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Abstract: Quantum control of lossy systems is known to be achieved by adiabatic passage via an
approximate dark state relatively immune to loss, such as the emblematic example of stimulated
Raman adiabatic passage (STIRAP) featuring a lossy excited state. By systematic optimal control
study, via the Pontryagin maximum principle, we design alternative more efficient routes that,
for a given admissible loss, feature an optimal transfer with respect to the cost defined as (i) the
pulse energy (energy minimization) or (ii) the pulse duration (time minimization). The optimal
controls feature remarkably simple sequences in the respective cases: (i) operating far from a dark
state, of π-pulse type in the limit of low admissible loss, or (ii) close to the dark state with a
counterintuitive pulse configuration sandwiched by sharp intuitive sequences, referred to as the
intuitive/counterintuitive/intuitive (ICI) sequence. In the case of time optimization, the resulting
stimulated Raman exact passage (STIREP) outperforms STIRAP in term of speed, accuracy, and
robustness for low admissible loss.

Keywords: quantum control; quantum system driven by an external field

1. Introduction

Quantum control often faces losses or noise that have to be circumvented in order
to make operational the modern quantum technologies, such as in quantum information
processing [1,2]. Two intuitive opposite strategies have been generally developed: (i) oper-
ating sufficiently fast [3], i.e., in a timescale in which the loss does not act, or (ii) operating
adiabatically along a dark state, which is by construction immune to loss, as in the emblem-
atic example of stimulated Raman adiabatic passage (STIRAP) [4–7]. The first strategy is
an intensive area of research, including optimal control [2,8], shortcut to adiabaticity [3],
single-shot shaped pulse [9–11], and robust optimization [12–15]. Optimal control theory
(OCT) is a powerful tool to mitigate intensities of the control pulses and speed up the evo-
lution allowing one in principle to reach the ultimate bounds in the system (often referred
to as the quantum speed limit when optimal time is considered) [16]. Besides numerical
implementation of OCT, such as gradient ascent algorithms (GRAPE) [17], the Pontrya-
gin maximum principle (PMP) [8,18–20] allows analytic or semi-analytic derivation of
the optimal controls (typically with respect to time or energy) in transforming the initial
infinite-dimension control problem into a finite-dimension problem. In the second strategy,
the process is, however, approximative due to adiabatic principles, but it is also affected by
losses, since the dark state is only an approximation of the dynamics for a realistic finite
time, i.e., not strictly adiabatic, process.
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In this paper, we determine optimal routes in a Λ-system, where the upper excited
state, coupled to both ground states, is lossy, yielding necessarily to a lossy dynamics when
the two ground states are not directly coupled. We follow an inverse-engineering strategy:
we start by assuming a total loss (at the end of the dynamics) that is defined a priori as an
admissible loss. We then determine using the PMP the optimal dynamics with respect to
a given cost (the pulse duration or the energy) that will reach the target state and realize
the admissible loss. As a consequence, the transfer to the target state is incomplete due
to the loss, but the fidelity of the transfer is a priori known and controlled. We then refer
this process to an optimal dissipative stimulated Raman exact passage (optimal dissipative
STIREP), similarly to its definition in the non-linear case [21].

When the pulse energy is considered as cost (for a given pulse duration), the optimal
dynamics operates with a relatively strong field far from a dark state. In the limit of low
admissible loss, one can reformulate the problem as the control of a planar pendulum and
an analytic expression of the coinciding pulses, as a sine Jacobi elliptic function, is provided.

On the other hand, when the pulse duration (with constrained pulse amplitudes) is
taken as cost to minimize, we explicitely determine the optimal dynamics. A key result
of this work is established in the limit of low admissible loss: we derive a faster, more
accurate and more robust dynamics than the traditional STIRAP. The resulting optimal
pulse sequence is remarkably simple, featuring a slow counterintuitive order, reminiscent
of the STIRAP sequence, but sandwiched by two sharp intuitive sequences.

The paper is organized as follows: in Section 2, we define the system. In Sections 3 and 4,
we determine the energy-optimal and time-optimal dissipative STIREP processes, respec-
tively. We conclude in Section 5, where a comparative analysis and in particular the
robustness of the derived optimal processes are provided. Appendices with the details of
the calculations complete the paper.

2. Definition of the Lossy-Driven Raman System

We consider a three-level Λ-system, in which the Hamiltonian in rotating wave ap-
proximation (in units such that h̄ = 1) is given in the basis of the states {|1〉, |2〉, |3〉} by:

HΓ(t) =

 0 up(t) 0
up(t) −iΓ/2 us(t)

0 us(t) 0

, (1)

where up and us are the pump and Stokes controls, respectively (corresponding to half of
the traditional Rabi frequencies), with the lossy upper state |2〉, via the dissipation rate
Γ. Instead of analyzing such a complicated lossy system requiring specific adaptation of
the cost [22], large dissipation [23], or assumption on the controls [24], we consider an
alternative procedure to treat approximately but accurately the problem in the situation of
interest having a relatively low dissipation rate without adapting the cost, nor restricting
the controls. From the unlossy system H ≡ HΓ=0, the effects of the loss are taken into
account at the second order perturbation theory from the knowledge of the state amplitude
of state |2〉 (in absence of dissipation):

Ploss := 1− (|cΓ,1|2 + |cΓ,2|2 + |cΓ,3|2) ≈ Γ
∫ t f

ti

dt|c2|2, (2)

where ti (t f ) is the initial (final) time, the state amplitude of state |j〉 is denoted cΓ,j in
presence of the dissipation, and cj when Γ = 0, respectively. This simplification can be
shown to be numerically accurate for a low enough ratio Γ/umax . 0.1, where umax is the
peak value of the pulses. We consider that the pulses are exactly resonant because they
produce the most efficient two-photon coupling [25].

We denote the state solution |ψ〉 = [c1, c2, c3]
T. We use the alternative notation x1 ≡ c1,

x2 ≡ ic2, and x3 ≡ −c3 so that all the elements of the solution |x〉 ≡ [x1(t), x2(t), x3(t)]T
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are real when we consider the initial (real) state c1(ti) = 1, c2(ti) = c3(ti) = 0, and the
time-dependent Schrödinger Equation (TDSE) becomes:

d
dt
|x〉 =

 0 −up(t) 0
up(t) 0 −us(t)

0 us(t) 0

|x〉 (3)

satisfying x2
1 + x2

2 + x2
3 = 1.

Throughout the paper, we consider an admissible loss, which is, according to (2),
characterized by: ∫ t f

ti

dt x2(t)2 = A ≈ Ploss/Γ, (4)

where A, the time area of the population in state |2〉, is a given constant, referred to as the
(total) normalized loss (with respect to Γ). The dynamics is determined with the non-lossy
Hamiltonian HΓ=0 and the expected loss is, thus, given by Ploss ≈ AΓ if one assumes
Γ/umax . 0.1.

3. Energy-Optimal Dissipative STIREP
3.1. Construction of the Pseudo-Hamiltonian and Derivation of the Equations of Motion from PMP

The goal of the control is to steer the system from x1(ti) = 1 to x3(t f ) = 1 (chosen as
the target; similarly, we could have chosen x3(t f ) = −1) in a fixed time T = t f − ti while
minimizing the energy of the controls:

J = E ≡
∫ t f

ti

(u2
p + u2

s )dt, (5)

under the constraint (4).
To take into account constraint (4), we augment the dimension of the system with a

new coordinate y(t) such that:
ẏ = x2(t)2, (6)

of initial y(ti) = 0 and final value:

y(t f ) =
∫ t f

ti

dt x2(t)2 ≡ A. (7)

The constraint (4) reduces, thus, to a boundary problem on y.
Similarly to the unconstraint optimization case [8], it is convenient to use angle co-

ordinates, which simplify the representation of the dynamics from three components to
two angles:

x1 = cos ϕ cos θ, x2 = sin ϕ, x3 = cos ϕ sin θ (8)

with the initial conditions ϕ(ti) = 0, θ(ti) = 0. The equations of the dynamics (3), comple-
mented by (6), can be simplified as:

ϕ̇ = vp ≡ f1(vp), (9)

θ̇ = −vs tan ϕ ≡ f2(ϕ; vs), (10)

ẏ = sin2 ϕ ≡ f3(ϕ), (11)

after a rotation on the control fields:[
vp
vs

]
=

[
cos θ − sin θ
− sin θ − cos θ

][
up
us

]
, (12)
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leading to an invariant cost on the new field variables since u2
p + u2

s = v2
p + v2

s . According
to the PMP [18,26,27], the minimization of the energy (5):

E =
∫ t f

ti

[u2
p(t) + u2

s (t)] dt =
∫ t f

ti

[v2
p(t) + v2

s (t)] dt (13)

leads to the control Pontryagin Hamiltonian (see Appendix A, where we have considered
the standard choice p0 = 1/2):

Hc = λϕvp − λθvs tan ϕ + µ sin2 ϕ− 1
2
(v2

p + v2
s ) (14)

where Λ = [λϕ, λθ , µ]T is the co-state gathering the conjugate momenta of ϕ, θ, and y,
respectively. The Hamilton equations lead to the equations of motion (9) and (10) and to:

