains the following set of differential equations(
ȧ1(t)
ȧ2(t)

)
= −ig f (t)

(
0 1
1 0

)
︸ ︷︷ ︸

τx

(
a1(t)
a2(t)

)
(12)

where τx denotes the x direction Pauli matrices in the two-dimensional vector space
spanned by |ψ1〉 and |ψ2〉. This matrix can be diagonalized by the unitary transformation

U =


− 1√

2
1√
2

1√
2

1√
2

 (13)

with eigenstates |ψ±〉. It follows that Equation (12) can be rewritten as a set of decoupled
differential equations

ȧ−(t) = ig f (t)a−(t) (14)

ȧ+(t) = −ig f (t)a+(t). (15)

with
a± =

a2 ± a1√
2

(16)

and solutions

a−(t) = a−(0)eig
∫ t

0 dt′ f (t′) (17)

a+(t) = a+(0)e−ig
∫ t

0 dt′ f (t′). (18)



Entropy 2023, 25, 758 5 of 18

Introducing the time dependent angle

ϕ(t) = g
∫ t

0
dt′ f (t′). (19)

It follows that in the new basis the time evolved state |ψ(t)〉 can be written as

|ψ(t)〉 = a−(t)|ψ−〉+ a+(t)|ψ+〉 ≡
(

a−(0)eiϕ(t)

a+(0)e−iϕ(t)

)
. (20)

Returning back to the initial basis by using the inverse transformation U−1 one fi-
nally obtains

|ψ(t)〉 = cos ϕ(t)|ψ1〉 − i sin ϕ(t)|ψ2〉 ≡

 cos ϕ(t)

−i sin ϕ(t)

. (21)

Notice that, limited to the particular choice of the initial state in Equation (5) the results
derived previously holds also outside the RWA.

2.2. Coupling Mediated by a Third TLS

Let’s consider now a situation in which C and B are not directly coupled, but where
the energy transfer is allowed by an intermediate TLS coupled with both of them (labelled
with the index M), as in Figure 2. The Hamiltonian of the system in the RWA approximation
is then given by

Hmed(t) = H0 +
ωM

2
σM

z + g fCM(t)(σC
−σM

+ + σC
+σM
− ) + g fBM(t)(σB

−σM
+ + σB

+σM
− ), (22)

where ωM is the level spacing of the mediator and fCM(t) and fBM(t) are two different
time-dependent functions that will be specified later.

ωC
|1C⟩
|0C⟩

g
ωM

|0M⟩
|1M⟩

ωB
|0B⟩
|1B⟩g

Figure 2. Scheme of a TLS-mediated energy transfer process, where the charger, with level spacing
ωC, the mediator, with level spacing ωM, and the QB, with level spacing ωB, are coupled via the same
coupling constant g which is further modulated through a time dependent switching function.

Extending the notation used in the previous Subsection, we consider as the initial state
(t = 0) of the total system

|Ψ(0)〉 = |1C0M0B〉 ≡ |Ψ1〉 =

1
0
0

. (23)

Taking into account again the overall conservation of the number of excitations it is
possible to use the basis
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|1C0M0B〉 ≡ |Ψ1〉 =

1
0
0

 (24)

|0C1M0B〉 ≡ |Ψ2〉 =

0
1
0


|0C0M1B〉 ≡ |Ψ3〉 =

0
0
1

.

Therefore, with the chosen initial state in Equation (23) the Hamiltonian can be rewritten as
a 3× 3 matrix, whose elements are

Hij(t) = 〈Ψi|Hmed(t)|Ψj〉, (25)

where i, j = 1, 2, 3. The Hamiltonian can be then written as

Hmed(t) =



ωC −ωM −ωB

2
g fCM(t) 0

g fCM(t)
−ωC + ωM −ωB

2
g fBM(t)

0 g fBM(t)
−ωC −ωM + ωB

2


. (26)

To further simplify the discussion it is possible to consider the three TLSs to be identical
(ωC = ωM = ωB), for which the Hamiltonian assumes the form

Hmed(t) =



−ωB

2
g fCM(t) 0

g fCM(t) −ωB

2
g fBM(t)

0 g fBM(t) −ωB

2


, (27)

where the constant diagonal term plays no role in the following analysis and will be
therefore neglected.

