Dynamics of System States in the Probability Representation of Quantum Mechanics
Abstract
:1. Introduction
2. Entangled Probability Distributions of Random Variables
3. Examples of the Entangled Probability Distributions
4. Evolution of States in Different Representations
5. Quantum States Definition
6. Symplectic Tomography of Oscillators
7. Dynamics of Operator Symbols for Quadratic Hamiltonians in Position and Momentum
8. Center-of-Mass Tomography
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Elsevier: Oxford, UK, 1981; 689p, ISBN 9780750635394. [Google Scholar]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Clarendon Press: Oxford, UK, 1981; ISBN 9780198520115. [Google Scholar]
- von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Gött. Nach. 1927, 1, 245–272. [Google Scholar]
- Landau, L. Das Da¨mpfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430–441. [Google Scholar] [CrossRef]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Schleich, W. Quantum Optics in Phase Space; Wiley-VCH: Hoboken, NJ, USA; Weinheim, Germany, 2001; ISBN 13 978-3527294350. [Google Scholar] [CrossRef]
- Kolmogoroff, A. Grundbegriffe der Wahrscheinlichkeitsrechnung; Part of Book Series Ergebnisse der Mathematik und Ihrer Grenzgebiete; Springer: Berlin/Heidelberg, Germany, 1933; Volume 2. [Google Scholar] [CrossRef]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1982; ISBN 9780444863331/0444863338. [Google Scholar]
- Khrennikov, A. Probability and Randomness. Quantum versus Classical; World Scientific: Singapore, 2016; ISBN 10 1783267968/13 978-1783267965. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A.; Basieva, I. Entanglement of observables: Quantum conditional probability approach. arXiv 2023, arXiv:2303.12393. [Google Scholar]
- Khrennikov, A.; Basieva, I. Conditional probability framework for entanglement and its decoupling from tensor product structure. J. Phys. A Math. Theor. 2022, 55, 395302. [Google Scholar] [CrossRef]
- Chernega, N.V.; Man’ko, O.V.; Man’ko, V.I. Entangled probability distributions. arXiv 2023, arXiv:2302.13065v1. [Google Scholar]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic Tomography as Classical Approach to Quantum Systems. Phys. Lett. A 1996, 213, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Classical-like description of quantum dynamics by means of symplectic tomography. Found. Phys. 1997, 27, 801–824. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Wigner function and probability distribution for shifted and squeezed quadratures. J. Opt. B Quantum Semiclass. Opt. 1995, 7, 615. [Google Scholar] [CrossRef] [Green Version]
- Man’ko, O.V.; Man’ko, V.I. Quantum States in Probability Representation and Tomography. J. Russ. Laser Res. 1997, 18, 407–444. [Google Scholar] [CrossRef]
- Przhiyalkovskiy, Y.V. Quantum process in probability representation of quantum mechanics. J. Phys. A Math. Gen. 2022, 55, 085301. [Google Scholar] [CrossRef]
- Asorey, M.; Ibort, A.; Marmo, G.; Ventriglia, F. Quantum Tomography Twenty Years Later. Phys. Scr. 2015, 90, 074031. [Google Scholar] [CrossRef] [Green Version]
- Uzun, N. Hydrodynamic interpretation of generic squeezed coherent states: A kinetic theory. Ann. Phys. 2022, 442, 168900. [Google Scholar] [CrossRef]