λ̇ϕ =
vs

cos2 ϕ
λθ − µ sin(2ϕ), λ̇θ = 0, µ̇ = 0. (15)

This implies that λθ and µ are constants of motion. The maximization condition of the
PMP gives:

∂Hc

∂vp
= λϕ − vp = 0,

∂Hc

∂vs
= −λθ tan ϕ− vs = 0, (16)

which yields:
vp = λϕ, vs = −λθ tan ϕ, (17)

leading to:

Hc =
1
2
(λ2

ϕ + λ2
θ tan2 ϕ) + µ sin2 ϕ =

1
2
(v2

p + v2
s ) + µ sin2 ϕ, (18)

which features an effective autonomous system (i.e., explicitly time-independent, since Hc
depends only on the dynamical variables and their conjugate momenta). The equations of
motion finally read:

ϕ̇ = λϕ, (19)

θ̇ = λθ tan2 ϕ, (20)

ẏ = sin2 ϕ, (21)

λ̇ϕ = −λ2
θ

sin ϕ

cos3 ϕ
− µ sin(2ϕ), (22)

λ̇θ = µ̇ = 0 (23)

with the boundary conditions (for a complete population transfer from state |1〉 to state
|3〉):

ϕ(ti) = 0, θ(ti) = 0, y(ti) = 0, (24)

ϕ(t f ) = 0, θ(t f ) = π/2, y(t f ) = A. (25)
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3.2. Construction of the Optimal Trajectories

We assume a monotonically increasing θ, implying λθ > 0. Since Hc features an
effective autonomous system, we can determine the optimal trajectory by quadrature using
Hc = h = const.:

ϕ̇ = λϕ = ±

√
2h− sin2 ϕ

(
2µ +

λ2
θ

cos2 ϕ

)
, (26)

dϕ

dθ
=

ϕ̇

θ̇
= ±

√
2h− sin2 ϕ

(
2µ +

λ2
θ

cos2 ϕ

)
λθ tan2 ϕ

. (27)

We can assume ϕ ≥ 0 (which is satisfied for up and us, both positive), ti ≡ 0, t f ≡ T,
and ϕ̇(t = T/2) = 0 by symmetry, leading to ϕ(T/2) ≡ ϕ0 maximum at t = T/2,
and positive (negative) branch of (26) and (27) for t ∈ [0, T/2], ϕ increasing from 0 to ϕ0
(t ∈ [T/2, T], ϕ decreasing from ϕ0 to 0).

As detailed in Appendix A, we first integrate Equation (26) and obtain sin ϕ (A24) as
a function of an elliptic sine of time 0 ≤ t ≤ T/2:

sin ϕ = sin ϕ0 sn(2K(m) t/T, m), (28)

where the set of the three parameters {µ, λθ , h} is replaced by the set {m, ϕ0, T} with the
following correspondence:

h =
2K2(m)

T2 sin2 ϕ0, µ =
mh

sin4 ϕ0
,

λ2
θ

2h
=

sin2 ϕ0 −m
sin2 ϕ0 tan2 ϕ0

. (29)

These are determined in order to satisfy the boundary conditions for a given normal-
ized loss A.

In order to take into account the boundary condition y(t f ) = A of (21), sin ϕ has
to satisfy: ∫ T/2

0
dt sin2 ϕ(t) =

A
2

. (30)

From the integral of the Jacobi elliptic function in (28), we obtain:

A
2

= sin2 ϕ0
T

2K(m)

K(m)− E(m)

m
, (31)

where E(m) is the complete elliptic integral of the second kind. This gives for the optimal
unconstrained system m = 0 [8]:

A(m = 0, ϕ0 = π/3) =
3T
8

. (32)

We next integrate Equation (27), as detailed in Appendix B. Imposing by symmetry
that θ(ϕ0) = π/4 leads to the condition:

π

4
= +

√
sin2 ϕ0 −m

√
1−m tan ϕ0

[
−K
( m

m− 1

)
+

Π
(
− tan2 ϕ0

∣∣∣ m
m−1

)
cos2 ϕ0

]
, (33)

which gives an implicit relation between sin ϕ0 and m.
For a given value of loss A [below 3/8 (32), the latter corresponding to the optimal

unconstrained system], we aim at finding the optimal couple of parameters m and ϕ0,
simultaneously satisfying Equations (31) and (33). The obtained data are shown in Table 1.
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Table 1. Energy-optimal parameters for various normalized losses A: optimal values of m, ϕ0, and

the corresponding energy E , peak value umax, and pulse area A =
∫ T

0 ds
√

u2
p + u2

s . The pulse area
for the Rabi frequency is 2A.

A (in units of T) 3/8 0.35 0.3 0.2 0.15

m 0 −0.264 −1.123 −9.4 −49.97

ϕ0 π/3 1.0140 0.9502 0.8364 0.7995

E (in units of 1/T) 7.40 7.44 7.79 10.28 13.40

umax (in units of 1/T) 2.72 2.51 2.54 3.60 4.73

A 2.72 2.72 2.75 2.91 3.03

A (in units of T) 0.1 0.08 0.05 0.04 0.03

m −1379 −16770 −3.032× 107 −4.5× 109 −1.87× 1013

ϕ0 0.7862 0.7855 0.7854 0.7854 0.7854

E (in units of 1/T) 20.00 25.00 40.00 50.00 66.66

umax (in units of 1/T) 7.07 8.84 14.14 17.68 23.57

A 3.12 3.14 3.14 3.14 3.14

One can conclude that for a decreasing admissible loss A, m decreases and ϕ0 de-
creases to π/4, both monotonically since the right-hand side goes to ϕ0 when m → −∞.
The minimum peak value of ϕ(t) is, thus, π/4, asymptotically reached in the limit of no
admissible loss, A→ 0.

3.3. Derivation of the Pulses and the Dynamics

The original controls up and vp are obtained by reversing Equation (12), where θ is
given by Equations (A31) and (A32), and vp, vs by Equation (17) with ϕ obtained from
Equation (28) and the correspondence (29).

From the values m and ϕ0 shown in Table 1, one can derive the controls and determine
numerically the corresponding population dynamics. Figure 1 shows such dynamics for
three typical values of A.

We observe that the pump and Stokes controls operate in the so-called intuitive order
(first pump and next Stokes), and that they get closer and coincide more and more with a
larger peak for decreasing A. One can notice in Figure 1 that the pump and Stokes pulses
are almost already undistinguishable at the scale of the figure already for A = 0.08T.

We determine that, in the limit of a small normalized loss A, i.e., A . 0.08T, corre-
sponding to a large negative m and ϕ0 = π/4, the pulses appear as fully overlapping of
sine Jacobi elliptic function form:

up(t) = us(t) =
√
−2mK(m)

T
sn
(2K(m)t

T
, m
)

(34)

with m solution of Equation (31):

A =
T
2

K(m)− E(m)

mK(m)
, (35)

which is well approximated by:

m ≈ − 1
24 eT/A. (36)
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Figure 1. Shapes of the controls up(t) and us(t) and the corresponding (non-lossy) population
dynamics, Pj = x2

j , for A = 3T/8 (solid lines), A = 0.2T (dashed lines), and A = 0.08T (dotted line),
with T being the duration of the process. The pulses appear as fully overlapping at the scale of the
figure in the case A = 0.08T.

In this limit, the peak of the pulses is well approximated by:

max(up(t)) = max(us(t)) =
√
−2mK(m)

T
≈ 1√

2A
, (37)

the area of each pulse is: ∫ T

0
up(t)dt =

∫ T

0
us(t)dt =

π√
2

, (38)

and the generalized Rabi frequency pulse area:

2
∫ T

0

√
u2

p(t) + u2
s (t) dt = 2π, (39)

which has to be compared to the optimal Rabi frequency pulse area, which is
√

3π (the
counterpart of the π-pulse for Λ systems), obtained in absence of constraint on loss [8].

We conclude that the present energy-optimal pulse operates far from a dark state, of π-
pulse type, in the sense that it is relatively close to the optimal Rabi frequency pulse area.

3.4. Comparison with Standard STIRAP and Parallel STIRAP

The energy of the derived optimal STIREP pulses with a low normalized loss A '
0.036T (featuring almost overlapping pulses) is compared to that of the standard STIRAP
with Gaussian pulses in a situation giving the same normalized loss A. We obtain the
energy E ' 90 h̄

T for STIRAP, almost twice larger than energy-optimal STIREP E ' 56 h̄
T .

The optimal pulses feature a shorter duration, compared to the long adiabatic process of
STIRAP, and are more intense with the peak umax ' 19.6/T three times larger than those of
the standard STIRAP umax ' 6/T.

We next compare the energy-optimal dissipative STIREP with respect to Stimulated
Raman parallel adiabatic passage (parallel STIRAP) with coincident pulses [28], where
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non-adiabatic transfer is ideally cancelled (in the adiabatic limit) [29], see Appendix D.
Numerical implementations are shown in Figure 2 for Ω0 = 14.453/T, in a situation giving
the same energy of the pulses as that for energy-optimal STIREP E ' 56 h̄

T . We obtain
the time area of the transient population in the excited state A ' 0.535T, much larger
than for energy-optimal STIREP A ' 0.036T. Comparing the pulses, we first notice that
the peak in parallel STIRAP umax ' 4.2/T is roughly five times smaller than the one in
energy-optimal STIREP umax ' 19.6/T. The duration of the control process is greater than
for energy-optimal STIREP.