The Schrödinger equation now reads

i
d
dt
|Ψ(t)〉 = Hmed(t)|Ψ(t)〉, (28)

where the time evolved state can be written in the spinorial notation as

|Ψ(t)〉 =
3

∑
k=1

bk(t)|Ψk〉 ≡

b1(t)
b2(t)
b3(t)

. (29)

We thus get the following set of differential equationsḃ1(t)
ḃ2(t)
ḃ3(t)

 = −i

 0 g fCM(t) 0
g fCM(t) 0 g fBM(t)

0 g fBM(t) 0

b1(t)
b2(t)
b3(t)

. (30)

In general, a numerical analysis is required in order to fully describe the dynamics of this
system. However, two relevant limiting cases can be analytically solved.
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• fBM(t) = fCM(t− σ) (see Figure 3), with σ � τ, τ being the typical time width in
which the time-dependent functions are different from zero.
For t� σ one getsḃ1(t)

ḃ2(t)
ḃ3(t)

 = −i

 0 g fCM(t) 0
g fCM(t) 0 0

0 0 0

b1(t)
b2(t)
b3(t)

, (31)

which describes an energy transfer between the charger and the mediator (|1C0M0B〉 →
|0C1M0B〉). Instead for t ∼ σ the set of differential equations readsḃ1(t)

ḃ2(t)
ḃ3(t)

 = −i

0 0 0
0 0 g fBM(t)
0 g fBM(t) 0

b1(t)
b2(t)
b3(t)

, (32)

which represents an energy transfer between the mediator and the QB (|0C1M0B〉 →
|0C0M1B〉).
This clearly describes a two-step energy transfer protocol where each step has the
same form of the direct coupling case. In particular in the first step one has

|Ψ(t)〉 = cos ϕCM(t)|Ψ1〉 − i sin ϕCM(t)|Ψ2〉 =

 cos ϕCM(t)
−i sin ϕCM(t)

0

 (33)

with

ϕCM(t) = g
∫ t

0
dt′ fCM(t′). (34)

Assuming a complete state (and energy) transfer form the charger to the mediator at
the first step (see below for more details) the second step can be written as

|Ψ(t)〉 = cos ϕBM(t)|Ψ2〉 − i sin ϕBM(t)|Ψ3〉 =

 0
cos ϕBM(t)
−i sin ϕBM(t)

 (35)

with

ϕBM(t) = g
∫ t

0
dt′ fBM(t′). (36)

In this process the energy remains trapped into the mediator for a time of the order of
σ. Therefore, this protocol can be considered as realistic as long as σ is shorter with
respect to the typical dephasing and relaxation times of the mediator [21,23].

• fCM(t) = fBM(t) = f (t). This type of protocol describes a simultaneous transfer from
the charger to the mediator and to the QB.
In this case the set of differential equations in Equation (30) reduces toḃ1(t)

ḃ2(t)
ḃ3(t)

 = −ig f (t)

0 1 0
1 0 1
0 1 0


︸ ︷︷ ︸

T

b1(t)
b2(t)
b3(t)

. (37)

The matrix T is diagonalized by the unitary matrix
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U =



1
2

− 1√
2

1
2

1
2

1√
2

1
2

− 1√
2

0
1√
2


. (38)

This allows to rewrite Equation (37) as a set of decoupled equations

ḃ−(t) =
√

2ig f (t)b−(t) (39)

ḃ+(t) = −
√

2ig f (t)b+(t)

ḃ0(t) = 0,

with

b− =
1
2

b1 −
1√
2

b2 +
1
2

b3 (40)

b+ =
1
2

b1 +
1√
2

b2 +
1
2

b3

b0 = − 1√
2

b1 +
1√
2

b3

and general time evolution

b−(t) = b−(0)e
√

2ig
∫ t

0 dt′ f (t′) (41)

b+(t) = b+(0)e−
√

2ig
∫ t

0 dt′ f (t′)

b0(t) = b0(0).

