Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold
Abstract
:1. Introduction
2. Main Results
2.1. Setting
2.2. Main Result
3. Examples
3.1. Heisenberg Group
3.2. Displacement Group
3.3. Martinet Flat Sub-Riemannian Structure
4. Lyapunov Analysis in Sub-Riemannian Density Manifold
4.1. Sub-Riemannian Density Manifold
4.2. Gamma z Calculus via Second-Order Calculus of Relative Entropy in SDM
5. Generalized Gamma z Calculus
5.1. Proof of Lemma 10
5.2. Proof of Lemma 11
5.3. Proof of Lemma 12
6. Further Discussions on Other Inequalities
- ;
- For all functions , the map is continuous from to ;
- For all one has ;
- , .
Author Contributions
Funding
Conflicts of Interest
Appendix A. Degenerate SDEs and Sub-Riemannian Manifold
Proof of Gradient Flow Assumption
References
- Bakry, D.; Émery, M. Diffusions hypercontractives. In Séminaire de Probabilités XIX 1983/84; Springer: Berlin/Heidelberg, Germany, 1985; pp. 177–206. [Google Scholar]
- Baudoin, F.; Garofalo, N. Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. J. EMS 2017, 19, 151–219. [Google Scholar] [CrossRef]
- Arnold, A.; Carlen, E. A generalized Bakry–Émery condition for non-symmetric diffusions. In Proceedings of the EQUADIFF 99—International Conference on Differential Equations, Berlin, Germany, 1–7 August 1999; pp. 732–734. [Google Scholar]
- Li, W. Transport information geometry: Riemannian calculus on probability simplex. Inf. Geom. 2022, 5, 161–207. [Google Scholar] [CrossRef]
- Otto, F. The geometry of dissipative evolution equations the porous medium equation. Commun. Partial Differ. Equ. 2001, 26, 101–174. [Google Scholar] [CrossRef]
- Otto, F.; Villani, C. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality. J. Funct. Anal. 2000, 173, 361–400. [Google Scholar] [CrossRef]
- Baudoin, F. Wasserstein contraction properties for hypoelliptic diffusions. arXiv 2016, arXiv:1602.04177. [Google Scholar]
- Baudoin, F. Bakry–Émery meet Villani. J. Funct. Anal. 2017, 273, 2275–2291. [Google Scholar] [CrossRef]
- Baudoin, F.; Bonnefont, M.; Garofalo, N. A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Math. Ann. 2014, 358, 833–860. [Google Scholar] [CrossRef]
- Baudoin, F.; Gordina, M.; Herzog, D.P. Gamma calculus beyond Villani and explicit convergence estimates for Langevin dynamics with singular potentials. Arch. Ration. Mech. Anal. 2021, 241, 765–804. [Google Scholar] [CrossRef]
- Baudoin, F.; Grong, E.; Kuwada, K.; Thalmaier, A. Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations. Calc. Var. 2019, 58, 130. [Google Scholar] [CrossRef]
- Baudoin, F.; Wang, J. Curvature dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds. Potential Anal. 2014, 40, 163–193. [Google Scholar] [CrossRef]
- Feng, Q. Harnack inequalities on totally geodesic foliations with transverse Ricci flow. arXiv 2017, arXiv:1712.02275. [Google Scholar]
- Grong, E.; Thalmaier, A. Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: Part I. Math. Z. 2015, 282, 99–130. [Google Scholar] [CrossRef]
- Grong, E.; Thalmaier, A. Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: Part II. Math. Z. 2015, 282, 131–164. [Google Scholar] [CrossRef]
- Agrachev, A.; Lee, P. Optimal transportation under nonholonomic constraints. Trans. Am. Math. Soc. 2009, 361, 6019–6047. [Google Scholar] [CrossRef]
- Figalli, A.; Rifford, L. Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal. 2010, 20, 124–159. [Google Scholar] [CrossRef]
- Juillet, N. Diffusion by optimal transport in Heisenberg groups. Calc. Var. Partial Differ. Equ. 2014, 50, 693–721. [Google Scholar] [CrossRef]
- Khesin, B.; Lee, P. A nonholonomic Moser theorem and optimal transport. J. Symplectic Geom. 2009, 7, 381–414. [Google Scholar] [CrossRef]
- Lott, J.; Villani, C. Ricci Curvature for Metric-Measure Spaces via Optimal Transport. Ann. Math. 2009, 169, 903–991. [Google Scholar] [CrossRef]
- Sturm, K.-T. On the Geometry of Metric Measure Spaces. Acta Math. 2006, 196, 65–131. [Google Scholar] [CrossRef]
- Lafferty, J.D. The Density Manifold and Configuration Space Quantization. Trans. Am. Math. Soc. 1988, 305, 699–741. [Google Scholar] [CrossRef]
- Jüngel, A. Entropy Methods for Diffusive Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Markowich, P.A.; Villani, C. On the Trend to Equilibrium for the Fokker–Planck Equation: An Interplay between Physics and Functional Analysis. Physics and Functional Analysis. Mat. Contemp. 1999, 19, 1–29. [Google Scholar]
- Arnold, A.; Einav, A.; Wöhrer, T. On the rates of decay to equilibrium in degenerate and defective Fokker-Planck equations. J. Differ. Equ. 2018, 264, 6843–6872. [Google Scholar] [CrossRef]