Figure 2. Parallel STIRAP dynamics for Ω0 = 14.453/T. Upper frame: The coincident control pulses
uP(t) and uS(t) (in units of 1/T) according to (A44). Middle frame: Populations. Lower frame: The
eigenvalues given by (A38) (in units of 1/T).
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3.5. Analogy with a Planar Pendulum

We can reformulate the optimization problem in the limit of fully overlapping equal
control fields:

up(t) = us(t) ≡ u(t), (40)

and show that it becomes analogous to the planar pendulum tipping over from the initial
unstable vertical position.

We denote by a(t) the area at time t of u(t):

a(t) =
∫ t

0
u(t′)dt′. (41)

In this case, the dynamics can be exactly integrated:

x(t) =
[1 + cos(

√
2a)

2
,

sin(
√

2a)√
2

,
1− cos(

√
2a)

2

]T
, (42)

showing that the target state is reached if:

a(T) =
π√

2
. (43)

Minimizing the energy of the controls (5) under the constraint of a given loss (7)
is equivalent to finding the optimal solutions which minimize the energy

∫ T
0 u(t)2dt =∫ T

0 ȧ2dt while satisfying the constraint condition of an admissible given loss

2A =
∫ T

0 sin2(
√

2a)dt. For that purpose, we introduce the Lagrangian equation:

Lλ = ȧ2 + λ sin2(
√

2a), (44)

where λ is a Lagrange multiplier, aiming at minimizing
∫ T

0 Lλ(t)dt. A necessary condition
is given by the Euler–Lagrange principle:

∂Lλ

∂a
− d

dt

(
∂Lλ

∂ȧ

)
= 0, (45)

giving the equation of a planar pendulum:

ä− λ√
2

sin(2
√

2a) = 0 (46)

where λ is directly connected to the frequency of the pendulum, a (up to a factor) is the
angle (where 0 corresponds to the unstable vertical positon), and u(t) is the angular velocity.
This equation can be integrated by using Jacobi functions with the boundary conditions
a(0) = 0 and a(T) = π/

√
2:

ȧ = u(t) =

√
− λ

m

√
1−m sin2(

√
2a) (47)

with m a constant related to the initial velocity u(0) and λ:

ȧ(0) = u(0) =

√
− λ

m
. (48)
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We derive, using b =
√

2a:

∫ √2a

0

db√
1−m sin2 b

≡ F(
√

2a|m) =

√
−2λ

m
t, (49)

and ∫ π/2

0

db√
1−m sin2 b

≡ K(m) =

√
−2λ

m
T
2

, (50)

giving the relation between λ, m and T, i.e., by inverting (49):

sn
(

F(
√

2a|m)
)
= sin(

√
2a) = sn

(2K(m)t
T

, m
)

(51)

and

u(t) =
√

2K(m)

T

√
1−m sn2

(2K(m)t
T

, m
)

. (52)

One can notice that the initial velocity u(0) =
√

2K(m)/T is strictly positive, which
induces the pendulum to tip over. In the limit of large negative m, this initial velocity goes
to zero and we recover the pulse shape (34):

u(t) 
√
−2mK(m)

T
sn
(2K(m)t

T
, m
)

. (53)

4. Time-Optimal Dissipative STIREP
4.1. Construction of the Pseudo-Hamiltonian

In the time-optimal control problem, we minimize the following equation:

J =
∫ T

0
dt, (54)

where T is the control duration of the process to be determined optimally, under the
constraint on the total peak amplitude of the fields, bounded by a constant u0:√

u2
1(t) + u2

2(t) ≤ u0. (55)

The pesudo-Hamiltonian, which includes the subtraction of the integral kernel of the
above cost, i.e., the constant −p0, to which we add p0, reads:

Hc = up(λ2x1 − λ1x2) + us(λ3x2 − λ2x3) + µx2
2, (56)

where the costate Λ has four components Λ = [λT, µ]T with λ = [λ1, λ2, λ3]
T. The adjoint

equations of the costate are as follows:

λ̇1 = −∂Hc

∂x1
= −λ2up, (57)

λ̇2 = −∂Hc

∂x2
= λ1up − λ3us − 2µx2, (58)

λ̇3 = −∂Hc

∂x3
= λ2us, (59)

µ̇ = 0 i.e., µ = const. (60)
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The pseudo-Hamiltonian is of the form (A45) Hc = H0 + up Hp + usHs (see Appendix E),
with the control variables up and us, and Hp = λ2x1 − λ1x2, Hs = λ3x2 − λ2x3, we can,
thus, apply the results of Appendix E:

up = (λ2x1 − λ1x2)/R, us = (λ3x2 − λ2x3)/R (61)

with
R =

√
(λ2x1 − λ1x2)2 + (λ3x2 − λ2x3)2. (62)

This leads to:
Hc = R + µx2

2, (63)

and the controls attain the maximum of the constraint at each time:

u2
p + u2

s = u2
0. (64)

We can make a change of variables for the time, renormalizing the field amplitude as
follows:

ũp =
up√

u2
p + u2

s

=
up

u0
, (65)

ũs =
us√

u2
p + u2

s

=
us

u0
, (66)

t̃ = u0t, (67)

i.e.,

ũ2
p + ũ2

s = 1, (68)

and the equation becomes:

d
dt̃
|x̃〉 = Ã|x̃〉, |x̃(t̃)〉 ≡ |x(t)〉, Ã =

 0 −ũp 0
ũp 0 −ũs
0 ũs 0

. (69)

This means that we can always renormalize the field amplitudes by modifying the
optimal time accordingly. We will consider below the tilde variables (corresponding to
finding the optimal time for u0 = 1).

Introducing the following angle coordinates:

x1 = cos ϕ cos θ, x2 = sin ϕ, x3 = cos ϕ sin θ (70)

with the initial condition ϕ(ti) = 0, θ(ti) = 0 and the final condition ϕ(t f ) = 0, θ(t f ) = π/2.
The equations of the dynamics (69) can be simplified as follows:

ϕ̇ = ṽp, θ̇ = −ṽs tan ϕ, (71)

after a rotation on the control fields:[
ṽp
ṽs

]
=

[
cos θ − sin θ
− sin θ − cos θ

][
ũp
ũs

]
, (72)

leading to an invariant cost on the new field variables since ũ2
p + ũ2

s = ṽ2
p + ṽ2

s = 1. We
arrive at:

Hc − µ sin2 ϕ = λϕ ϕ̇ + λθ θ̇ = λϕ ṽp − λθ ṽs tan ϕ (73)
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with Λ = [λϕ, λθ , µ]T being the costate gathering the conjugate momenta of ϕ, θ, and y,
respectively. The following Hamilton Equations:

ϕ̇ =
∂Hc

∂λϕ
, θ̇ =

∂Hc

∂λθ
, (74)

lead to the equations of motion (71) and to:

λ̇ϕ = −∂Hc

∂ϕ
=

ṽs

cos2 ϕ
λθ − µ sin(2ϕ), (75)

λ̇θ = −∂Hc

∂θ
= 0, (76)

µ̇ = −∂Hc

∂y
= 0. (77)

This implies that λθ and µ are constants of motion. Hc (73) is again of the form (A45),
implying:

Hc =
√

λ2
ϕ + λ2

θ tan2 ϕ + µ sin2 ϕ, (78)

and

ṽp =
λϕ

R
, ṽs = −

λθ tan ϕ

R
, (79)

with

R =
√

λ2
ϕ + λ2

θ tan2 ϕ. (80)

The equations of motion read then:

ϕ̇ =
λϕ

R
, (81)

θ̇ =
λθ tan2 ϕ

R
, (82)

ẏ = sin2 ϕ, (83)

λ̇ϕ = −λ2
θ

sin ϕ

R cos3 ϕ
− µ sin(2ϕ) (84)

with the boundary conditions:

ϕ(ti) = 0, θ(ti) = 0, y(ti) = 0, (85)

ϕ(t f ) = 0, θ(t f ) = π/2, y(t f ) = A. (86)

4.2. Construction of the Optimal Trajectories from the PMP

Since Hc = h is a constant, we obtain:

λϕ = ±
√
(h− µ sin2 ϕ)2 − λ2

θ tan2 ϕ. (87)

Following the same lines as in the energy minimum case, we have:

ϕ̇ = ±

√
(1− µ̃ sin2 ϕ)2 − λ̃2

θ tan2 ϕ

1− µ̃ sin2 ϕ
, (88)

dϕ

dθ
= ±

√
(1− µ̃ sin2 ϕ)2 − λ̃2

θ tan2 ϕ

λ̃θ tan2 ϕ
(89)
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with the normalized constants:

µ̃ =
µ

h
, λ̃θ =

λθ

h
. (90)

We know that ϕ has by symmetry to reach its maximum value at t = T/2: ϕ̇(T/2) = 0,
i.e.,

(1− µ̃ sin2 ϕ0)
2 = λ̃2

θ tan2 ϕ0 (91)

with the notation ϕ0 ≡ ϕ(T/2). This equation shows a dependence upon λ̃2
θ . We can, thus,

limit our study to positive λ̃θ . It is solved in Appendix F.
We next solve the differential Equation (89) numerically and determine which values

of µ̃ and λ̃θ satisfy the following:

ϕ(θ = π/4) = ϕ0, (92)

where the left-hand side is the numerical solution of (89) and the right-hand side the
possible solution(s) ϕ0, as determined in Appendix F.

