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Abstract: In information geometry, there has been extensive research on the deep connections between
differential geometric structures, such as the Fisher metric and the α-connection, and the statistical
theory for statistical models satisfying regularity conditions. However, the study of information
geometry for non-regular statistical models is insufficient, and a one-sided truncated exponential
family (oTEF) is one example of these models. In this paper, based on the asymptotic properties of
maximum likelihood estimators, we provide a Riemannian metric for the oTEF. Furthermore, we
demonstrate that the oTEF has an α = 1 parallel prior distribution and that the scalar curvature of a
certain submodel, including the Pareto family, is a negative constant.
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1. Introduction

Information geometry is the study of the structure of statistical models using differen-
tial geometry. From the standpoint of geometry, a statistical model consisting of a collection
of parameterized probability distributions can be regarded as a manifold. Then, when the
statistical model satisfies a certain regularity condition, Chentsov’s theorem leads to a natu-
ral differential geometric structure [1]. This natural differential geometric structure consists
of the Riemann metric defined from the Fisher information matrix and a one-parameter
family of affine connections, called the Fisher metric and the α-connection, respectively.

Information geometry of regular models has been studied for a long time, and deep
relationships between the geometric structures and statistical models have been revealed
(Amari [2] and Amari and Nagaoka [3]).

However, the geometric properties of statistical models which do not satisfy regularity
conditions are not sufficiently investigated. One reason is that Chentsov’s theorem cannot
be applied to non-regular models; thus, a natural geometric structure is not established.
For example, in regular models, it is possible to define the Fisher information matrix in
two forms, but in statistical models where the support of the probability density function
depends on the parameters, they do not coincide. In previous work, Amari [4] discussed
the relationship between the Finsler geometry and non-regular models especially for the
translation family.

In the present study, we discuss information geometry for a one-sided truncated
exponential family (oTEF) [5], a typical non-regular model. An oTEF is a statistical model
with two parameters: the natural parameter θ and the truncation parameter γ. The sup-
port of the probability density function depends on the truncation parameter γ, which is
what makes such a model non-regular. However, similar to the exponential family, the
derivatives of the log-likelihood function, moments, and KL divergence can be explicitly
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described. Additionally, an oTEF model is a model containing many practical examples,
such as the Pareto distribution family, truncated normal distribution family, and truncated
exponential distribution family. The statistical properties of the oTEF have been stud-
ied for a long time, particularly in the area of parameter estimation theory (Bar-Lev [5],
Akahira [6], and Akahira [7]). Recently, Nielsen [8] studied the relationship between the
Kullback–Leibler divergence and the Bhattacharyya distance in the oTEF. Shemyakin [9]
explored the Hellinger information matrix and its application to noninformative priors
for multiparameter non-regular cases, which includes the oTEF, within the framework of
Bayesian statistics.

The family of Pareto distributions, a type of oTEF, is a topic of study in information
geometry as well (Rylov [10], Peng et al. [11], Li et al. [12], and Sun et al. [13]). As a result,
it is known that the Pareto model has constant curvature with respect to the Levi-Civita
connection. However, it is impossible to introduce a natural geometric structure, so the
geometric structure of the Pareto distribution family has been formally defined based
on regular models. Consequently, the consistency with statistical theory remains to be
determined. Moreover, multiple geometric structures exist depending on the regular model
expressions used as references. For example, Peng et al. [11], Rylov [10], and Sun et al. [13]
all define the geometric structure of the Pareto distribution family based on the Fisher
metric and α-connection, but these structures are different. Therefore, the question of which
geometric structure should be used remains unresolved.

The results of the present study consist of two theorems: one regarding the α-parallel
prior distribution and another concerning curvature. First of all, by comparing the relation-
ship between the Fisher metric and the asymptotic behavior of the maximum likelihood
estimators in regular models with those in the oTEF, we define the Riemannian metric
for the oTEF. Additionally, we use a formal definition for the α-connection, similar to
Sun et al. [13]. Under this geometric structure, we demonstrate two geometric properties.
The first property is that the oTEF always has an α-parallel prior distribution with α = 1.
The α-parallel prior distribution is a type of noninformative prior distribution used in
Bayesian statistics and is an information-geometric extension of Jeffreys prior distribution.
Although the α-parallel prior distribution with α = 1 always exists, this is not true for
other α values. Such a phenomenon does not occur in regular models, highlighting the
non-regularity. The second research result is related to the curvature of a submodel of the
oTEF. We consider a submodel of the oTEF that includes common scale Pareto distribution
families [14] and common location exponential distribution families [15] and demonstrate
that its scalar curvature is constant. This result, stating that the scalar curvature of this
submodel is constant, corresponds to a higher-dimensional version of the fact that the
Pareto model has constant curvature [10].