- Shabani, A.; Khellat, F. Quantum tomographic Aubry–Mather theory. J. Math. Phys. 2023, 64, 042706. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Kyusev, A.V.; Man’ko, O.V. Tomographic and statistical properties of superposition states for two-mode systems. In International Workshop on Quantum Optics 2003; SPIE: Bellingham, WA, USA, 2004; Volume 5402. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, S.V.; Man’ko, O.V.; Tcherniega, N.V. Photon distribution function, tomograms and entanglement in Stimulated Raman Scattering. J. Opt. B Quantum Semiclass. Opt. 2003, 5, 5503. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Tcherniega, N.V. Tomographic description of Stimulated Brillouin Scattering. J. Russ. Laser Res. 2001, 22, 201–218. [Google Scholar] [CrossRef]
- Giri, S.K.; Sen, B.; Pathak, A.; Jana, P.C. Higher-order two-mode and multimode entanglement in Raman processes. Phys. Rev. A 2016, 93, 012340. [Google Scholar] [CrossRef] [Green Version]
- Pathak, A.; Křepelka, J.; Peřina, J. Nonclassicality in Raman scattering: Quantum entanglement, squeezing of vacuum fluctuations, sub-shot noise and joint photon–phonon number and integrated-intensity distributions. Phys. Lett. A 2013, 377, 2692–2701. [Google Scholar] [CrossRef] [Green Version]
- Rohith, M.; Sudheesh, C. Signatures of entanglement in an optical tomogram. JOSA B 2016, 33, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Facchi, P.; Ligabó, M.; Solimini, S. Tomography: Mathematical aspects and applications. Phys. Scr. 2015, 90, 074007. [Google Scholar] [CrossRef] [Green Version]
- Claeyes, P.W.; Polkovnikov, A. Quantum eigenstates from classical Gibbs distributions. SciPost Phys. 2021, 10, 014. [Google Scholar] [CrossRef]
- Khrennikov, A.; Alodjants, A. Classical (Local and Contextual) Probability Model for Bohm–Bell Type Experiments: No-Signaling as Independence of Random Variables. Entropy 2019, 21, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics. Entropy 2020, 22, 1292. [Google Scholar] [CrossRef] [PubMed]
- Elze, H.-T.; Gambarotta, G.; Vallone, F. General Linear Dynamics—Quantum, Classical or Hybrid. J. Phys. Conf. Ser. 2011, 306, 012010. [Google Scholar] [CrossRef] [Green Version]
- Stornaiolo, C. Emergent classical universes from initial quantum states in a tomographical description. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050167. [Google Scholar] [CrossRef]
- Berra–Montiel, J.; Molgado, A. Tomography in loop quantum cosmology. Eur. Phys. J. Plus 2022, 137, 283. [Google Scholar] [CrossRef]
- Gosson, M.A. Symplectic Radon Transform and the Metaplectic Representation. Entropy 2022, 24, 761. [Google Scholar] [CrossRef]
- Foukzon, J.; Potapov, A.A.; Menkova, E.; Podosenov, S.A. A New Quantum-Mechanical Formalism Based on the Probability Representation of Quantum States. viXra 2016. viXra:1612.0298. [Google Scholar]
- Chernega, V.N.; Belolipetskiy, S.N.; Man’ko, O.V.; Man’ko, V.I. Probability representation of quantum mechanics and star product quantization. J. Phys. Conf. Ser. 2019, 1348, 012101. [Google Scholar] [CrossRef]
- Bazrafkan, M.R.; Nahvifard, E. Stationary perturbation theory in the probability representation of quantum mechanics. J. Russ. Laser Res. 2009, 30, 392–403. [Google Scholar] [CrossRef]
- Filinov, V.S.; Schubert, G.; Levashov, P.; Bonitz, M.; Fehske, H.; Fortov, V.E.; Filinov, A.V. Center-of-mass tomographic approach to quantum dynamics. Phys. Lett. A 2008, 372, 5064. [Google Scholar] [CrossRef]
- Plotnitsky, A. Nature Has No Elementary Particles and Makes No Measurements or Predictions: Quantum Measurement and Quantum Theory, from Bohr to Bell and from Bell to Bohr. Entropy 2021, 23, 1197. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, G.P. CQED Quantum Tomography of a Microwave Range. arXiv 2015, arXiv:1510.03155. [Google Scholar]
- Koczor, B.; Zeier, R.; Glaser, S.J. Continuous Phase-Space Representations for Finite-Dimensional Quantum States and their Tomography. Phys. Rev. A 2020, 101, 022318. [Google Scholar] [CrossRef] [Green Version]