In this basis the time evolved state |Ψ(t)〉 is

|Ψ(t)〉 =

 b−(0)eiφ(t)

b+(0)e−iφ(t)

b0(0)

, (42)

with

φ(t) =
√

2g
∫ t

0
dt′ f (t′). (43)

By using the inverse transformation U−1 it is possible to rewrite it in the original basis
as follows

|Ψ(t)〉 = 1
2
[cos φ(t) + 1]|Ψ1〉 −

i√
2

sin φ(t)|Ψ2〉+
1
2
[cos φ(t)− 1]|Ψ3〉 ≡



1
2
[cos φ(t) + 1]

− i√
2

sin φ(t)

1
2
[cos φ(t)− 1]


. (44)

Also in this case, for the initial condition in Equation (23) the results derived in this
Subsection can be extended outside the RWA.
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C M B

First step

C M B

Second step

σ

τ

τ

Figure 3. Scheme of the two-step TLS mediated energy transfer process. In the first step the energy
stored in the charger is transferred to the mediator turning on the interaction between C and M
for a finite time τ. After a time σ � τ the mediator transfers this energy to the QB turning on the
interaction between M and B again for a time τ.

3. Stored Energy in the TLSs

To properly characterize the energy transfer between C and B it is necessary to consider
the time evolution of the stored energy in each TLS composing the device in the different
configurations introduced above.

3.1. Direct Coupling Case

The stored energy inside the QB at a given time is defined as

EB(t) ≡ 〈ψ(t)|HB|ψ(t)〉 − 〈ψ(0)|HB|ψ(0)〉. (45)

Taking into account the time evolved state in Equation (21) and the initial condition
|ψ(0)〉 = |1C0B〉, one gets

EB(t) = ωB|a2(t)|2 = ωB sin2 ϕ(t). (46)

It is also possible to introduce the first maximum of the stored energy

EB,max ≡ EB(tB,max), (47)

where tB,max represents the shorter transfer time.
Concerning the charger one can write

EC(t) ≡ 〈ψ(t)|HC|ψ(t)〉 − 〈ψ(0)|HC|ψ(0)〉, (48)

namely
EC(t) = −ωB|a2(t)|2 = −ωB sin2 ϕ(t), (49)

which is negative consistently with the fact that C releases energy towards B. In particular,
it is possible to define

EC,max ≡ EC(tB,max), (50)

the value assumed by the stored energy in the charger at the transfer time tB,max. Notice
that, since the system is considered on-resonance, the maxima of the stored energy in
the QB coincide with the minimum of the energy stored in the charger. Moreover, from
Equations (46) and (49), one obtains that for all times

EB(t) + EC(t) = 0, (51)

proving the energy conservation in the charger-QB system. As demonstrated in [18,26],
when the system is considered on-resonance (ωC = ωB), no work is necessary to switch on
and off the interaction, meaning that the interaction energy is also null Eint(t) = 0.
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3.2. TLS-Mediated Case

Here, for both the considered cases in Section 2.2 the stored energy in the QB and
charger, starting from the initial condition |1C0M0B〉, are described by the general relations

EB(t) = ωB|b3(t)|2

EC(t) = −ωB

[
|b2(t)|2 + |b3(t)|2

]
. (52)

In presence of a mediator it is also useful to evaluate the energy stored inside it as

EM(t) ≡ 〈Ψ(t)|HM|Ψ(t)〉 − 〈Ψ(0)|HM|Ψ(0)〉, (53)

with
HM =

ωM

2
σM

z . (54)

Consequently, one gets the general relation

EM(t) = ωB|b2(t)|2. (55)

Notice that, from the Equations (52) and (55) the energy of the system is conserved for
all times, namely

EB(t) + EC(t) + EM(t) = 0. (56)

Also in this case, this is a consequence of the considered initial condition and of the
resonance among the TLSs.