The remainder of this paper is organized as follows. In Section 2, we review the
geometric structure of regular statistical models and one-sided truncated exponential
families, providing an overview of the relevant background. In Section 3, we provide
a Riemannian metric and affine connection in the oTEF, giving the family a differential
geometric structure. Under the geometric structure, we study the α-parallel prior to the
oTEF in Section 4. Finally, Section 5 gives our derivation of the curvature for a submodel of
the oTEF.

2. Preliminaries
2.1. Statistical Manifold

In this section, we review basic definitions and notation of information geometry for
regular statistical models. See work by Amari [2] for more details.

LetP = {Pθ : θ ∈ Θ} be a family of distributions Pθ on a sample space χ parametrized
by θ = (θ1, . . . , θn), where Θ is an open subset of Rn. We treat the statistical model P as
an n-dimensional manifold. In this case, parameter θ takes the role of coordinates of the
manifold P . Furthermore, we assume that parameter θ and distribution Pθ have a one-
to-one correspondence. Furthermore, suppose that all distributions in P are absolutely
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continuous with respect to a dominating measure µ. We denote the probability density
function of distribution Pθ with respect to µ as p(x, θ).

In information geometry, we assume certain conditions on P .

Definition 1 (Regular statistical models). A statistical model P is said to be regular if it satisfies
the following conditions.

1. The support of the density function

supp p = {x ∈ χ : p(x, θ) > 0} (1)

is independent of θ ∈ Θ.
2. For all x ∈ χ, the function θ 7→ p(x, θ) is C∞ on Θ.
3. Let l(x, θ) = log p(x, θ). The elements of {∂1l, . . . , ∂nl} are linearly independent as functions

on χ.
4. For any functions in the following, partial differentiation ∂i and integration with respect to

the measure µ are interchangeable as∫
χ

∂i f (x, θ)dµ(x) = ∂i

∫
χ

f (x, θ)dµ(x). (2)

The above four conditions are referred to as regularity conditions.
We will treat non-regular statistical models in later sections. In preparation, this

subsection discusses the geometric structure of regular statistical models.
Next, we introduce the Fisher metric and α-connection. Let P be a regular statistical

model and X be a random variable distributed according to Pθ . We usually use the following
definition of the Riemannian metric and affine connections on P .

Definition 2 (Fisher metric). The Fisher metric is the Riemannian metric on P defined by

gF
ij = Eθ

[
∂il(X, θ)∂jl(X, θ)

]
, (3)

for i, j = 1, . . . , n. Here, the symbol E[·] denotes the expectation with respect to the observation X.

Definition 3 (α-connection). The α-connection is an affine connection defined by the coefficients

(α)

Γ ij,k = E
[
∂i∂jl(X, θ)∂kl(X, θ)

]
+

1− α

2
E
[
∂il(X, θ)∂jl(X, θ)∂kl(X, θ)

]
, (4)

for i, j, k = 1, . . . , n and α ∈ R on the coordinate system θ.

If P satisfies the regularity conditions, the Fisher metric and the α-connection have
several properties. For instance, there is a formula [16] convenient for calculating the
Fisher metric:

gF
ij = −E

[
∂i∂jl(x, θ)

]
. (5)

Furthermore, the α-connection and the −α-connection are dual. In other words,

A〈B, C〉 =
〈

(α)

∇A B, C

〉
+

〈
B,

(−α)

∇ A C

〉
(6)



Entropy 2023, 25, 769 4 of 16

holds for all tangent vectors A, B, and C, where 〈·, ·〉 denotes the inner product given by
the Fisher metric. In particular, the 0-connection is self-dual. Furthermore, the 0-connection
corresponds to the Levi-Civita connection, defined by the coefficients

g
Γij,k =

1
2

(
∂igF

jk + ∂jgF
ki − ∂kgF

ij

)
. (7)

2.2. Prior Distributions and Volume Elements

Next, we introduce volume elements on a regular statistical model and its relation to
Bayesian statistics [17].

In Bayesian statistics, for a given statistical model P , we need a probability distribution
over the model parameter space, which is called a prior distribution or simply a prior. We
often denote a prior density as π. (π(θ) ≥ 0 and

∫
Θ π(θ)dθ = 1.)

A volume element on an n-dimensional oriented model manifold corresponds to a
prior density function over the parameter space (θ ∈ Θ ⊂ Rn) in a one-to-one manner. For
a prior π(θ), its corresponding volume element ω is an n-form (differential form of degree
n) and is written as

ω = π(θ)dθ1 ∧ · · · ∧ dθn (8)

in the local coordinates.
For example, in the two-dimensional Euclidian space (n = 2), the volume element is

given by ω = dx ∧ dy in the Cartesian coordinates (x, y). In the polar coordinates (r, ψ), it
is written as ω = rdr ∧ dψ.