- Toninelli, E.; Ndagano, B.; Valles, A.; Forbes, A. Concepts in quantum state tomography and classical implementation with intense light: A tutorial. Adv. Opt. Photonics 2019, 11, 67–134. [Google Scholar] [CrossRef] [Green Version]
- Almarashi, A.M.; Abd-Elmougod, G.A.; Raqab, M.Z. Quantum Extropy and Statistical Properties of the Radiation Field for Photonic Binomial and Even Binomial Distributions. J. Russ. Laser Res. 2020, 41, 334–343. [Google Scholar] [CrossRef]
- Leon, R.C.C.; Yang, C.H.; Hwang, J.C.C.; Lemyre, J.C.; Tanttu, T.; Huang, W.; Huang, J.H.; Hudson, F.E.; Itoh, K.M.; Laucht, A.; et al. Bell-state tomography in a silicon many-electron artificial molecule. Nat. Commun. 2021, 12, 3228. [Google Scholar] [CrossRef]
- Husimi, K. Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I. Probability Representation of Quantum States. Entropy 2021, 23, 549. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I. Even and odd coherent states and excitations of a singular oscillator. Physica 1974, 72, 597–615. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Vilela Mendes, R. Noncommutative Time-Frequency Tomography. Phys. Lett. A 1999, 263, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G.; Vitale, P. Star Products, Duality and Double Lie Algebras. Phys. Lett. A 2007, 360, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Chernega, V.N.; Man’ko, O.V.; Man’ko, V.I. Entangled qubit states and linear entropy in the probability representation of quantum mechanics. Entropy 2022, 24, 527. [Google Scholar] [CrossRef] [PubMed]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Alternative Commutation Relations, Star Products and Tomography. J. Phys. A Math. Gen. 2002, 35, 699–719. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Tomographic Map within the Framework of Star-Product Quantization. In Quantum Theory and Symmetries, Proceedings of the Second International Symposium Quantum Theory and Symmetries, Krakow, Poland, 18–21 July 2001; Kapuscik, E., Horzela, A., Eds.; World Scientific: Singapore, 2002; pp. 126–133. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V.; Man’ko, V.I. Invariants and the Evolution of Nonstationary Quantum Systems. In Proceedings of the P.N. Lebedev Physical Institute; Nova Science: Commack, NY, USA, 1989; Volume 183, ISBN 0-941743-49-7. [Google Scholar]
- Arkhipov, A.S.; Lozovik, Y.E.; Man’ko, V.I. Tomography for several particles with one random variable. J. Russ. Laser Res. 2003, 24, 237–255. [Google Scholar] [CrossRef]
- Dudinets, I.V.; Man’ko, V.I. Center-of-mass tomography and Wigner function for multimode photon states. Int. J. Theor. Phys. 2018, 57, 1631–1644. [Google Scholar] [CrossRef] [Green Version]
- Amosov, G.G.; Man’ko, V.I. A classical limit for the center-of-mass tomogram in view of the central limit theorem. Phys. Scr. 2009, 80, 025006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernega, V.N.; Man’ko, O.V. Dynamics of System States in the Probability Representation of Quantum Mechanics. Entropy 2023, 25, 785. https://doi.org/10.3390/e25050785
Chernega VN, Man’ko OV. Dynamics of System States in the Probability Representation of Quantum Mechanics. Entropy. 2023; 25(5):785. https://doi.org/10.3390/e25050785
Chicago/Turabian StyleChernega, Vladimir N., and Olga V. Man’ko. 2023. "Dynamics of System States in the Probability Representation of Quantum Mechanics" Entropy 25, no. 5: 785. https://doi.org/10.3390/e25050785
APA StyleChernega, V. N., & Man’ko, O. V. (2023). Dynamics of System States in the Probability Representation of Quantum Mechanics. Entropy, 25(5), 785. https://doi.org/10.3390/e25050785