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Abstract: We study a projective unitary representation of the product G = G̃ × G, where G is a
locally compact Abelian group and Ĝ is its dual consisting of characters on G. It is proven that the
representation is irreducible, which allows us to define a covariant positive operator-valued measure
(covariant POVM) generated by orbits of projective unitary representations of G. The quantum
tomography associated with the representation is discussed. It is shown that the integration over
such a covariant POVM defines a family of contractions which are multiples of unitary operators
from the representation. Using this fact, it is proven that the measure is informationally complete.
The obtained results are illustrated by optical tomography on groups and by a measure with a density
that has a value in the set of coherent states.

Keywords: projective unitary representation of locally compact Abelian group; positive operator-valued
measures; informational completeness; the Naimark dilation; coherent states

1. Introduction

The theory of noncommutative operator-valued measures, dating back to Naimark’s
pioneering work [1], has found many applications in quantum information theory. Each
such object, named a positive operator-valued measure (POVM), is defined on some
measurable space X, takes values in the cone of positive operators in a Hilbert space, H,
and is normed by the condition that the measure of the entire space is equal to the identity
operator. Thus, it defines the measurement quantum channel, that is, a map from the
convex set of quantum states to the set of probability distributions on X obtained by taking
a trace of the product of a state and a positive operator from the measure [2]. Measurement
quantum channels have a special structure and require special research. This is due to
the fact that, unlike other quantum channels, the mapping occurs between a quantum
system and a classical one, defined by the measurable space X on which the measure was
set. Meanwhile, if X is not discrete (as is the case for continuous variables), a classical
system cannot be embedded into a quantum one. Recently, there have been significant
works devoted to the calculation of various information characteristics of such hybrid
(classical–quantum) systems with POVMs given on a space with continuous variables [3,4].

An important class of POVMs is informationally complete POVMs, that is, those
that allow you to restore the state based on the measurement results. For the case of
discrete spaces X and finite dimensional Hilbert spaces H, the most famous examples
of informationally complete measures are SIC-POVMs [5] as well as POVMs defined by
mutually unbiased bases (MUBs) [6]. The existence of such informationally complete
POVMs has been proven for far from all dimensions of H. Some kind of duality between
SIC-POVMs and MUBs was noted in [7].
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For applications in practice, the situation when the space on which the measure is
defined is a locally compact Abelian group X = G often occurs. Examples here include
homodyne detection (G = R), the phase measurement (G = T) and the spin measurement
(G = Zn). Since a scalar Haar measure ν is defined on locally compact groups G, it is natural
to assume that a POVM on G has some operator density with repect to the measure ν.
Moreover, if a unitary representation of G is defined in a Hilbert space H in which positive
operators of POVM act, we can limit ourselves to searching for measures covariant with
respect to this representation. A natural way to construct covariant POVMs is to integrate
over orbits of an irreducible projective unitary representation of some group [2,8]. In the
case of compact groups, the Haar measure of G is finite, resulting in the existence of integral
over orbits. If G is locally compact only, problems arise with the existence of an integral,
which can be solved by using the Pontryagin duality principle [9]. With this approach,
it is necessary to consider the direct product of the group itself and the group dual to it
according to Pontryagin [10].

The problem of the existence of informationally complete measurements is closely
related to quantum tomography, which assumes not one, but a series of measurements
determined by a set of different POVMs. In quantum optics, the informationally complete
measurement is fulfilled under the heterodyne detection, resulting in the Husimi function
of a quantum state [11]. Such a measurement corresponds to the informationally complete
measure possessing a density consisting of projectors on coherent states. On the other
hand, an optical quantum tomogram (a set of quadrature measurements representing
linear combinations of coordinates and momentum) appears as a result of the homodyne
detection [12]. The connection between the Husimi function and the optical quantum
tomogram is known [13]. Both of these characteristics provide complete information about
the quantum state.

In this paper, we would like to develop the ideas of the relationship between the ho-
modyne and heterodyne detections based on formal mathematical theory. In our approach,
the role of heterodyne detection will be played by the measurement channel defined by a
covariant POVM possessing a projection-valued density, which is the orbit of the action of
a projective unitary representation of a locally compact group on a fixed one-dimensional
projection. The role of homodyne detection is played by quantum tomography on groups
which was already developed in [14] on the basis of the Pontryagin duality principle.

Earlier, we proved that the tomography we introduced to the group allows us to restore
the quantum state. Now, we will show that this fact can be used to prove the completeness
of the covariant measure we have constructed. The key technique that we use is the study
of the set of contraction operators defined by our covariant POVM. Unexpectedly, it turned
out that such contractions are multiplies of unitary operators of the representation.