Now, let us explain noninformative priors (see, e.g., work by Robert [18] for details).
If we have specific information on the parameter in advance, then the prior should reflect
it, in which case it is often called a subjective prior. If not, we adopt a certain criterion and
use a prior obtained through the criterion. Such priors are called noninformative priors or
objective priors. In particular, the Jeffreys prior, which is given by

√
det(g), is the standard

noninformative prior [19].
In information geometry, the Jeffreys prior is regarded as a 0-parallel volume element

and was extended to an α-parallel volume element by Takeuchi and Amari [17]. The
extensions are called α-parallel priors. They showed that the geometrical properties of
regular models are deeply related to the existence of α-parallel priors.

When a suitable geometric structure is defined on a non-regular statistical model, it is
interesting to see the relationship between the geometrical properties and the existence of
α-parallel priors. Later sections will discuss this topic. In preparation, in this subsection,
we briefly summarize some definitions and facts of α-parallel priors for regular models.

To define α-parallel priors, we introduce a geometric property of affine connections.

Definition 4 (equiaffine). Let P be an n-dimensional manifold with an affine connection induced
by a covariant derivative ∇.

An affine connection ∇ is equiaffine if there exists a volume element ω such that

∇ω = 0 (9)

holds everywhere in P . Furthermore, such a volume element ω is said to be a parallel volume
element with respect to ∇.

The necessary and sufficient condition for an affine connection ∇ to be equiaffine is
described by its curvature. The following proposition holds for a manifold with an affine
connection ∇. Let Rijk

l be the components of the Riemannian curvature tensor [3] of ∇,
defined as

Rijk
l = ∂i Γjk

l − ∂j Γik
l + Γim

l Γjk
m − Γjm

l Γik
m, (i, j, k, l = 1, . . . , n) (10)
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where Γij
k denotes the connection coefficients of ∇.

Proposition 1 (Nomizu and Sasaki [20]). The following conditions are equivalent:

• ∇ is equiaffine,
• Rijk

k = 0,

where Rijk
k = ∑n

k=1 Rijk
k.

The Levi-Civita connection is always equiaffine (Nomizu and Sasaki [20]).
Returning to the statistical model, we define the α-parallel prior distribution. Let P

be an n-dimensional regular statistical manifold. It is shown that
(α)

∇ is equiaffine for some
α ∈ R \ {0} if and only if it is equiaffine for all α ∈ R. Such a statistical manifold P is
said to be statistically equiaffine. In a statistically equiaffine manifold, we may represent the
α-parallel volume element ω(α) as

ω(α) = π(α)(θ)dθ1 ∧ · · · ∧ dθn (11)

for the coordinates θ, where π(α) ∈ C∞(P). We take π(α)(θ) as a prior distribution on the
parameter space Θ.

Definition 5 (α-parallel prior). In a statistically equiaffine manifold, for fixed α ∈ R, we call the
above form of π(α) an α-parallel prior.

Since the 0-connection (Levi-Civita connection) is equiaffine, there always exists a
0-parallel prior, known as the Jeffreys prior.

Takeuchi and Amari [17] give a necessary and sufficient condition for α-parallel priors
to exist.

Proposition 2 (Takeuchi and Amari [17]). For a model manifold P , if

∂iTjk
k − ∂jTik

k = 0 (i, j = 1, . . . , n), (12)

then the α-parallel prior exists for any α ∈ R. Otherwise, only the 0-parallel prior exists.

2.3. One-Sided Truncated Exponential Family

In this section, we introduce a one-sided truncated exponential family, which is a
typical non-regular model.

Definition 6 (One-sided Truncated Exponential Family (Bar-Lev [5])). A one-sided trun-
cated exponential family of distributions (oTEF) is a family P =

{
Pθ,γ : θ ∈ Θ, γ ∈ (I1, I2)

}
of

distributions Pθ,γ with the density functions

p(x, θ, γ) = exp

{
n

∑
i=1

θiFi(x) + C(x)− ψ(θ, γ)

}
· 1[γ,I2)

(x) (x ∈ (I1, I2)) (13)

with respect to the Lebesgue measure. Here, −∞ ≤ I1 < I2 ≤ ∞ are known parameters, C is a con-
tinuous function, and F1, . . . , Fn are absolutely continuous with dF1(x)/dx, . . . , dFn(x)/dx 6= 0
over the interval (I1, I2).

We say θ =
(
θ1, . . . , θn) is the natural parameter and γ is the truncation parameter.