We note that for µ̃ ≤ −8, (92) is satisfied only for the smallest root ϕ0 [i.e., (A77) for
k = 1], since ϕ (assumed positive) grows from 0 to ϕ0, where dϕ/dθ = 0. In addition,
we emphasize that the results become strongly sensitive to λ̃θ for large negative µ̃, which
necessitates a high precision on the estimation of the parameter. For µ̃ ∈]− 8, 1], there is
one root of ϕ0 (A74), and (92) can be always satisfied. For µ̃ > 1, no solution satisfying (92)
exists. The couples λ̃θ , µ̃ and the corresponding ϕ0 are shown in Table 2.

Using these values of the couple (µ̃, λ̃θ), we can solve the differential Equation (88),
to determine the value of t0 when ϕ(t0) = ϕ0, and thus to obtain the optimal time T = 2t0,

and the resulting normalized loss: A =
∫ t f

ti
dt x2(t)2 = 2

∫ t0
0 dt sin2 ϕ(t). We show the

corresponding data in Table 2, from which one can conclude that the optimal control time
T decreases for increasing values of A with diminishing rates and gradually flattens out for
large A. This is shown in Figure 3.

Figure 3. Minimal time as a function of the normalized loss from Table 2.

We observe from Table 2 that, for the unconstrained case, i.e., µ̃ = 0, the determined
time area is A ' 1.0203/u0, while the optimal time is T = 2.7207/u0, which recovers the
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unconstrained result obtained in the energy-optimal dissipative STIREP (see Table 1) [i.e.,
Equation (32)]: A = 3T

8 ' 1.0203/u0, and ϕ0 = π/3 ≈ 1.0472.

Table 2. Time-optimal ϕ0 as a function of the couple λ̃θ , µ̃ satisfying (92), and the corresponding
normalized loss A, minimal time T, ratio A/T, pulse area A, and energy E . The values µ̃ are given
exactly and all the others quantities are approximate.

µ̃ λ̃θ ϕ0 A (1/u0) T (1/u0) A/T A E (h̄/T)

0.5 0.25879 1.1527 1.1177 2.7477 0.407 2.75 7.54
0 0.57735 1.0472 1.0203 2.7207 0.375 2.72 7.40
−0.5 0.90476 0.9783 0.9612 2.7346 0.352 2.73 7.48
−1 1.23456 0.9248 0.9176 2.7668 0.332 2.77 7.65
−1.5 1.56434 0.8795 0.8821 2.8109 0.314 2.81 7.90
−2 1.89263 0.8389 0.8513 2.8647 0.297 2.86 8.21
−2.5 2.21825 0.8012 0.8234 2.9275 0.281 2.93 8.57
−3 2.53997 0.7652 0.7972 2.9994 0.266 3.00 9.00
−3.5 2.85642 0.7301 0.7720 3.0812 0.251 3.08 9.49
−4 3.16595 0.6955 0.7473 3.1739 0.236 3.17 10.07
−4.5 3.46665 0.6609 0.7228 3.2779 0.221 3.28 10.74
−5 3.75639 0.6266 0.6984 3.3938 0.206 3.39 11.52
−5.5 4.03322 0.5926 0.6742 3.5211 0.192 3.52 12.40
−6 4.29565 0.5597 0.6504 3.6580 0.178 3.66 13.38
−6.5 4.54311 0.5283 0.6273 3.8018 0.165 3.80 14.45
−7 4.77607 0.4992 0.6055 3.9494 0.153 3.95 15.60
−7.5 4.99577 0.4727 0.5850 4.0979 0.143 4.10 16.79
−8 5.20381 0.4489 0.5660 4.2449 0.133 4.24 18.02
−8.5 5.40180 0.4277 0.5485 4.3893 0.125 4.39 19.27
−9 5.59116 0.4088 0.5323 4.5296 0.118 4.53 20.52
−9.5 5.77306 0.3920 0.5175 4.6666 0.111 4.67 21.78
−10 5.94845 0.3770 0.5037 4.7988 0.105 4.80 23.03
−10.5 6.11800 0.3635 0.4913 4.9299 0.100 4.93 24.30
−11 6.28261 0.3514 0.4794 5.0551 0.095 5.06 25.55
−11.5 6.44250 0.3405 0.4684 5.1768 0.091 5.18 26.80
−12 6.59818 0.3305 0.4582 5.2963 0.087 5.30 28.05
−12.5 6.75000 0.3214 0.4488 5.4148 0.083 5.41 29.32
−13 6.89827 0.3130 0.4397 5.5278 0.080 5.53 30.56
−13.5 7.04324 0.3053 0.4311 5.6386 0.077 5.64 31.79
−14 7.18513 0.2981 0.4235 5.7525 0.074 5.75 33.09
−14.5 7.32416 0.2915 0.4160 5.8600 0.071 5.86 34.34
−15 7.46049 0.2853 0.4085 5.9613 0.069 5.96 35.54
−15.5 7.59429 0.2795 0.4020 6.0690 0.066 6.07 36.83
−16 7.72569 0.2740 0.3957 6.1722 0.064 6.17 38.10
−16.5 7.85483 0.2689 0.3892 6.2680 0.062 6.27 39.29
−17 7.98182 0.2640 0.3836 6.3699 0.060 6.37 40.58
−17.5 8.10678 0.2594 0.3779 6.4657 0.058 6.47 41.80
−18 8.22979 0.2551 0.3730 6.5687 0.057 6.57 43.15
−18.5 8.35096 0.2509 0.3671 6.6517 0.055 6.65 44.25
−19 8.47035 0.2470 0.3622 6.7434 0.054 6.74 45.47
−19.5 8.58806 0.2432 0.3577 6.8391 0.052 6.84 46.77
−20 8.70414 0.2397 0.3531 6.9296 0.051 6.93 48.02
−20.5 8.81868 0.2362 0.3486 7.0162 0.050 7.02 49.23
−21 8.93172 0.2330 0.3446 7.1074 0.049 7.11 50.51
−21.5 9.04333 0.2298 0.3406 7.1965 0.047 7.20 51.79
−22 9.15356 0.2268 0.3368 7.2843 0.046 7.28 53.06
−22.5 9.26246 0.2239 0.3325 7.3588 0.045 7.36 54.15
−23 9.37008 0.2211 0.3290 7.4475 0.044 7.45 55.47
−23.5 9.47647 0.2184 0.3234 7.4864 0.043 7.49 56.05
−24 9.58166 0.2159 0.3225 7.6230 0.042 7.62 58.11
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4.3. Derivation of the Pulses and the Dynamics

From a given pair (µ̃, λ̃θ), ϕ(t) can be obtained numerically by solving the differential
Equation (88), and then λϕ(t) is derived from (87). The original controls ũp, ũs are obtained
from Equation (72), where the angle θ is derived numerically from Equation (89):

θ = ±
∫ ϕ

ϕi

λ̃θ tan2 ϕ√
(1− µ̃ sin2 ϕ)2 − λ̃2

θ tan2 ϕ
dϕ. (93)

Figures 4–6 show the parameters ϕ(t) and θ(t) and the dynamics for three typical
couples of (µ̃, λ̃θ) with decreasing losses.

Figure 4. Time dependence of the parameters ϕ and θ (upper frame); the control pulse amplitudes
up and us (in units of u0) (upper middle frame); the projection (in absolute value squared) of the
dynamics onto the dark state (94) (lower middle frame); and populations (lower frame) for the case
µ̃ = 0 corresponding to unconstrained optimal pulses with the normalized loss A ≈ 1.02/u0 and the
optimal time T ≈ 2.72/u0.
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Starting with the full intuitive dynamics in the unconstrained case (Figure 4), we
observe that, as the optimal time increases (i.e., µ̃ becomes larger in absolute value and
negative), the pump pulse decreases sharply at early times before slowly increasing and
the Stokes pulse increases sharply at early times before slowly decreasing (and a symmetric
situation at late times). This corresponds to a slow counterintuitive sequence, reminiscent of
the STIRAP sequence, sandwiched by two fast intuitive sequences. This remarkable simple
optimal sequence, referred to as an intuitive/counterintuitive/intuitive (ICI) sequence,
represents an important finding of our paper. Figures 4–6 show that this behavior is more
pronounced, i.e., with a sharper intuitive sequence with higher peak amplitude, for a
decreasing admissible loss.

Figure 5. Same as Figure 4, but for µ̃ = −5, i.e., A ≈ 0.7/u0, and T ≈ 3.98/u0.
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Figure 6. Same as Figure 4, but for µ̃ = −24, i.e., A ≈ 0.32/u0, and T ≈ 7.62/u0.