The paper is organized as follows. At first (Section 2), we provide the necessary
information about locally compact Abelian groups G and the Pontryagin duality. Section 3
is devoted to the construction of projective unitary representation of the direct product of
the group G and its dual Ĝ in a Hilbert space. We prove that this representation introduced
in [10,14] is irreducible and provide the necessary information about tomography of groups
from [10,14]. In Section 4, the construction of a POVM by means of orbits of the projec-
tive unitary representation introduced in [14] is extended to the entire space. Then, we
define a family of unitary operators associated with our POVM by means of the Naimark
dilation. Finally, by reducing the unitary operators, we obtain contractions corresponding
to the constructed POVM and show that these contractions are multiples of the unitary
operators of the representation. Then, we prove that this results in the informational
completeness of the POVM. Section 5 is devoted to an illustrative example, in which a
measure generated by coherent states is considered. This is the famous Glauber–Sudarshan
measure, which possesses the operator-valued density consisting of projections on coherent
states. Section 6 contains the concluding remarks.
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2. Preliminaries

Throughout this article we will use the results from an abstract harmonic analysis [15].
Let G be a locally compact Abelian group with a Haar measure ν which is invariant with
respect to shifts ν(B + g) = ν(B) for any measurable set B ⊂ G and g ∈ G. A continuous
map χ : G → T = {z ∈ C : |z| = 1} is said to be a character of G if it is a homomorphism
χ(gh) = χ(g)χ(h), g, h ∈ G. The set of all characters Ĝ equipped with an operation of
multiplication [χ′χ](g) = χ′(g)χ(g), χ, χ′ ∈ Ĝ, g ∈ G, is said to be a dual group with
respect to G. It is known that Ĝ is also a locally compact Abelian group with a Haar
measure ν̂ determined uniquely up to a multiplication by a positive constant.

Given ψ ∈ L1(G, ν), we can define the function f̂ on Ĝ determined by the formula

ψ̂(χ) =
∫
G

χ(g)ψ(g)dν(g). (1)

The Pontryagin duality [9,15] states that there exists the unique Haar measure ν̂ on Ĝ
such that (1) can be extended to the isometrical map F : L2(G, ν) → L2(Ĝ, ν̂), named
the (abstract) Fourier transform. Moreover, the inverse map F−1 : L2(Ĝ, ν̂) → L2(G, ν)
has the form

F−1(ψ̂)(g) =
∫
Ĝ

χ(g)ψ̂(χ)dν̂(χ).

Thus, we obtain ∫
Ĝ×G

χ(h)χ(g)ψ(g)dν̂(χ)dν(g) = ψ(h) (2)

with sufficiently smooth ψ. Then, (2) can be extended up to F−1 ◦ Fψ = ψ for any ψ ∈ L2(G, ν).

3. Irreducible Projective Unitary Representation of Ĝ × G and Quantum Tomography
of Groups

LetH = L2(G, ν) and define a set of unitary operators inH by the formula

[Uχ,gψ](h) = χ(h)ψ(h + g), χ ∈ Ĝ, g, h ∈ G, ψ ∈ H. (3)

The operators (3) are known to form a projective unitary representation of the group
G = Ĝ× G [10]

Uχ,gUχ′ ,g′ = χ′(g)Uχχ′ ,g+g′ , χ, χ′ ∈ Ĝ, g, g′ ∈ G. (4)

It immediately follows from (4) that

Uχ,gUχ′ ,g′ = χ′(g)χ(g′)Uχ′ ,g′Uχ,g (5)

and
U∗χ,g = χ(g)Uχ,−g. (6)

Proposition 1. The Formula (3) determines an irreducible projective unitary representation of
Ĝ× G inH.

Proof. Let S(H) be the set of all quantum states (positive unit trace operators) in H
equipped with a semiliniear form

<< ρ, σ >>= Tr(ρ∗σ), ρ, σ ∈ S(H). (7)
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Denote S2(H) as the space of all operators obtained by a completion with respect to the
norm corresponding to (7), then S2(H) is said to be the Hilbert–Schmidt class of operators
inH [16]. It is known that the map T : S2(H)→ L2(Ĝ× G) determined by the formula

[Tρ](χ, g) = Tr(ρUχ,g), χ ∈ Ĝ, g ∈ G,

establishes an isometrical isomorphism [10]. Moreover, the inverse transformation is
given by

T−1F =
∫

Ĝ×G

F(χ, g)U∗χ,gdν̂(χ)dν(g), F ∈ L2(Ĝ× G).