We also denote the interval (I1, I2) as I.
In oTEF P , the support of the density function depends on the truncation parameter

γ. Then, the oTEF does not satisfy the regularity conditions. An oTEF differs from an
exponential family at this point. The density of an exponential family has a support that is
independent of the parameters.
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Furthermore, this truncation parameter γ does not allow for the interchange of partial
differentiation ∂γ and integration with respect to the Lebesgue measure. For instance,
this means

E[∂γl(X, θ, γ)] = −∂γψ(θ, γ) (14)

instead of E[∂γl(X, θ, γ)] = 0.
Here, we introduce two properties of the function ψ.
First, the partial derivative −∂γψ(θ, γ) coincides with p(x, θ, γ)|x=γ and is always

positive. This fact can be verified as follows. Since p is a probability density function,

exp{ψ(θ, γ)} =
∫ I2

γ
exp

{
n

∑
i=1

θiFi(x) + C(x)

}
dx. (15)

Therefore, by differentiating both sides with respect to γ, we obtain

∂γψ(θ, γ) exp{ψ(θ, γ)} = − exp

{
n

∑
i=1

θiFi(γ) + C(γ)

}
(16)

and

−∂γψ(θ, γ) = p(x, θ, γ)|x=γ > 0. (17)

Second, the following lemma holds.

Lemma 1. For the function ψ(θ, γ) in (13), there always exists θ and γ such that ∂i∂γψ(θ, γ) 6= 0.

Proof. Suppose that ∂γ∂iψ(θ, γ) is always 0. Under this assumption, we will show that
∂i p(x, θ, γ) ≡ 0, leading to a contradiction that θ is not a parameter.

If ∂γ∂iψ(θ, γ) ≡ 0, the function ψ(θ, γ) can be expressed as

ψ(θ, γ) = ψ1(θ) + ψ2(γ), (18)

where ψ1 ∈ C∞(Θ), ψ2 ∈ C∞(I).
Then,

exp{ψ1(θ) + ψ2(γ)} =
∫ I2

γ
exp

{
C(x) + ∑ θiFi(x)

}
dx. (19)

Differentiating both sides with respect to γ, we obtain

ψ′2(γ)e
ψ1(θ)+ψ2(γ) = − exp

{
C(γ) + ∑ θiFi(γ)

}
, (20)

log
{
−ψ′2(γ)e

ψ2(γ)−C(γ)
}
+ ψ1(θ) = ∑ θiFi(γ). (21)

Further differentiating both sides with respect to θi, we have

∂iψ1(θ) = Fi(γ) (22)

and all Fi are constants.
Therefore,

∂i p(x, θ, γ) = p(x, θ, γ)∂i

{
C(x) + ∑ θiFi − ψ1(θ)− ψ2(γ)

}
(23)

= p(x, θ, γ){Fi − ∂iψ1(θ)} (24)

= 0. (25)



Entropy 2023, 25, 769 7 of 16

The family of Pareto distributions is an example of the oTEF. Pareto distributions have
the following density functions,

p(x, θ, γ) =
θγθ

xθ+1 · 1[γ,∞)(x) (26)

= exp(−(1 + θ) log x + log θ + θ log γ) · 1[γ,∞)(x) (27)

with the natural parameter θ ∈ (0, ∞) and the truncation parameter γ ∈ (0, ∞). This family
is used to describe various natural and social phenomena [21].

To discuss geometric structures in subsequent sections, we focus on the asymptotic
behavior of maximum likelihood estimators in the oTEF. Our discussion of these estimators
follows previous works. Consider random variables X1, . . . , XN independent and identi-
cally distributed according to Pθ,γ, and let X(1) ≤, · · · ≤ ,X(N) be the order statistics of the
sample. Let θ̂ and γ̂ denote the maximum likelihood estimators for θ and γ, respectively.
Bar-Lev [5] showed the existence and uniqueness of θ̂ and γ̂. Here, γ̂ = X(1) and θ̂ is a root
of the maximum likelihood equation ∂il(X, θ̂, γ̂) = 0 for i = 1, . . . , n.

The first-order asymptotic variances of θ̂ and γ̂ are given by

V
[
θ̂
]
=

1
N∂i∂jψ(θ, γ)

+ O
(

1
N2

)
, (28)

V[γ̂] =
1

N2{∂γψ(θ, γ)}2 + O
(

1
N3

)
, (29)

Cov
[
θ̂, γ̂
]
= O

(
1

N3

)
. (30)

These are essential to our argument in the next section. Additionally, Akahira [6] and
Akahira and Ohyauchi [22] obtained the second-order asymptotic loss.

3. Geometric Structure on One-Sided Exponential Families

This section gives definitions of a geometric structure of the oTEF. We take P as an
(n + 1)-dimensional manifold with coordinates (θ1, . . . , θn, γ). Since P does not satisfy
regularity conditions, its geometric structure is not determined in a natural way.