The projection of the dynamics onto a dark state (i.e., having no component in the
excited state):

|φD(t)〉 =

 cos θ
0

− sin θ

, (94)

which we define with the actual θ, gets closer to one for a smaller admissible loss. We can
notice that this projection is in fact 1 minus the population in state |2〉.
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5. Conclusions and Discussion

In this paper, we have derived energy- and time-minimum optimizations under the
constraint of a given admissible loss leading to exact state-to-state transfer of three-level
Λ-type quantum systems. The resulting control fields have very different shapes depending
on the considered optimization.

In the case of energy-optimal dissipative STIREP, the pulses feature an intuitive
sequence similar to the unconstrained situation, of amplitudes increasing with the decrease
of the given loss, tending to coincident pulses below the loss A . 0.08T. We obtain in this
case the analytic expressions of the pulses, as a sine Jacobi elliptic function. The energy-
optimal dynamics operates with a relatively strong field in the limit of a low loss, and far
from a dark state.

In the case of time-optimal dissipative STIREP, the control time increases with the
decrease of the given loss A. The process features a remarkable pulse sequence: a relatively
slow counterintuitive sequence sandwiched by sharp intuitive sequences (see Figure 6) and
the ICI sequence, sharing, thus, some similarities with STIRAP except the very beginning
and the very end of the process, which are strongly non-adiabatic (see below for a detailed
comparison). The time-optimal strategy operates relatively close to the dark state in the
limit of a low admissible loss.

The process duration, peak pulse amplitude, energy, and area for several given ad-
missible losses are reported in Tables 1 and 2. One can compare a few values in order to
highlight the main features and differences of the two optimization strategies:

• The energy optimization with the (low) given admissible loss A = 0.05T with T ≡ TEO
the time of the process, referred to as EO, yields A ≈ 0.7/umax,EO with umax,EO the
peak of the pulse, TEO ≈ 14/umax,EO, the energy EEO = 40h̄/TEO ≈ 2.8umax,EO,
and the pulse area AEO = π;

• The time-optimization with the same loss A = 0.05T and the same peak amplitude
u0,TO1 ≡ umax,EO, referred to as TO1, is roughly obtained for µ̃ = −5: A ≈ 0.7/u0,TO1,
TTO1 ≈ 3.4/u0,TO1, ETO1 ≈ 11.5h̄/TTO1 ≈ 3.4u0 and ATO1 = 3.4; it shows a much
smaller (roughly four times smaller) time of processing, but slightly larger pulse area
and energy;

• The time-optimization with the same loss A = 0.05T and the same duration as the
energy optimization: TTO2 ≡ T ≡ TEO, referred to as TO2, is roughly obtained for
µ̃ = −20.5: this leads to a significant larger energy ETO2 = 49h̄/T and a twice larger
pulse area ATO2 = 7, but to a (twice) smaller peak pulse amplitude u0,TO2 ≈ 7/T.

We show the dependence of the pulse amplitude on the duration corresponding to these
three examples in Figure 7. The energy-minimization strategy can, thus, achieve the
transfer for a given loss in a relatively small pulse area, but with a relatively large pulse
peak amplitude due to its sharp shape. On the other hand, the time-minimization strategy
can achieve it with a weaker pulse amplitude, but for a larger pulse area (and energy).

In Figure 8, we study the robustness as a function of a relative deviation α of the
amplitudes, i.e., with the amplitudes uj(1 + α), j = p, s, taking into account explicitly
the loss, i.e., using the Hamiltonian Equation (1). We consider the three cases: energy
optimization with A = 0.05T (EO), time optimization (TO2), and the associated STIRAP.
The latter is defined as the traditional counterintuitive configuration of the pumps and
Stokes pulses with sine and cosine shapes, respectively, that fit well the actual TO2 pulses
except the initial and final sharp intuitive sequences (see the upper frame of Figure 8).
We observe that the time-optimal ICI sequence TO2 features a flat asymmetric profile
on a relatively large zone, and that it is much more robust than its associated STIRAP.
The lack of robustness of the latter is expected, as the total pulse area is too low to achieve
efficient adiabaticity.
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Figure 7. Pulse amplitudes for the three examples, i.e., EO, TO1, TO2, described in the text. For TO1
and TO2, we have only plotted the respective peak amplitudes u0,TO1, u0,TO2 ≈ 7/T as lines, the pulse
shapes being of the form in Figures 5 and 6, respectively.

Figure 8. Robustness profiles (lower frame) of the the energy-optimal (EO) (thick lines), time-optimal
(TO2) (full lines), and associated STIRAP (dashed lines) pulses (upper frame) for the duration
T = 7/u0 and the loss A = 0.05T and Γ = 0.1/T, i.e., Ploss ≈ 5× 10−3.
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Comparing with the energy-optimal dissipative STIREP, the time-optimal ICI sequence
is much more robust. The weak robustness of the energy-minimization pulse sequence
can be understood by the fact that this process can be interpreted as the counterpart of the
two-state π-pulse transfer to the Λ system with a large amplitude and a short time in order
to respect the admissible loss.

We conclude that the time-optimal ICI sequence achieves precise and fast population
transfer, with a chosen loss, and in a robust way (in the limit of low loss).

We notice that the time-optimal ICI sequence is very similar to the pulse sequence
derived in [15] (compare Figure 6 with Figure 3 of Ref. [15]),where the optimization was
determined with the explicit constraint of robustness, but without consideration of loss.

The implementation of the ICI sequence with a high fidelity of error Ploss . 10−3

(Ploss ≈ 10−3 is the situation considered in Figure 8) corresponds to T . 2× 10−2/Γ with
the typical value A = 0.05T and u0 = 7/T, i.e., u0 & 350Γ.

For a practical implementation, we have to consider the additional decay within the Λ
system, including decay channels from state |e〉 to the two ground states |1〉 and |3〉 and the
associated decoherence, which has to be analyzed with the density matrix formulation and
the Lindblad equation, as detailed in Appendix G. Numerical analysis has been conducted
for the time-optimal situation, which is the situation of interest since it features robustness
and low loss for large enough µ̃. We obtain that the two additional channels |e〉 → |1〉 and
|e〉 → |3〉 (associated with the respective rates γ1 and γ3) add each a contribution of half
the external loss given by the Γ-channel (for the same rate). We obtain more specifically for
the total loss:

Ploss ≈ P(Γ)
loss

(
1 +

γ1

2Γ
+

γ3

2Γ

)
, (95)

with the external loss given by the Γ-channel defined by (2): P(Γ)
loss = Γ

∫ t f
ti

dt|c2|2. In practice,
we have this to consider the total loss Ploss (95).

Concerning a possible experimental implementation, one can mention the excited
state 1D2 of a praseodymium ion in a Pr3+:Y2SiO5 crystal with Γ−1 ≈ 164 µs [30,31], which
requires the Rabi frequency u0 & 2π × 340 kHz and the duration T . 3.3 µs, well in the
achievable experimental range.
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Appendix A. Pontryagin’s Maximum Principle

To determine optimal control fields u(t) of a dynamical system ẋ = f
(
x(t); u(t)

)
(of

dimension N) with respect to the minimization of a given cost:

J
(
u(t)

)
=
∫ t f

ti

g
(
x(t), u(t)

)
dt, (A1)

Pontryagin’s maximum principle transforms the initial infinite-dimension control
problem into a finite-dimension problem and allows discontinuous controls [18,20]. It
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provides necessary conditions for optimality. It states that the trajectories of the extremal
vector x(t) and of the corresponding adjoint state p(t) formed by the Lagrange multipliers,
p(t) ≡ [p1(t), · · · , pN(t)], fulfill Hamilton’s equations:

ẋ =
∂Hc

∂p
, ṗ = −∂Hc

∂x
, (A2)

associated with the control pseudo-Hamiltonian equation:

Hc
(
p(t), x(t); u(t)

)
= p · f

(
x(t); u(t)

)
− p0g

(
x(t), u(t)

)
, (A3)

where the constant p0 > 0 can be chosen for convenience since it amounts to multiply the
cost function by a constant. For almost all ti ≤ t ≤ t f , the function Hc

(
p(t), x(t); u(t)

)
is

maximum at certain controls v(t) = u(t), for which one can write Hc
(
p(t), x(t); v(t)

)
=

const., i.e.,
∂Hc

∂u
= 0. (A4)

The costate λ defined via the conjugate moments: λ = pT, is solution of the second
Hamilton equation:

λ̇
T
= −∂Hc

∂x
= −λT ∂f

∂x
+ p0

∂g
∂x

. (A5)

Appendix B. Integration of Equation (26)

In this Appendix, we solve the differential Equation (26):

ϕ̇ = λϕ = ±

√
2h− sin2 ϕ

(
2µ +

λ2
θ

cos2 ϕ

)
, (A6)

being one of the equations of motion derived from PMP in the energy-optimal case (see
Section 3).

From the fact that ϕ(T/2) ≡ ϕ0 is maximum at t = T/2, we plug the identity
ϕ̇(t = T/2) = 0 into (26), which gives the relation:

α sin4 ϕ0 − β sin2 ϕ0 + 1 = 0, (A7)

with the parameters:

α =
µ

h
, β =

2h + 2µ + λ2
θ

2h
, (A8)

as a function of which one can express two possible values of sin2 ϕ0:

sin2 ϕ0,± =
1

2α

(
β±

√
β2 − 4α

)
. (A9)

In general, this solution exists if β2 ≥ 4α and (β±
√

β2 − 4α)/α > 0. If α > 0 and
β2 > 4α, there are two roots ϕ0,±. If α < 0 and β < 0, only ϕ0,+ exists. If α < 0 and β > 0,
only ϕ0,− exists.