Hence, any finite dimensional projection P belonging to S2(H) can be represented as

P =
∫

Ĝ×G

FP(χ, g)U∗χ,gdν̂(χ)dν(g)

for some FP ∈ L2(Ĝ × G). Thus, the claim Uχ,gX = XUχ,g for all χ ∈ Ĝ, g ∈ G and a
fixed bounded operator X inH results in XP = PX for all finite dimensional projections P.
The result follows.

Using the ideas in [10], let us define the maximal Abelian subgroups Uχ,g ⊂ U
including the element [χ(g)]1/2Uχ,g ∈ U . It follows from (5) that

χ′(g′′) = χ′′(g′) for any two Uχ′ ,g′ , Uχ′′ ,g′′ ∈ Uχ,g.

Moreover, for inverse elements (6) we obtain

([χ′(g′)]1/2Uχ′ ,g′)
∗ = |χ′(g′)|1/2

Uχ′ ,g′ , Uχ′ ,−g′ ∈ Uχ,g. (8)

Remark 1. Wherever we encounter the need to extract the root from a complex number, we will act

according to the rule eiφ → e
iφ
2 .

Since (8) holds true, Uχ,g is closed with respect to the operation of taking the inverse
and is indeed a group.

Proposition 2. The function

fρ,χ,g(χ
′, g′) = [χ′(g′)]1/2Tr(ρUχ′ ,g′),

on the group of elements [χ′(g′)]Uχ′ ,g′ ∈ Uχ,g is positive definite and

fρ,χ,g(χ
′, g′) =

∫
Ĝ×G

χ′′(g′)χ′(g′′)dµρ,χ,g(χ
′′, g′′)

for some probability measure µρ,χ,g on Ĝ× G.

Proof. Indeed, since Uχ,g = {[χ′(g′)]1/2Uχ′ ,g′} ∈ [χ(g)]1/2Uχ,g is an Abelian group, then
fρ,χ,g is a positive definite function on the group Uχ,g, such that

fρ,χ,g(0, 0) = 1,

∑
j,k

λjλk fρ,χ,g(χjχk, gj − gk) = ∑
j

Tr(ρ|∑
j

λj|χj(gj)|1/2Uχj ,gk |
2) ≥ 0.

Hence, the results follows from the Bochner theorem [15].
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We shall say a set of all probability distributions {µρ,χ,g, (χ, g) ∈ Ĝ× G} a quantum
tomogram of a state ρ ∈ S(H). This set of distributions contains the same information
about the quantum state as the density operator ρ. In fact, this set allows us to restore the
characteristic function [10]

fρ(χ, g) = [χ(g)]1/2Tr(ρUχ,g), (χ, g) ∈ Ĝ× G (9)

that, in turn, gives rise to the density operator ρ [10,14]. The whole point of our activity is
to compare such an approach, which allows us to restore the density operator from a set of
probability measures determined in Proposition 2 with the measurement of the quantum
state using an informationally complete measure.

4. The Covariant POVM Generated by the Representation and Its Completeness

Fix a unit vector ψ0 ∈ H. Since the representation (3) is irreducible due to Proposition 1,
the closure of span(Uχ,gψ0, χ ∈ Ĝ, g ∈ G) coincides with H. Denote Σ and B(H)+ as
the σ-algebra of measurable subsets of G = Ĝ × G and the positive cone of all positive
bounded operators inH. Then, the map M : Σ→ B(H)+ determined by the formula

M(B) =
∫
B

|Uχ,gψ0〉 〈Uχ,gψ0| dν̂(χ)dν(g) (10)

is a covariant positive operator-valued measure [10].
Following the Naimark theorem [1], there exists an isometrical embedding H ⊂ K

and a projection-valued measure E on G such that

M(B) = PHE(B)|H, B ∈ Σ,

where PH is the orthogonal projection onH. Any irreducible unitary representation of the
group G in a Hilbert space K is one-dimensional and has the form

π(g)ψχ = χ(g)ψχ, χ ∈ Ĝ, g ∈ G, φχ ∈ K.

This implies that any arbitrary unitary representation of G has the Naimark form [17]

π(χ, g) =
∫
G

χ′(g)χ(g′)dE(χ′, g′), (χ, g) ∈ Ĝ ∼= G.