3.1. Riemannian Metric in the oTEF

In this subsection, we define a Riemannian metric on oTEF P as follows.

Definition 7 (Riemannian metric in the oTEF). Let P =
{

Pθ,γ : θ ∈ Θ, γ ∈ I
}

belong to the
oTEF. The Riemannian metric of the oTEF is defined by

gij = E
[
∂il(x, θ, γ)∂jl(x, θ, γ)

]
, (31)

giγ = 0, (32)

gγγ = {∂γψ(θ, γ)}2 (33)

for i, j = 1, . . . , n . This metric is also represented as

(g) =


g11 · · · g1n 0

...
. . .

...
...

gn1 · · · gnn 0
0 · · · 0 {∂γψ(θ, γ)}2

. (34)
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Note that gij can be expressed in terms of the function ψ as follows:

gij = −E
[
∂i∂jl(x, θ, γ)

]
= ∂i∂jψ(θ, γ). (35)

This is similar to the case of exponential family distributions.
We will now explain how we came to the above definition.
Consider an exponential family Eγ =

{
Pθ,γ : θ ∈ Θ

}
for γ ∈ I and a statistical model

Fθ =
{

Pθ,γ : γ ∈ I
}

for θ ∈ Θ. Eγ is an n-dimensional submanifold of P obtained by
fixing the truncation parameter γ and satisfies the regularity conditions. Additionally, Fθ is
a one-dimensional submanifold of P obtained by fixing the natural parameter θ. Since Eγ

is regular, the Riemannian metric on Eγ should be the Fisher metric defined in Definition 2.
This idea induces the components gij to be the components of the Fisher metric. The
remaining task is to define giγ, the inner products of ∂i and ∂γ, and gγγ, the metric on Fθ .

In this context, we review the statistical interpretation of the Fisher metric in regular
models. LetP0 be a regular model with parameters θ ∈ Rn. As mentioned in Section 2.1, the
Fisher metric is a Riemannian metric defined by the Fisher information matrix. Expanding
the variance of the maximum likelihood estimator θ̂, we have

V
[
θ̂
]
=

1
N

(
gF

ij

)−1
+ O

(
1

N2

)
, (36)

where the first-order coefficient corresponds to
(

gF
ij

)−1
.

On the other hand, in the oTEF, the Riemannian metric is determined from the coeffi-
cient of the variance of the maximum likelihood estimator. As shown in Section 2.3, the
variances of θ̂ and γ̂ are expressed as

V
[
θ̂
]
=

1
N
(

gij
)−1

+ O
(

1
N2

)
, (37)

V[γ̂] =
1

N2{∂γψ(θ, γ)}2 + O
(

1
N3

)
, (38)

Cov
[
θ̂, γ̂
]
= O

(
1

N3

)
, (39)

where (gij) is the matrix (gij)
n
i,j=1. Then, similarly to the Fisher information matrix,

{∂γψ(θ, γ)}2 appears as the reciprocal of the first-term coefficient. From this, the Rie-
mannian metric of Fθ is defined as

gγγ = {∂γψ(θ, γ)}2. (40)

Furthermore, it should be noted that Cov
[
θ̂, γ̂
]

is negligible up to O
(

1
N2

)
. Moreover,

whether θ is known does not affect the first-order term of V
[
θ̂
]

[22]. This is also true for
the estimation of θ [23]. Based on these facts, we assume that ∂i and ∂γ are orthogonal,
and define

giγ = 0 (i = 1, . . . , n). (41)

As a result, the Riemannian metric in Definition 7 is obtained.
This Riemannian metric is equal to the formally defined Fisher metric on the oTEF. In

other words, the equality

gab = E[∂al(X, θ, γ)∂bl(X, θ, γ)] (42)

holds for a, b = 1, . . . , n, γ. The right-hand side is the same as the definition of the Fisher
metric on regular statistical models.
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However, the Riemann metric does not satisfy the equation

gaγ = −E[∂a∂γl(x, θ, γ)] (a = 1, . . . , n, γ). (43)

For i = 1, . . . , n, we have

giγ = 0, (44)

E[∂i∂γl(x, θ, γ)] = ∂i∂γψ(θ, γ), (45)

but ∂i∂γψ(θ, γ) 6= 0 for some θ and γ, by Lemma 1. This is influenced by the fact that it
does not satisfy the regularity conditions.

3.2. Affine Connections in the oTEF

Next, we define an affine connection in the oTEF. In this study, we adopt two types of
connections: the Levi-Civita connection and the α-connection.