The differential Equation (26) can be rewritten as:

ϕ̇| cos ϕ| = ±
√

2h− (2h + 2µ + λ2
θ) sin2 ϕ + 2µ sin4 ϕ. (A10)

which gives, for 0 ≤ ϕ ≤ π/2:

d sin ϕ√
1− β sin2 ϕ + α sin4 ϕ

= ±
√

2h dt, (A11)
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taking h ≥ 0. Integrating the positive branch (0 ≤ t ≤ T/2, 0 ≤ sin ϕ ≤ sin ϕ0) leads to:∫ sin ϕ

0

ds√
1− βs2 + αs4

=
√

2h t. (A12)

When µ = 0 (i.e., α = 0), the integration leads for the positive branch (0 ≤ t ≤ T/2):

sin ϕ = sin ϕ0 sin
( √2h

sin ϕ0
t
)
= sin ϕ0 sin

( λθ

cos ϕ0
t
)

, (A13)

implying at t = T/2:
λθT = π cos ϕ0, (A14)

and giving:

sin ϕ = sin ϕ0 sin
(
πt/T

)
. (A15)

By imposing the symmetry in Equation (27), θ(ϕ0) = π/4, we obtain ϕ0 = π/3 for
µ = 0.

When µ 6= 0, the differential Equation (A12) involves an incomplete elliptic integral of
the first kind:

F(Φ|m) =
∫ Φ

0

dϑ√
1−m sin2 ϑ

, (A16)

defined for −π/2 < Φ < π/2, and m sin2 Φ < 1, 0 ≤ ϑ ≤ Φ, as follows: defining
s = κ sin ϑ, giving ds = dϑ κ cos ϑ with cos ϑ ≥ 0, i.e., dϑ = ds/(κ

√
1− (s/κ)2), we obtain:

κF(Φ|m) =
∫ κ sin Φ

0

ds√
1− (m + 1)s2/κ2 + ms4/κ4

. (A17)

By identification with (A12), we have:

β = (m + 1)/κ2, α = m/κ4, (A18)

and sin ϕ = κ sin Φ. We impose the symmetry ϕ = ϕ0 for Φ = π/2 (for which the elliptic
integral of the first kind is complete), i.e.,

κ = sin ϕ0, (A19)

and, for the positive branch:

F(sin−1(sin ϕ/ sin ϕ0)|m) sin ϕ0 =
√

2h t. (A20)

with, at time t = T/2:

F(π/2|m) ≡ K(m) =

√
2h T

2 sin ϕ0
, (A21)

where K(m) is the complete elliptic integral of the first kind. This gives a condition on√
2h/ sin ϕ0, which we insert into (A20):

F(sin−1(sin ϕ/ sin ϕ0)|m) = 2K(m) t/T. (A22)

The function K(m) has the property to be real (and positive) when m < 1, and K(m)→
∞ when m→ 1. The Jacobi elliptic functions allow one to inverse the incomplete elliptic
integral of the first kind with respect to their first argument:

sn(F(Φ|m), m) = sin Φ, cn(F(Φ|m), m) = cos Φ, (A23)
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and (A22) becomes (to be compared to (A15) when µ = 0 using F(Φ|0) = Φ):

sin ϕ = sin ϕ0 sn(2K(m) t/T, m), (A24)

where the property sn(K(m), m) = 1 ensures that ϕ(t = T/2) = ϕ0.
This shows that the set of the three parameters {µ, λθ , h}, or {α, β, h} from (A8), can be

replaced by the set {m, ϕ0, T}. The correspondence between the last two sets is as follows:
from a given α and β, the parameters κ (and thus, ϕ0 from Equation (A19)) and m are
determined from Equation (A18). Equation (A21) gives T from the additional knowledge
of h.

Appendix C. Integration of Equation (27)

In this Appendix, we solve the differential Equation (27):

dϕ

dθ
= ±
√

2h

√
1− β sin2 ϕ + α sin4 ϕ

λθ cos ϕ tan2 ϕ
, (A25)

being the second equation of motion derived from PMP in the energy-optimal case (see
Section 3). The sign ± is the same as the one of ϕ̇, which, taking into account that θ = 0
when ϕ = 0, leads to:

θ = ±

√
sin2 ϕ0 −m

sin ϕ0 tan ϕ0

∫ ϕ

0

dφ√
1− β sin2 φ + α sin4 φ

sin2 φ

cos φ
. (A26)

From the result:∫ ϕ

0
dφ

sin2 φ

cos φ
√
(1− a sin2 φ)(1− b sin2 φ)

=
1√

a− b

[
F
(

asin
(√

1− a sin2 ϕ
)∣∣∣ b

b− a

)

− K
( b

b− a

)
+

a
a− 1

Π
( 1

1− a
;−asin

(√
1− a sin2 ϕ

)∣∣∣ b
b− a

)
+

a
a− 1

Π
( 1

1− a

∣∣∣ b
b− a

)]
, (A27)

where Π(n; Φ|m) is an incomplete elliptic integral of the third kind:

Π(n; Φ|m) =
∫ Φ

0

dφ

(1− n sin2 φ)
√

1−m sin2 φ
, (A28)

we identify:

β = a + b, α = ab, (A29)

which gives:

b =
1
2
(β±

√
β2 − 4α) = α sin2 ϕ0,±, (A30)

and Equation (A26) becomes for the positive branch (for which ϕ increases from 0 to ϕ0):

θ+(ϕ) =

√
sin2 ϕ0 −m

√
1−m tan ϕ0

[
F
(

asin

√
1− sin2 ϕ

sin2 ϕ0

∣∣∣ m
m− 1

)
− K

( m
m− 1

)

+
Π
(
− tan2 ϕ0;−asin

√
1− sin2 ϕ

sin2 ϕ0

∣∣∣ m
m−1

)
cos2 ϕ0

+
Π
(
− tan2 ϕ0

∣∣∣ m
m−1

)
cos2 ϕ0

]
. (A31)
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Imposing the symmetrical negative branch:

θ−(ϕ) =
π

2
− θ+(ϕ), θ−(ϕ0) = θ+(ϕ0) =

π

4
, (A32)

as in the unconstrained case µ = 0, leads to:

π

4
= +

√
sin2 ϕ0 −m

√
1−m tan ϕ0

[
−K
( m

m− 1

)
+

Π
(
− tan2 ϕ0

∣∣∣ m
m−1

)
cos2 ϕ0

]
, (A33)

which gives an implicit relation between sin ϕ0 and m.
We can recover for µ = 0 (i.e., α = 0 and m = 0) ϕ0 = π/3 (solution of (33)), giving

tan ϕ0 ≡
√

3 =
√

2h
λθ

, i.e., a = 0 and b = 4/3, and the positive branch:

θ+ = atan

(
sin ϕ+√

tan2 ϕ0 − sin2 ϕ+

cos2 ϕ0

)
− cos ϕ0asin

( sin ϕ+

sin ϕ0

)
. (A34)

Using:

atan(x) = asin
( tan ϕ+

tan ϕ0

)
, (A35)

we obtain for µ = 0:

θ+ = asin
( tan ϕ+

tan ϕ0

)
− cos ϕ0asin

( sin ϕ+

sin ϕ0

)
. (A36)

Appendix D. Stimulated Raman Parallel Adiabatic Passage

In this Appendix, we briefly summarize the stimulated Raman parallel adiabatic
passage [28] with coincident pulses. For such a process, we have to consider quasi-
resonant pulses:

H =

 −δ/2 uP 0
uP ∆ uS
0 uS δ/2

, (A37)

with up ≡ ΩP/2, us ≡ ΩS/2, and δ the two-photon detuning: δ = ω3 −ω1 −ωP + ωS, ∆
connected to the one-photon detuning (with respect to the pump) ∆P = ω2 −ω1 −ωP as
∆ = ∆P − δ/2. h̄ωj, j = 1, 2, 3, are the energies of the corresponding state |j〉 and ωP, ωS
the frequencies of the pump and Stokes fields, respectively. Parallel STIRAP [28] requires
an adiabatic passage process such that the eigenvalues stay parallel at each time, implying
minimization of non-adiabatic transfers (still in the adiabatic limit) [29]. One denotes ω−,0,+
the three eigenvalues which satisfy ω− < ω0 < ω+ and |ψ−,0,+〉, with corresponding

eigenstates such that |1〉 t→−∞←− |ψ0〉
t→+∞−→ |3〉. The eigenvalues, on which we impose

parallelism: ω+ −ω0 = ω0 −ω− = Ω0/2, are, thus, of the form:

ω0 =
1
3

∆, ω± =
1
3

∆± 1
2

Ω0, (A38)

with

Ω0 =

√
Ω2

P + Ω2
S + δ2 +

4
3

∆2 (A39)

and the condition

0 =
δ

2
(Ω2

S −Ω2
P) +

∆
3
(Ω2

P + Ω2
S) +

∆
27

(8∆2 − 18δ2). (A40)
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We choose the initial and final connections, when ΩP = ΩS = 0, ω+(−∞) = Ω0/4,
ω−(−∞) = −3Ω0/4, ω+(+∞) = 3Ω0/4, ω−(+∞) = −Ω0/4 corresponding to the fi-

nal and initial conditions: 0 t→−∞←− ΩP,S(t)
t→+∞−→ 0, −3Ω0/4 t→−∞←− ∆(t) t→+∞−→ 3Ω0/4,