Hence, any unitary operator in K of the form

Wχ,g =
∫
G

χ′(g)χ(g′)dE(χ′, g′)

determines the contraction Tχ,g (i.e., an operator of a norm of at most one) inH by means
of the formula

Tχ,g = PHWχ,g|H =

∫
G

χ′(g)χ(g′)dM(χ′, g′) =
∫
G

χ′(g)χ(g′) |Uχ′ ,g′ψ0〉 〈Uχ′ ,g′ψ0| dν̂(χ′)dν(g′) (11)

It is useful to remark that Wχ,g is known as a unitary dilation of Tχ,g and satisfies the
relation [18]

Tn
χ,g = PHWn

χ,g|H, n = 0, 1, 2, 3, . . .
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Remark 2. Note that a set of contractions (Tχ,g) determines a representation for the semigroup
{(χn, ng), n = 0, 1, 2, 3, . . . } due to the property

Wn
χ,g = Wχn ,ng, n = 0, 1, 2, 3, . . .

under a construction.

Theorem 1. There exists a complex-valued measurable function f on the group G satisfying the
relation 0 < | f (χ, g)| ≤ 1, χ ∈ Ĝ, g ∈ G, such that

Tχ,g = f (χ, g)Uχ,g, χ ∈ Ĝ, g ∈ G.

Proof. Taking into account (4), (6) and (11), we obtain

Tχ,gUχ′′ ,g′′ =
∫
G

χ′(g)χ(g′) |Uχ′ ,g′ψ0〉 〈U∗χ′′ ,g′′Uχ′ ,g′ψ0| dν̂(χ′)dν(g′) =

∫
G

χ′(g)χ(g′)χ′′(g′′)χ′(g′′) |Uχ′ ,g′ψ0〉 〈Uχ′′χ′ ,g′−g′′ψ0| dν̂(χ′)dν(g′) =

∫
G

χ′χ′′(g)χ(g′ + g′′)χ′′(g′′)χ′χ′′(g′′) |Uχ′χ′′ ,g′+g′′ψ0〉 〈Uχ′ ,g′ψ0| dν̂(χ′)dν(g′) =

χ′′(g)χ(g′′)Uχ′′ ,g′′

∫
G

χ′(g)χ(g′) |Uχ′ ,g′ψ0〉 〈Uχ′ ,g′ψ0| dν̂(χ′)dν(g′) =

χ′′(g)χ(g′′)Uχ′′ ,g′′Tχ,g, χ, χ′′ ∈ Ĝ, g, g′′ ∈ G.

Since the projective representation (3) is irreducible inH, (5) results in Tχ,g = f (χ, g)Uχ,g
by the Schur lemma.

The following statement shows that the measurement fulfilled by (10) is information-
ally complete.

Theorem 2. The density of probability distribution

pρ(χ, g) = 〈Uχ,gψ0, ρUχ,gψ0〉

allows us to restore a state ρ by the formula

ρ =
∫
G

f−1(χ, g)U∗χ,g

∫
G

χ(g′)χ′(g)pρ(χ
′, g′)dν̂(χ′)dν(g′)dν̂(χ)dν(g).

Proof. At first, notice that

ρ =
∫
G

Tr(ρUχ,g)U∗χ,gdν̂(χ)dν(g)

In fact, the map ρ→ Tr(ρUχ,g) determines the isometrical isomorphism [10,14]

Tr(ρσ) =
∫
G

Tr(ρUχ,g)Tr(σUχ,g)dν̂(χ)dν(g).

This implies that ∫
G

Tr(ρUχ,g)Tr(U∗χ,g |ξ〉 〈η|)dν̂(χ)dν(g) =



Entropy 2023, 25, 783 7 of 9

Tr(ρ |η〉 〈ξ|) = 〈ξ, ρη〉 .

Now, it follows from Theorem 1 that

Tr(ρUχ,g) = f−1(χ, g)
∫
G

χ′(g)χ(g′) 〈Uχ′ ,g′ψ0, ρUχ′ ,g′ψ0〉 dν̂(χ′)dν(g′).

5. The Optical Quantum Tomography and the Measure with Density Taking Values in
Coherent States

In homodyne detection, the quadrature components of the electromagnetic field are mea-
sured [12]. Observables corresponding to this measurement are cos ϕx̂ + sin ϕ p̂, 0 ≤ ϕ < 2π,
where x̂ and p̂ play the role of coordinates and momentum operators. Quadrature components
can be determined if the field mode under study interferes with another reference beam of the
same frequency and well-defined phase ϕ. In this section, we will explain how the abstract
mathematical apparatus introduced previously works in quantum optics.