The first affine connection is the Levi-Civita connection:

g
Γab,c = ∂agbc + ∂bgca − ∂cgab (46)

introduced from the Riemannian metric. Of course, this Levi-Civita connection is also a
metric and self-dual, the same as in the regular case. Rylov [10] and Li et al. [12] previously
adopted this same affine connection.

Second, we define an affine connection in the oTEF as an analogy for the α-connection
in the regular statistical model defined in Definition 3.

Definition 8. For a given α ∈ R, the α-connection in the oTEF is defined by the connection
coefficients

(α)

Γ ab,c(θ, γ) = E[∂a∂bl∂cl] +
1− α

2
E[∂al∂bl∂cl] (a, b, c = 1, . . . , n, γ), (47)

where l = l(X, θ, γ) is a log-likelihood function.

The above definition is obtained by substituting the oTEF probability density function
into Equation (4) for the α-connection in the regular model. In particular, for the Pareto
distribution family, it coincides with the α-connection given by Sun et al. [13] (see the
equation in their paper). Note that, the log-likelihood function is not differentiable with
respect to γ at γ = x. We calculate the expectation over the interval (γ, I2) instead of [γ, I2).

This α-connection is torsion-free,

(α)

Γ ab,c =
(α)

Γ ba,c. (48)
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The connection coefficients for the α-connection are given by

(α)

Γ ij,k =
1− α

2
∂i∂j∂kψ, (49)

(α)

Γ ij,γ =
1 + α

2
∂i∂jψ∂γψ, (50)

(α)

Γ iγ,j = −
1− α

2
∂i∂jψ∂γψ, (51)

(α)

Γ iγ,γ = ∂i∂γψ∂γψ, (52)
(α)

Γ γγ,i = 0, (53)
(α)

Γ γγ,γ = ∂γ∂γψ∂γψ− 1− α

2
(∂γψ)3, (54)

where ψ = ψ(θ, γ).
The α-connection in the oTEF differs from the one in the regular model in several

aspects.
First, the 0-connection does not correspond to the Levi-Civita connection. This is due

to the inability to express the α-connection coefficients in the following form:

(α)

Γ abc(θ, γ) =
g
Γabc(θ, γ)− α

2
E[∂al∂bl∂cl]. (55)

This transformation involves an interchange of the order of differentiation and integra-
tion, which is one of the regularity conditions. Therefore, in the non-regular model oTEF,
the two sides do not match.

Additionally, the dual connection of the α-connection in the oTEF does not become
the −α-connection. This can be verified as follows.

The partial derivative ∂γgiγ and connection coefficients
(α)

Γ γi,γ and
(−α)

Γ γγ,i are given by

∂γgγi = 0, (56)
(α)

Γ γi,γ = ∂i∂γψ(θ, γ)∂γψ(θ, γ), (57)
(-α)
Γ γγ,i = 0. (58)

Thus,

(α)

Γ γi,γ +
(−α)

Γ γγ,i = ∂γ∂iψ(θ, γ)∂γψ(θ, γ). (59)

Therefore, since ∂γ∂iψ(θ, γ) 6= 0 and ∂γψ(θ, γ) < 0, the duality does not hold.

4. Existence of an α-Parallel Prior in the oTEF

In this section, as part of investigating the properties of the α-connection in the oTEF,
we deal with the α-parallel priors. We show that there exists an α-parallel prior distribution
for α = 1.

The existence of α-parallel priors depends on the geometric properties of statistical
models, and they are not guaranteed to exist in general. Therefore, it is necessary to
investigate the existence of α-parallel priors in the case of the oTEF. Note that the Levi-
Civita connection is always equiaffine, and it is known to have the Jeffreys prior as a parallel
prior distribution. Therefore, we do not deal with it in this section.

In the oTEF, attention is needed to be paid to the conditions for the existence of the α-
parallel prior distributions. In the case of regular models, Proposition 2 provides a necessary
and sufficient condition for the existence of α-parallel priors. Sun et al. [13] revealed that
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the Pareto distribution family does not satisfy this condition and claims that it does not
have α-parallel priors. However, the above deduction is incorrect, since Proposition 2 does
not hold for an oTEF distribution. In proof [17] of Proposition 2, the connection coefficients
of the α-connection are written in the same form as (55) by the Levi-Civita connection and
the cubic tensor Tijk = E

[
∂il∂jl∂kl

]
. However, this form cannot represent the α-connection

in Definition 8. Then, in the oTEF, Proposition 2 does not confirm that the equation

∂aTbc
c − ∂bTac

c = 0 (a, b = 1, . . . , n, γ) (60)

is a necessary and sufficient condition for the existence of α-parallel priors.
Therefore, in this study, we use the necessary and sufficient conditions for general

affine connections to investigate the existence of the α-parallel prior.
The following theorem reveals the existence of α-parallel priors in the oTEF.