• For fBM(t) = fCM(t− σ) one obtains

EB(t) = ωB sin2 ϕBM(t) (57)

EC(t) = −ωB sin2 ϕCM(t) (58)

EM(t) = ωB[sin2 ϕCM(t)− sin2 ϕBM(t)], (59)

where

ϕBM(t) = g
∫ t

0
dt′ fBM(t′) ϕCM(t) = g

∫ t

0
dt′ fCM(t′). (60)

• For fCM(t) = fBM(t) = f (t) the stored energy inside the QB as function of φ(t) is
given by

EB(t) = ωB

[
1
2

cos φ(t)− 1
2

]2

. (61)

In the same way, from Equation (52) it is possible to obtain the energy of the charger
which reads

EC(t) = ωB

[
1
4

cos2 φ(t) +
1
2

cos φ(t)− 3
4

]
. (62)

While for the mediator one obtains

EM(t) =
ωB

2
sin2 φ(t). (63)

These expressions allow to evaluate the maximum of the energy stored inside the QB,
as in Equation (47), the corresponding charging time and also the value assumed by
EC(t) and EM(t) when the QB reaches its maximum.

4. Switching Function

The forms of the functions in Equations (3) and (22) are now specified. As discussed
above, ideally in both cases these functions need to be (almost) zero everywhere except for
a window of width ∼ τ in time where they saturates (close) to one. This is done in order to
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switch on and off of the interaction between the TLSs. Moreover, the value of τ is chosen
in such a way to optimize the energy transfer [26]. It is worth to mention that such kind
of situation can be implemented experimentally in superconducting circuits acting on the
capacitive coupling between transmons playing the role of TLSs [56]. In the following a
step-wise function is chosen as the simplest possible way to fulfill the above requirements
even if smoother profiles can be considered [26,60].

4.1. Direct Coupling Case

For a direct transfer scenario, we choose a switching on and off function of the form
(see Figure 4)

f (t) = θ(t)− θ(t− τ) =


0 if t < 0
1 if 0 ≤ t < τ

0 if t ≥ τ

, (64)

where θ(t) indicates the Heaviside step function and, as stated above, τ is the time interval
for which the coupling is different from zero. Moreover, the time τ = tB,max is chosen in
order to switch off the interaction exactly when the QB reaches the first maximum of the
stored energy [26].

In this case the angle ϕ(t) in Equation (36) is

ϕ(t) =


0 if t < 0
gt if 0 ≤ t < τ

gτ if t ≥ τ

. (65)

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. Behaviour of f (t) as function of time t, switched on for a time interval τ.

4.2. TLS-Mediated Coupling Case

As discussed above, for a TLS-mediated transfer it is possible to identify two protocols.
In the two-step energy transfer, where fBM(t) = fCM(t− σ), one possible choice to

switch on and off the interaction is to assume fCM(t) as in Equation (64) and fBM(t) shifted
consequently (see Figure 5).

In this case the values of the angles in Equation (60) are

ϕCM(t) = g
∫ t

0
dt′ fCM(t′) =


0 if t < 0
gt if 0 ≤ t < τ

gτ if t ≥ τ

ϕBM(t) = g
∫ t

0
dt′ fBM(t′) =


0 if t < σ

gt if σ ≤ t < τ + σ

gτ if t ≥ τ + σ

. (66)
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Different is the situation when fCM(t) = fBM(t) = f (t) [see Equation (64)]. Here, from
Equation (43) the angle φ(t) becomes

φ(t) =
√

2g
∫ t

0
dt′ f (t′) =


0 if t < 0√

2gt if 0 ≤ t < τ√
2gτ if t ≥ τ

. (67)
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Figure 5. Behaviour of fCM(t) (blue curve) and fBM(t) (red curve) as function of time t. The two
functions are switched on for a time τ and σ represents the delay between them.