- Arnold, A.; Erb, J. Sharp entropy decay for hypocoercive and non-symmetric Fokker–Planck equations with linear drift. arXiv 2014, arXiv:1409.5425. [Google Scholar]
- Karatzas, I.; Shreve, S.E. Brownian Motion and Stochastic Calculus, 2nd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1991; Volume 113. [Google Scholar]
- Baudoin, F. An Introduction to the Geometry of Stochastic Flows; World Scientific: Singapore, 2004. [Google Scholar]
- Stroock, D.W. Partial differential equations for probabilists. In Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2008; Volume 112. [Google Scholar]
- Bismut, J.M. Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions. In Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete; Springer: Berlin/Heidelberg, Germany, 1981; Volume 56, pp. 469–505. [Google Scholar]
- Hörmander, L. Hypoelliptic second-order differential equations. Acta Math. 1967, 119, 147–171. [Google Scholar] [CrossRef]
- Arous, B.; Léandre, R. Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Probab. Theory Relat. Fields 1991, 90, 377–402. [Google Scholar] [CrossRef]
- Barlow, M.; Nualart, D. Lectures on Probability Theory and Statistics. In Ecole d’Ete de Probabilites de Saint-Flour XXV; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Baudoin, F.; Nualart, E.; Ouyang, C.; Tindel, S. On probability laws of solutions to differential systems driven by a fractional Brownian motion. Ann. Probab. 2016, 44, 2554–2590. [Google Scholar] [CrossRef]
- Feng, Q.; Li, W. Hypoelliptic entropy dissipation for stochastic differential equations. arXiv 2021, arXiv:2102.00544. [Google Scholar]
- Agrachev, A.; Barilari, D.; Boscain, U. On the Hausdorff volume in sub-Riemannian geometry. Calc. Var. Partial Differ. Equ. 2012, 43, 355–388. [Google Scholar] [CrossRef]
- Barilari, D.; Rizzi, L. A formula for Popp’s volume in sub-Riemannian geometry. Anal. Geom. Metr. Spaces 2013, 1, 42–57. [Google Scholar] [CrossRef]
- Baudoin, F.; Feng, Q.; Gordina, M. Integration by parts and quasi-invariance for the horizontal Wiener measure on foliated compact manifolds. J. Funct. Anal. 2019, 277, 1362–1422. [Google Scholar] [CrossRef]
- Eldredge, N.; Gordina, M.; Saloff-Coste, L. Left-invariant geometries on SU(2) are uniformly doubling. Geom. Funct. Anal. 2018, 28, 1321–1367. [Google Scholar] [CrossRef]
- Elworthy, K.D. Stochastic Differential Equations on Manifolds; Cambridge University Press: Cambridge, UK, 1982; Volume 70. [Google Scholar]
- Gordina, M.; Laetsch, T. Sub-Laplacians on sub-Riemannian manifolds. Potential Anal. 2016, 44, 811–837. [Google Scholar] [CrossRef]
- Gordina, M.; Laetsch, T. A convergence to Brownian motion on sub-Riemannian manifolds. Trans. Am. Math. Soc. 2017, 369, 6263–6278. [Google Scholar] [CrossRef]
- Malliavin, P. Stochastic Analysis. In Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]; Springer: Berlin/Heidelberg, Germany, 1997; Volume 313. [Google Scholar]
- Baudoin, F.; Feng, Q. Log-Sobolev inequalities on the horizontal path space of a totally geodesic foliation. arXiv 2015, arXiv:1503.08180. [Google Scholar]
- Inglis, J.; Papageorgiou, I. Logarithmic Sobolev inequalities for infinite-dimensional Hörmander type generators on the Heisenberg group. Potential Anal. 2009, 31, 79–102. [Google Scholar] [CrossRef]
- Baudoin, F.; Bonnefont, M. Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality. J. Funct. Anal. 2012, 262, 2646–2676. [Google Scholar] [CrossRef]
- Wang, F.-Y. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Relat. Fields 1997, 109, 417–424. [Google Scholar] [CrossRef]
- Woit, P. Quantum Theory, Groups and Representations; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Baudoin, F.; Cecil, M. The subelliptic heat kernel on the three-dimensional solvable Lie groups. Forum Math. 2015, 27, 2051–2086. [Google Scholar] [CrossRef]
- Li, W. Diffusion Hypercontractivity via Generalized Density Manifold. arXiv 2019, arXiv:1907.12546. [Google Scholar]
- Baudoin, F. Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations. arXiv 2014, arXiv:1410.3268. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Li, W. Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold. Entropy 2023, 25, 786. https://doi.org/10.3390/e25050786
Feng Q, Li W. Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold. Entropy. 2023; 25(5):786. https://doi.org/10.3390/e25050786
Chicago/Turabian StyleFeng, Qi, and Wuchen Li. 2023. "Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold" Entropy 25, no. 5: 786. https://doi.org/10.3390/e25050786
APA StyleFeng, Q., & Li, W. (2023). Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold. Entropy, 25(5), 786. https://doi.org/10.3390/e25050786