Consider G = R giving Ĝ = R and G = Ĝ× G = R2. Now,H = L2(R) and

(Ux,yψ)(t) = eitxψ(t + y), (x, y) ∈ R2, ψ ∈ H.

Then,
Ux1,y1Ux2,y2 = eix2y1Ux1+x2,y1+y2 , xj, yj ∈ R, j = 1, 2.

Here, we obtain

[[χ(g)]1/2Uχ,gψ](g) ≡ [e
ixy
2 eitx̂eitp̂ψ](t) = [eitx̂+itp̂ψ](t), x ∈ Ĝ ∼= R, y ∈ G ≡ R,

where x̂ and p̂ are the standard position and momentum operators [2]. Hence, (9) for this
situation is the quantum characteristic function [2]

fρ(x, y) = Tr(ρeixx̂+iyp̂), x, y ∈ R.

The last formula, in turn, allows us to restore the probability distributions introduced in
Proposition 2 such that

dµρ,χ,g ≡ ωρ(t, ϕ)dt,

where
ωρ(t, ϕ) =

1
2π

∫
R

e−itr fρ(r cos ϕ, r sin ϕ)dt

is an optical quantum tomogram [10,12].
Put

ψ0(t) =
1

π1/4 exp(−t2/2)

Remark 3. Note that Ux,yψ0 is a coherent state corresponding to the complex parameter α = −y+ix√
2

and after such a change of variables we obtain D(α) = e
ixy
2 Ux,y (the displacement

operator) [19].

Taking into account
1

2π

∫
R

eit(x−y)dt = δ(x− y)
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we obtain that the Haar measure corresponding to the Pontryagin duality [10] is 1
2π dx and

we are coming to the famous Glauber–Sudarshan measure

M(B) =
1

2π

∫
B

|Ux,yψ0〉 〈Ux,yψ0| dxdy, (12)

where B runs measurable subsets of R2. Let us calculate (11) appearing in Theorem 1
for (12).

Proposition 3.

Tx,y = exp
(
− x2 + y2

4

)
e

ixy
2 Ux,y, x, y ∈ R.

Remark 4. Thus, the function f (χ, g) ≡ f (x, y) defined in Theorem 1 is found for the case G = R.

Proof. Following from (11),

Tx,y =
1

2π

∫
R2

eirye−ixt |Ur,tψ0〉 〈Ur,tψ0| drdt.

Let us take a change of variables, i.e., α = −y+ix√
2

and β = −t+ir√
2

. Then,

Tα =
1
π

∫
R2

e2iIm(αβ) |β〉 〈β| d2β.

On the other hand, using the representation of the displacement operator in the form
where the creation and annihilation operators a†, a [19] are used

D(α) = exp(|α|2/2)exp(−αa)exp(αa†)

we obtain
1
π

exp(|α|2/2)exp(−αa)
∫
C

|β〉 〈β| d2βexp(αa†) =

exp(|α|2/2)
∫
C

exp(2iIm(αβ)) |β〉 〈β| d2β.

Hence,
Tα = exp(−|α|2/2)D(α).

It remains to note that D(α) = e
ixy
2 Ux,y [19].

6. Discussion

In this paper, we investigated a projective unitary representation of a direct product
Ĝ×G, where G is a locally compact Abelian group and Ĝ is its dual consisting of characters.
Earlier, it was shown [10,14] that orbits of this representation determine a POVM in its
closed linear envelope using the Pontryagin duality. Continuing this study, we show that
the representation (χ, g)→ Uχ,g is irreducible. Thus, the obtained POVM is complete in the
entire space. Based upon this approach, we construct a family of probability distributions
named by us as a set of quantum tomograms that give the alternative characteristics
of a quantum state with respect to the density operator ρ. Using the Naimark dilation,
we consider a projection-valued density E corresponding to our POVM M on the group
G = Ĝ ⊗ G. This measure E determines a family of unitary operators Wχ,g which form
a unitary representation of G. By reducing the unitary operators Wχ,g, we introduce a
family of contractions Tχ,g associated with the constructed POVM. It is proven that these
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contractions are multiples of unitary operators of the representation Uχ,g. This fact allows
us to prove the information completeness of the measure M. The conversion formula
restoring the state from the probability distribution on Ĝ×G is obtained. In Section 6, as an
example, the case when G = R and the corresponding POVM is the Glauber–Sudarshan
measure determined by projections on coherent states is analyzed.
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