Ω0/2 t→−∞←− δ(t) t→+∞−→ Ω0/2.
Considering coincident pulses: ΩP(t) = ΩS(t) ≡ Ω(t) (i.e., uP(t) = uS(t) ≡ Ω(t)/2),

we obtain expressions for the two-photon detuning and the pulses from (A39) and (A40):

δ =
Ω0√

3

√
1−

(2
3

∆
Ω0

)2
, Ω =

Ω0√
3

√
1−

(4
3

∆
Ω0

)2
, (A41)

considering δ(t) and Ω(t) as functions of ∆(t). Taking for simplicity a monotonic increasing
odd function ∆(t) = (3Ω0/4)g(t), with g(±∞) = ±1, g(0) = 0, for instance, g(t) =
erf(t/T) i.e.,

∆(t) =
3Ω0

4
erf
( t

T

)
(A42)

with T the characteristic time of evolution, we obtain:

δ =
Ω0√

3

√
1− 1

4

[
erf
( t

T

)]2
, Ω =

Ω0√
3

√
1−

[
erf
( t

T

)]2
, (A43)

i.e.,

uP = uS ≡
Ω
2

=
Ω0

2
√

3

√
1−

[
erf
( t

T

)]2
. (A44)

Appendix E. Optimal Control with Constrained Controls

We consider a control pseudo-Hamiltonian of the bilinear form [32]:

Hc = H0 + u1H1 + u2H2, (A45)

where H0, H1, and H2 are independent of the controls u1, u2, and a constraint on the controls:

u2
1 + u2

2 ≤ u2
0. (A46)

The goal is to maximize Hc for any value of H0, H1, H2, under the above constraint. The
maximization of Hc corresponds to the necessary conditions ∂Hc

∂u1
= 0, ∂Hc

∂u2
= 0 according to

the PMP, in the case of absence of constraint on the controls, but this is no longer true with
a constraint.

Keeping the full generality of the problem, we can rewrite the controls as follows:

u1(t) = um(t) cos
(
θ(t)

)
, u2(t) = um(t) sin

(
θ(t)

)
, (A47)

implying
u2

1(t) + u2
2(t) = u2

m(t) ≤ u2
0. (A48)

This means that the constraint condition (A46) is transferred to the condition (A48) on
um: u2

m ≤ u2
0, which is independent of θ. The maximization of Hc corresponds, thus, to the

necessary condition:
∂Hc

∂θ
= 0, (A49)

which gives:

∂Hc

∂θ
=

∂u1

∂θ
H1 +

∂u2

∂θ
H2 = um(H2 cos θ − H1 sin θ) = 0, (A50)
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i.e.,
H2

H1
=

sin θ

cos θ
, (A51)

or

cos θ =
H1√

H2
1 + H2

2

, sin θ =
H2√

H2
1 + H2

2

, (A52)

and yield

u1 = um
H1√

H2
1 + H2

2

, u2 = um
H2√

H2
1 + H2

2

. (A53)

We plug them into the pseudo-Hamiltonian equation:

Hc = H0 + um

√
H2

1 + H2
2 . (A54)

The pseudo-Hamiltonian equation is then maximum when um takes its maximum
value, i.e., according to (A46):

um = u0, (A55)

and it finally reads:

Hc = H0 + u0

√
H2

1 + H2
2 (A56)

with the controls:

u1 = u0
H1√

H2
1 + H2

2

, u2 = u0
H2√

H2
1 + H2

2

. (A57)

One can remark that the controls attain the maximum of the constraint at each time:

u2
1(t) + u2

2(t) = u2
0. (A58)

Appendix F. Roots of Equation (91)

When µ̃ 6= 0, and multiplying Equation (91) by 1− sin2 ϕ0, we obtain that sin2 ϕ0 is a
(positive and less than (or equal to) one) root of a cubic polynomias:

1− (1 + λ̃2
θ + 2µ̃) sin2 ϕ0 + (µ̃2 + 2µ̃) sin4 ϕ0 − µ̃2 sin6 ϕ0 = 0, (A59)

i.e.,
1− (1 + λ̃2

θ + 2µ̃)X + (µ̃2 + 2µ̃)X2 − µ̃2X3 = 0 (A60)

with X = sin2 ϕ0. It is important to note that multiplying Equation (91) by 1− sin2 ϕ0
introduces an artificial root ϕ0 = π/2, except for λ̃θ = 0 and µ̃ = 1, for which ϕ0 = π/2 is
a true root of (91). We analyze the solution ϕ0 near π/2 by setting ϕ0 = π/2 + ε, |ε| � 1,
into (91), which gives a relation between λ̃θ and µ̃ for a given ε:

|λ̃θ | = |ε| × |1− µ̃|, (A61)

which shows how λ̃θ goes to zero and ϕ0 to π/2 for a given µ̃.
When µ̃ = 0, we obtain:

ϕ0 = arctan
1

λ̃θ

. (A62)
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One can use the analytic Cardano’s method to solve Equation (A60), as shown below.
Substituting the following:

X = Y +
µ̃2 + 2µ̃

3µ̃2 = Y +
µ̃ + 2

3µ̃
, (A63)

Equation (A60) can be depressed to:

Y3 + pY + q = 0, (A64)

with p =
3λ̃2

θ−1+2µ̃−µ̃2

3µ̃2 , q =
2+9(µ̃+2)λ̃2

θ−6µ̃+6µ̃2−2µ̃3

27µ̃3 . We define the discriminant of
Equation (A64) as follows:

∆ =
( q

2

)2
+
( p

3

)3
. (A65)

When ∆ > 0, the only real solution of Equation (A64) reads:

Y =
3

√√( q
2

)2
+
( p

3

)3
− q

2
+

3

√
−
√( q

2

)2
+
( p

3

)3
− q

2
, (A66)

where the cube root is used (imposing a real argument).
When ∆ ≤ 0, which implies that p is negative, the solutions of Equation (A64) read

(being all real):

Yk+1 = 2

√
−p
3

cos

(
1
3

arccos

(
3q
2p

√
3
−p

)
+

2kπ

3

)
(A67)

with k ∈ {0, 1, 2}. The relationship between the roots and the coefficients is as follows:

Y1 + Y2 + Y3 = 0, (A68)

1
Y1

+
1

Y2
+

1
Y3

= − p
q

, (A69)

Y1Y2Y3 = −q. (A70)

When ∆ = 0 (implying p ≤ 0), Equation (A64) has two roots when p, q 6= 0:

Y1 = 2 3

√
− q

2
, Y2 = 3

√
q
2
= Y3, (A71)

and three being equal to zero when q = 0 (implying p = 0).
We are searching for positive and real roots, satisfying |Y| ≤ 1. We first determine the

sign of the discriminant:

∆ =
λ̃2

θ

27µ̃6

[
λ̃4

θ + (−µ̃2/4 + 5µ̃ + 2)λ̃2
θ + 1− 3µ̃ + 3µ̃2 − µ̃3] ≡ λ̃2

θ

27µ̃6 P2(λ̃
2
θ), (A72)

where we denote the two (positive) roots of P2(λ̃
2
θ):

λ̃2
θ,± =

1
2

(1
4

µ̃2 − 5µ̃− 2± 1
4

√
µ̃(µ̃ + 8)3

)
. (A73)

The sign of ∆ is given by the sign of the second-order polynomial P2(λ̃
2
θ) in λ̃2

θ . We
first note that ∆ = 0 when λ̃θ = 0.
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When ∆ > 0, the real solution reads:

sin2 ϕ0 = 3

√
− q

2
+

λ̃θ√
27µ̃3

√
P2(λ̃

2
θ) +

3

√
− q

2
− λ̃θ√

27µ̃3

√
P2(λ̃

2
θ) +

µ̃ + 2
3µ̃

. (A74)

When ∆ = 0, the two solutions read:

sin2 ϕ0 = 2 3

√
− q

2
+

µ̃ + 2
3µ̃

, (A75)

sin2 ϕ0 = − 3

√
− q

2
+

µ̃ + 2
3µ̃

= 3

√
q
2
+

µ̃ + 2
3µ̃

. (A76)

When ∆ < 0, the three real solutions read (with k ∈ {0, 1, 2}):

sin2 ϕ0 =2

√
−p
3

cos

(
1
3

arccos

(
3q
2p

√
3
−p

)
+

2kπ

3

)
+

µ̃ + 2
3µ̃

. (A77)

We have, thus, the following real roots:

• When λ̃θ = 0, according to (91),
-one root, when µ̃ ≥ 1:

sin2 ϕ0 =
1
µ̃

, (A78)

-no root, when µ̃ < 1;

• When λ̃θ 6= 0:
-for µ̃ ≤ −8:

one root (A74), for λ̃θ ∈]0, λ̃θ,−[∪]λ̃θ,+,+∞[,
two roots (A75) and (A76), for λ̃θ = λ̃θ,− or λ̃θ = λ̃θ,+,
three roots (A77), for λ̃θ,− < λ̃θ < λ̃θ,+;

-for µ̃ ∈]− 8, 1]: one root (A74) (which coincides with (A62) for µ̃ = 0);
-for µ̃ > 1:

one root (A74), for λ̃θ > λ̃θ,+,
two roots (A75) and (A76), for λ̃θ = λ̃θ,+,
three roots (A77), for 0 < λ̃θ < λ̃θ,+.