4.3. Analytical form of the Energy Stored in the QB and of the Relative Transfer Time

To understand how fast it is possible to transfer energy from the charger to the QB it is
necessary to rewrite the stored energy inside the QB and to determine the corresponding
time required to transfer this energy. This can be done analytically starting from the
switching functions just introduced.

For the direct scenario, starting from Equation (46), the stored energy inside the QB
(for t such that 0 ≤ t < τ) becomes

EB(t) = ωB sin2 ϕ(t) = ωB sin2 gt. (68)

As a consequence the maximum of the stored energy EB,max = ωB is obtained for times
such that

tB,max =
kπ

2g
, (69)

where k ∈ Z.
A similar consideration can be done for the two steps mediated charging protocol,

where the charging time is the same evaluated above plus a controlled delay given by σ.
According to this, one has

tB,max =
kπ

2g
+ σ. (70)

Instead, for the TLS-mediated case, from Equation (61) one gets

EB(t) =
ωB

2

[
1√
2

cos
√

2gt− 1√
2

]2

. (71)

Here, the maximum of the stored energy EB,max = ωB is obtained for times

√
2gt = (2k + 1)π ⇒ tB,max =

(2k + 1)π√
2g

, (72)

with k ∈ Z.
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5. Results

In this section, the analytical results discussed above for the direct, two-step and coher-
ent TLS-mediated scenarios are reported to determine their energy transfer performances.
The validity of the analytical calculations is further checked through exact diagonalization
(see Ref. [26] for more details).

Direct vs. TLS-Mediated Scenarios

As a starting point we consider the direct coupling case and the results concerning
the energies stored in the different parts of the system, are reported for the representative
coupling constant g = 0.05 ωB.

In Figure 6 it is possible to observe that the charger completely discharge decreasing
its energy from 0 to −ωB, while the QB has the opposite behaviour, starting from being
empty (EB = 0) to the completely charged situation EB,max = ωB. This proves the complete
energy transfer in the direct scenario, obtained for

gτ = gtB,max =
π

2
, (73)

as a consequence of Equation (69). Moreover, the numerical results (dots in Figure 6) are in
full agreement with the presented analytical model.
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Figure 6. Behaviour of EB(t) (blue curve) and EC(t) (magenta curve) in units of ωB as a function of
gt with g = 0.05ωB for the direct coupling case. The value gτ = π/2 is considered to switch off the
interaction when the first maximum of the transferred energy is achieved (dashed blue vertical line).
Dots on the curves represent the numerical results obtained by exact diagonalization.

We now focus on the TLS-mediated cases. Firstly, the two-step TLS-mediated case is
reported in Figure 7 for two representative values of delay gσ = 2.5 [panel (a)] and gσ = 7.5
[panel (b)]. Here, it is possible to observe that initially, for times t < σ the charger transfers
its energy to the mediator and the energy stored into the QB remains null, as confirmed by
Equations (57)–(59) and (66), where

EC(t) =

{
−ωB sin2 gt 0 ≤ t < τ

−ωB sin2 gτ τ ≤ t < σ

EM(t) =

{
ωB sin2 gt 0 ≤ t < τ

ωB sin2 gτ τ ≤ t < σ

EB(t) = 0 t ≤ σ. (74)
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Figure 7. Behaviour of EB(t) (blue curves), EC(t) (magenta curves), EM(t) (green curves) in units of
ωB and as a function of gt with g = 0.05ωB for the two step TLS-mediated case with gσ = 2.5 (a)
and gσ = 7.5 (b). The values gτ = π/2 + gσ are considered to switch off the interaction when the
first maximum of the transferred energy is achieved (dashed blue vertical lines). Dots on the curves
represent the numerical results obtained by exact diagonalization.