Theorem 1. Consider P as belonging to the oTEF with densities of the form as those in Defini-
tion 13 with the natural parameter θ ∈ Θ and the truncation parameter γ. If α = 1, then the

connection
(α)

∇ is equiaffine and there exists a one-parallel prior. Moreover, this one-parallel prior
π(1) can be represented as

π(1)(θ, γ) ∝ −∂γψ(θ, γ) (61)

for θ ∈ Θ, γ ∈ I.

Proof. First, we prove that
(1)
∇ is equiaffine. By Proposition 1, the necessary and sufficient

condition for
(α)

∇ to be equiaffine is
(α)

R abc
c = 0 for a, b = 1, . . . , n, γ everywhere in P ,

where
(α)

R denotes α-Riemannian curvature tensors. This condition can be represented as

∂a
(α)

Γ bc
c = ∂b

(α)

Γ ac
c, since

(α)

R abc
c = ∑

c,d=c

{
∂a

(α)

Γ bc
d − ∂b

(α)

Γ ac
d +

(α)

Γ ae
d
(α)

Γ bc
e −

(α)

Γ be
d
(α)

Γ ac
e

}
(62)

= ∂a
(α)

Γ bc
c − ∂b

(α)

Γ ac
c +

(α)

Γ ae
c
(α)

Γ bc
e −

(α)

Γ be
c
(α)

Γ ac
e (63)

= ∂a
(α)

Γ bc
c − ∂b

(α)

Γ ac
c. (64)

By Definition 7, we have

(α)

Γ ja
a =

1− α

2
∂j log(det(gkl)) + ∂j log(−∂γψ), (65)

(α)

Γ γa
a = − (n + 1)(1− α)

2
∂γψ + ∂γ log(−∂γψ). (66)

Thus,

∂i
(α)

Γ ja
a − ∂j

(α)

Γ ia
a = 0, (67)

∂γ

(α)

Γ ia
a − ∂i

(α)

Γ γa
a =

1− α

2
∂i∂γ log(det(gkl)) + (n + 1)∂i∂γψ. (68)

Therefore, the formula ∂a
(α)

Γ bc
a = ∂b

(α)

Γ ac
c holds when α = 1 and

(1)
∇ is equiaffine.
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Second, we find the one-parallel prior. Let π(1) be the density of the one-parallel
volume element. According to Proposition 1 in the paper by Takeuchi and Amari [17],
we have

∂a log π(1) =
(1)
Γ ab

b. (69)

In the case of the oTEF, its representation is

∂i log π(1) = ∂i log(−∂γψ), ∂γ log π(1) = ∂γ log(−∂γψ). (70)

Therefore, the one-parallel prior for P is given as

π(1)(θ, γ) ∝ −∂γψ. (71)

Moreover, the above one-parallel prior coincides with a certain reference prior. A
reference prior, proposed by Bernardo [24], is a noninformative prior distribution derived
from an information-theoretic perspective. Specifically, it is defined as a prior distribution
that maximizes the expectation of the KL divergence between the posterior and prior
distributions, and in the case of no nuisance parameters, it coincides with the Jeffreys
prior [24]. However, this is not necessarily the case when nuisance parameters are present.
Ghosh and Mukerjee [25] provided a new formulation for reference priors with nuisance
parameters by considering the maximization of a functional with an appropriate penalty
term. Furthermore, Ghosal [26] extended this reference prior to non-regular models where
the support of the density depends on the parameters. When applied to an oTEF model
with γ as the parameter of interest and θ as the nuisance parameter, the reference prior of
Ghosal [26] is given by

πGhosal(θ, γ) ∝ −∂γψ. (72)

Thus, it coincides with the one-parallel prior in Theorem 1.

5. Scalar Curvature on a Submodel of the oTEF

This section finds a submodel of the oTEF with constant scalar curvature for the
Levi-Civita connection. We do not use the α-connection in Definition 8.

Previous works about the information geometry of non-regular cases have mainly
studied the geometric structure of Pareto distributions for the Levi-Civita connection.
They adopted the formally defined Fisher metric as in (42), which is consistent with
our Riemannian metric. Rylov [10] found that the family of Pareto distributions has a
constant curvature with respect to the Levi-Civita connection. Li et al. [12] showed that
its geometrical structure is isometric to the Poincaré upper half-plane and applied this
geometrical structure to Bayesian inference by considering the Jeffreys prior.