One can analyze the limit when λ̃θ goes to zero:

• In the range µ̃ ≤ 1, the root given by (A74), where, for λ̃θ = 0:

q =
2

27µ̃3 (1− µ̃)3, p = −1
3
(1− µ̃)2

µ̃2 (A79)

gives:
sin2 ϕ0 = 1, (A80)

which is compatible with ϕ0 going to π/2 for λ̃θ going to 0.
• In the range µ̃ > 1, Equation (A77):

sin2 ϕ0 =
2
3

µ̃− 1
µ̃

cos
(

2kπ

3

)
+

µ̃ + 2
3µ̃

(A81)

gives the two roots:
sin2 ϕ0 = {1, 1/µ̃}. (A82)
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Contour plots as a function of µ̃ and λ̃θ in Figure A1 show the solution(s) of ϕ0
satisfying (91). Considering that the maximum number of solutions is three, we make
three plots.

Figure A1. Contour plots of the solution(s) of ϕ0 from Equation (91) as a function of µ̃ and λ̃θ .
Absence of solutions is indicated by black color (“0”). The situation of one solution is reported in
(a) [i.e., the two others are set to zero in (b,c)]: the solution is localized outside the (blue) thick-line
boundaries [corresponding to the roots (A73)]; the situation of two solutions is reported in (a,b): the
solutions are localized on the (blue) thick-line boundaries; when there are three solutions, they are
localized within the boundaries.
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Appendix G. Lindblad Equation

In this Appendix, we consider explicitly all the decay channels via the Lindblad
Equation [33]:

dρ

dt
= −i[H(t), ρ(t)] +D(ρ(t)) (A83)

with the dissipator:

D(ρ(t)) = ∑
i

[
γiσiρ(t)σ†

i −
γi
2

(
σ†

i σiρ(t) + ρ(t)σ†
i σi

)]
, (A84)

where σi is the jump operator associated with the rate γi and ρ†(t) = ρ(t) is the density
operator [34]. The populations ρjj = 〈j|ρ|j〉 satisfy ∑j ρjj = 1 and the coherences ρ∗ij = ρji.
In the basis {|1〉, |3〉, |e〉, |a〉}, the (non-lossy) resonantly driven Hamiltonian reads:

H =


0 0 up 0
0 0 us 0

up us 0 0
0 0 0 0

. (A85)

The Λ system features in general (i) two decay paths within the Λ-system, γ1 and
γ3, between the upper state denoted |e〉 ≡ |2〉 and the two ground states |1〉 and |3〉,
respectively, with the corresponding jump operator:

σje = |j〉〈e|, (A86)

and (ii) additional decays from state |e〉 outside the Λ system, which can be modeled by an
imaginary loss of the form −iΓ/2. In order to show it, one considers an additional state |a〉
gathering the additional decays γa with the corresponding jump operator σae = |a〉〈e|, and
we decompose the dissipator into the respective terms:

D(ρ(t)) = D13(ρ(t)) +Da(ρ(t)) (A87)

with:

D13(ρ(t)) = ∑
j=1,3

[
γjσjeρ(t)σ†

je −
γj

2

(
σ†

jeσjeρ(t) + ρ(t)σ†
jeσje

)]
, (A88)

Da(ρ(t)) = γaσaeρ(t)σ†
ae −

γa

2

(
σ†

aeσaeρ(t) + ρ(t)σ†
aeσae

)
(A89)

with:

σjeρσ†
je = ρee|j〉〈j|, (A90)

σ†
jeσjeρ = |e〉〈e|ρ = |e〉〈e|∑

k`
ρk`|k〉〈`| = ∑

`

ρe`|e〉〈`|, (A91)

ρσ†
jeσje = ρ|e〉〈e| = ∑

k
ρke|k〉〈e|, (A92)
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i.e., in matrix form:

D13(ρ(t)) =


γ1ρee 0 − γ1+γ3

2 ρ1e 0
0 γ3ρee − γ1+γ3

2 ρ3e 0
− γ1+γ3

2 ρe1 − γ1+γ3
2 ρe3 −(γ1 + γ3)ρee − γ1+γ3

2 ρea
0 0 − γ1+γ3

2 ρae 0

, (A93)

Da(ρ(t)) =


0 0 − γa

2 ρ1e 0
0 0 − γa

2 ρ3e 0
− γa

2 ρe1 − γa
2 ρe3 −γaρee − γa

2 ρea
0 0 − γa

2 ρae γaρee

. (A94)

We introduce the lossy Hamiltonian equation:

Hγa = H − i
γa

2
σ†

aeσae, (A95)

i.e., in matrix form:

Hγa =


0 0 up 0
0 0 us 0

up us −i γa
2 0

0 0 0 0

, (A96)

satisfying:

H†
γa = H + i

γa

2
σ†

aeσae = H−γa . (A97)

Using the above property in the second term of the commutator, we can expand
without any approximation the Lindblad equation using the lossy Hamiltonian equation
as follows:

dρ

dt
= −i

(
Hγa + i

γa

2
σ†

aeσae
)
ρ(t) + iρ(t)

(
H†

γa − i
γa

2
σ†

aeσae
)
+D(ρ(t))

= −i(Hγa ρ(t)− ρ(t)H†
γa) +D13(ρ(t)) + γaσaeρ(t)σ†

ae, (A98)

where the latter term can be written as γaσaeρ(t)σ†
ae = ρee|a〉〈a|, i.e., corresponding to the

equation ρ̇aa = γaρee.
The Lindblad equation can, thus, be decomposed into a set of equations involving

only the lossy Λ system:

ρ̇11 = −iup(ρe1 − ρ1e) + γ1ρee, (A99)

ρ̇13 = −iupρe3 + iSρ1e, (A100)

ρ̇1e = −iup(ρee − ρ11) + iusρ13 −
γ

2
ρ1e, (A101)

ρ̇33 = −ius(ρe3 − ρ3e) + γ3ρee, (A102)

ρ̇3e = −ius(ρee − ρ33) + iupρ31 −
γ

2
ρ3e, (A103)

ρ̇ee = −iup(ρ1e − ρe1)− ius(ρ3e − ρe3)− γρee, (A104)

with the total decay rate γ = ∑j=1,3,a γj, and a set of equations involving states |e〉 and |a〉:

ρ̇1a = −iupρea, (A105)

ρ̇3a = −iusρea, (A106)

ρ̇ea = −i(upρ1a + usρ3a)−
γ

2
ρea, (A107)

ρ̇aa = γaρee. (A108)



Entropy 2023, 25, 790 32 of 33

Since we consider neither initial population in states |e〉 and |a〉 nor initial coherence
involving these states (at time ti), the two sets of equations are independent and the solution
of (A105)–(A108) is ρ1a = ρ2a = ρea = 0 and:

ρaa(t) = γa

∫ t

ti

ρee(s)ds (A109)

determined from the knowledge of the population ρee(t) from solving the system of Equa-
tions (A99)–(A104).

The system (A99)–(A104) of interest can, thus, be reformulated, without any approxi-
mation, as the reduced Lindblad equation:

dρ

dt
= −i(HΓρ(t)− ρ(t)H†

Γ) +DΛ(ρ(t)), (A110)

where all the operators are restricted to the Λ-system with a lossy state |e〉 of rate Γ = γa
associated with the effective Hamiltonian Equation (1):

HΓ =

 0 0 up
0 0 us

up us −i Γ
2

, (A111)

and the dissipator:

DΛ(ρ(t)) =

 γ1ρee 0 − γ1+γ3
2 ρ1e

0 γ3ρee − γ1+γ3
2 ρ3e

− γ1+γ3
2 ρe1 − γ1+γ3

2 ρe3 −(γ1 + γ3)ρee

 (A112)

taking into account the decay channels within the Λ-system. This shows the relevance of
the use of the lossy Hamiltonian Equation (1) for the decay operating outside the Λ-system.
The system (A99)–(A104) can also be expanded in matrix form as follows:

d
dt



ρ11
ρ1e
ρe1
ρee
ρ3e
ρe3
ρ33
ρ13
ρ31


=



0 iup −iup γ1 0 0 0 0 0
iup − γ

2 0 −iup 0 0 0 ius 0
−iup 0 − γ

2 iup 0 0 0 0 −ius
0 −iup iup −γ −ius ius 0 0 0
0 0 0 −ius − γ

2 0 ius 0 iup
0 0 0 ius 0 − γ

2 −ius −iup 0
0 0 0 γ3 ius −ius 0 0 0
0 ius 0 0 0 −iup 0 0 0
0 0 −ius 0 iup 0 0 0 0





ρ11
ρ1e
ρe1
ρee
ρ3e
ρe3
ρ33
ρ13
ρ31


. (A113)
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