Then, for a time σ the energy remains stored in the mediator and available for the
following transfer. Changing the value of σ only modifies the time for which the mediator
stays fully charged. As anticipated before, this time needs to be shorter compared to the
typical decoherence and dephasing times of the system, in order to have the possibility to
transfer all the energy in the QB. For time t > σ the mediator releases all its energy to the
QB, allowing a complete transfer, while the energy in the charger remains constant. This is
proved writing, again from Equations (57)–(59) and (66), the energy stored in the different
parts of the system

EM(t) =

{
ωB(sin2 gτ − sin2 gt) σ ≤ t < σ + τ

0 t ≥ σ + τ

EB(t) =

{
ωB sin2 gt σ ≤ t < σ + τ

ωB sin2 gτ t ≥ σ + τ

EC(t) = −ωB sin2 gτ t ≥ σ. (75)

In this scenario, as a consequence of the delay time σ, the transfer time is longer
compared to the direct case, and in particular, from Equation (70), it is gtB,max ∼ 4.1 (for
gσ = 2.5) and gtB,max ∼ 9.1 (for gσ = 7.5).

Finally, the simultaneous energy transfer is reported in Figure 8. Here, it is possible
to observe that the charger initially transfers its energy to the mediator. Only at a slightly
later time the QB can extract the energy from the mediator, leading to a complete energy
transfer. It is worth to underline the fact that in this configuration the mediator is at most
half charged. Moreover, while this process can be faster compared to the two-step TLS-
mediated scenario, it is in any case slower with respect to the direct one. In fact, starting
from Equation (72), the transfer time is

gtB,max =
π√

2
. (76)

Notice that also in this case the numerical and analytical results are perfectly in accord.
In Figure 9 the behaviour of ωBtB,max is reported as a function of g/ωB, in a range

where the RWA is fulfilled. This plot further corroborate the behaviour of the transfer time
in the three scenarios [see Equations (69), (70) and (72)], indicating the direct case as the
fastest. However, increasing the value of g, the transfer time in the coherent TLS-mediated
scenario becomes comparable to the direct one, but it never becomes faster. The two-step
TLS-mediated case is obviously shifted of a time σ with respect to the direct case.
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Figure 8. Behaviour of EB(t) (blue curves), EC(t) (magenta curves), EM(t) (green curves) in units
of ωB and as a function of gt with g = 0.05ωB for the coherent TLS-mediated case. The value
gτ = π/

√
2 is considered to switch off the interaction when the first maximum of the transferred

energy is achieved (dashed blue vertical line). Dots on the curves represent the numerical results.

To summarize, all the scenarios under investigation allow a complete energy transfer
between the charger and the QB. Moreover, it is possible to state that the direct energy
transfer is the fastest of the considered cases. However, the TLS-mediated cases open to
the possibility to create more complex devices for energy transfer by progressively adding
identical TLSs as building blocks. Moreover, the two-step TLS-mediated case allows to
transfer the energy between a charger and a mediator with the possibility to store the
energy for a certain time before release it on-demand to the QB.

0.02 0.04 0.06 0.08
0

50

100

150
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250

Figure 9. Behaviour of ωBtB,max as function of g/ωB for the direct case (blue dots), the two-step
TLS-mediated case with ωBσ = 100 (red dots) and for the coherent TLS-mediated case (green dots).

6. Conclusions

The energy transfer process between a quantum charger and a quantum battery,
modeled as identical two-level systems, has been considered. The direct transfer scenario
is taken as a reference for the comparison with a situation where the transfer is mediated
by an additional two-level system. In this latter configuration, it is possible to consider
both a two-step process where the energy is firstly transferred from the charger to the
mediator and then from the mediator to the battery and a case in which the two transfers
occurs at the same time. The differences between these approaches are discussed by means
of an analytically solvable model. The results have been also validated through exact
diagonalization [26]. The main result is that the direct energy transfer process allows a
faster transfer compared to the mediated cases. However, by increasing the value of the
coupling constant, the coherent TLS-mediated scenario becomes comparable but never
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faster. Instead, the two-step mediated transfer allows a controllable energy transfer process,
dictated by the chosen delay time in the switch on and off function of the interaction terms.

This study represents a first step towards the investigation of a network devoted to
the coherent transfer of energy for application to complex quantum devices. Moreover, the
results considered here can be tested on nowadays quantum devices, where the coupling
between the qubits can be controlled in time [61].
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