We extend these previous works on Pareto distributions to n dimensions. For i =
1, . . . , n, let Fi be a smooth function on the interval I and let Xi be a random variable
following a two-parameter truncated exponential distribution, which has density function

pE(x, θi, γ) = θi exp
{
−θi(x− γ)

}
· 1[γ,∞)(x) (x ∈ R) (73)

with respect to the Lebesgue measure, where θi ∈ (0, ∞), γ ∈ R. An oTEF includes this
distribution.
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Consider Qθ,γ, a joint distribution of independent random variables F1(X1), . . . , Fn(Xn)
with the common redefined truncation parameter γ and the natural parameter θ =
(θ1, . . . , θn). Qθ,γ has the density function

q(x, θ, γ) = exp

{
−

n

∑
i=1

θi{Fi(xi)− Fi(γ)}+
n

∑
i=1

log θi

}
·1In(γ)(x) (74)

(x = (x1, . . . , xn) ∈ In) (75)

with respect to the Lebesgue measure on Rn. Here, In is a rectangle ∏n
i=1Fi(R) and I(γ) is

In∩[γ, ∞)n. Q is a family of distributions Qθ,γ with parameters θ and γ.
Q includes practical examples such as a family of several Pareto distributions with a

common scale parameter (Rohatgi and Saleh [14]) and a family of truncated exponential
distributions with a common location parameter (Ghosh and Razmpour [15]). Truncated
exponential distributions with a common γ are sometimes applied to reliability and life
testing. Please assume that the case where the first failure of n products can occur only after
a common minimum time γ has elapsed, and these products have unknown and possibly
unequal failure rates θ1, . . . , θn. This truncation parameter γ takes the role of a “guarantee
time”, so estimation of the parameter γ is vital to determining the warranty period.

Note that the geometric structure of the above common truncation parameter model
is equivalent to that of the family of Pareto distributions when n = 1.

Theorem 2. Riemannian manifold Q has a constant scalar curvature of −2.

Proof. Let G(θ, γ) denote ∑i θiF′i (γ), where F′(γ) = dF(γ)/dγ.
The Riemannian metric for the common truncation parameter model is given by

gij =
1(

θi
)2 δij, (76)

giγ = 0, (77)

gγγ = (G(θ, γ))2 (78)

for i, j = 1, . . . , n . The tangent vectors ∂1, . . . , ∂n, ∂γ are mutually orthogonal. By (46),
we have

Γij,k = −
1(

θi
)3 δijk, (79)

Γij,γ = 0, (80)

Γiγ,j = 0, (81)

Γiγ,γ = F′i (γ)G(θ, γ), (82)

Γγγ,i = −F′i (γ)G(θ, γ), (83)

Γγγ,γ = G(θ, γ) ∂γG(θ, γ), (84)
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and

Γij
k = − 1

θi δijk, (85)

Γij
γ = 0, (86)

Γiγ
j = 0, (87)

Γiγ
γ =

F′i (γ)
G(θ, γ)

(88)

= ∂i log G(θ, γ), (89)

Γγγ
i = −

F′i (γ)
G(θ, γ)

(90)

= −∂i log G(θ, γ), (91)

Γγγ
γ =

∂γG(θ, γ)

G(θ, γ)
(92)

= ∂γ log G(θ, γ) (93)

for i, j, k = 1, . . . , n, where

δijk =

{
1 for i = j = k,
0 otherwise.

(94)

Hence, we obtain

Riγi
γ = ∂i Γγi

γ − ∂γ Γii
γ + Γia

γ Γγi
a − Γγa

γ Γii
a (95)

= ∂i∂i log G(θ, γ) + (∂i log G(θ, γ))2 +
1
θi ∂i log G(θ, γ) (96)

= −
(

F′i (γ)
G(θ, γ)

)2

+

(
F′i (γ)

G(θ, γ)

)2

+
F′i (γ)

θiG(θ, γ)
(97)

=
F′i (γ)

θiG(θ, γ)
(98)

for i = 1, . . . , n.
Therefore, the scalar curvature is given by

R = Rabcdgadgbc (99)

= −2. (100)

6. Concluding Remarks

This paper considered the geometric structure of a one-sided truncated exponential
family (oTEF) with parameters θ and γ. We constructed a Riemannian metric based on the
asymptotic properties of the maximum likelihood estimators. Under this, we showed that
the formally defined α-connection admits α-parallel priors when α = 1. Our result gives
geometric meaning to a specific reference prior. Furthermore, we proved that the scalar
curvature of some submodels of the oTEF obtained by making γ common across multiple
distributions is constant.

It is essential to discuss suitable affine conditions for the oTEF. First, we need to
reveal the statistical meaning of the α-connection in the oTEF. α-connection coefficients are
expected to appear in higher-order terms of the variance of maximum likelihood estimators.
Additionally, instead of the α-connection, we can construct a family of affine connections
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to be equiaffine by connecting the α-connection and the Levi-Civita connection. It is also
interesting to consider affine connections induced by the third derivatives of divergences.
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